示例#1
0
PetscErrorCode IJacobian(TS ts,PetscReal t,Vec X,Vec Xdot,PetscReal a,Mat A,Mat B,Userctx *user)
{
  PetscErrorCode ierr;
  SNES           snes;
  PetscScalar    atmp = (PetscScalar) a;
  PetscInt       i,row;

  PetscFunctionBegin;
  user->t = t;

  ierr = TSGetSNES(ts,&snes);CHKERRQ(ierr);
  ierr = ResidualJacobian(snes,X,A,B,user);CHKERRQ(ierr);
  for (i=0;i < ngen;i++) {
    row = 9*i;
    ierr = MatSetValues(A,1,&row,1,&row,&atmp,ADD_VALUES);CHKERRQ(ierr);
    row  = 9*i+1;
    ierr = MatSetValues(A,1,&row,1,&row,&atmp,ADD_VALUES);CHKERRQ(ierr);
    row  = 9*i+2;
    ierr = MatSetValues(A,1,&row,1,&row,&atmp,ADD_VALUES);CHKERRQ(ierr);
    row  = 9*i+3;
    ierr = MatSetValues(A,1,&row,1,&row,&atmp,ADD_VALUES);CHKERRQ(ierr);
    row  = 9*i+6;
    ierr = MatSetValues(A,1,&row,1,&row,&atmp,ADD_VALUES);CHKERRQ(ierr);
    row  = 9*i+7;
    ierr = MatSetValues(A,1,&row,1,&row,&atmp,ADD_VALUES);CHKERRQ(ierr);
    row  = 9*i+8;
    ierr = MatSetValues(A,1,&row,1,&row,&atmp,ADD_VALUES);CHKERRQ(ierr);
  }
  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
示例#2
0
PetscErrorCode AlgJacobian(SNES snes,Vec X,Mat A,Mat B,void *ctx)
{
  PetscErrorCode ierr;
  Userctx        *user=(Userctx*)ctx;

  PetscFunctionBegin;
  ierr = ResidualJacobian(snes,X,A,B,ctx);CHKERRQ(ierr);
  ierr = MatSetOption(A,MAT_KEEP_NONZERO_PATTERN,PETSC_TRUE);CHKERRQ(ierr);
  ierr = MatZeroRowsIS(A,user->is_diff,1.0,NULL,NULL);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
示例#3
0
void DruckerPragerModel<EvalT, Traits>::
computeState(typename Traits::EvalData workset,
    std::map<std::string, Teuchos::RCP<PHX::MDField<ScalarT> > > dep_fields,
    std::map<std::string, Teuchos::RCP<PHX::MDField<ScalarT> > > eval_fields)
{
  // extract dependent MDFields
  PHX::MDField<ScalarT> strain = *dep_fields["Strain"];
  PHX::MDField<ScalarT> poissons_ratio = *dep_fields["Poissons Ratio"];
  PHX::MDField<ScalarT> elastic_modulus = *dep_fields["Elastic Modulus"];
   
  // retrieve appropriate field name strings
  std::string cauchy_string = (*field_name_map_)["Cauchy_Stress"];
  std::string strain_string = (*field_name_map_)["Strain"];
  std::string eqps_string = (*field_name_map_)["eqps"];
  std::string friction_string = (*field_name_map_)["Friction_Parameter"];
    
  // extract evaluated MDFields
  PHX::MDField<ScalarT> stress = *eval_fields[cauchy_string];
  PHX::MDField<ScalarT> eqps = *eval_fields[eqps_string];
  PHX::MDField<ScalarT> friction = *eval_fields[friction_string];
  PHX::MDField<ScalarT> tangent = *eval_fields["Material Tangent"];
    
  // get State Variables
  Albany::MDArray strainold = (*workset.stateArrayPtr)[strain_string + "_old"];
  Albany::MDArray stressold = (*workset.stateArrayPtr)[cauchy_string + "_old"];
  Albany::MDArray eqpsold = (*workset.stateArrayPtr)[eqps_string + "_old"];
  Albany::MDArray frictionold = (*workset.stateArrayPtr)[friction_string + "_old"];

  Intrepid::Tensor<ScalarT> id(Intrepid::eye<ScalarT>(num_dims_));    
  Intrepid::Tensor4<ScalarT> id1(Intrepid::identity_1<ScalarT>(num_dims_));
  Intrepid::Tensor4<ScalarT> id2(Intrepid::identity_2<ScalarT>(num_dims_));
  Intrepid::Tensor4<ScalarT> id3(Intrepid::identity_3<ScalarT>(num_dims_));
    
  Intrepid::Tensor4<ScalarT> Celastic (num_dims_);
  Intrepid::Tensor<ScalarT> sigma(num_dims_), sigmaN(num_dims_), s(num_dims_);
  Intrepid::Tensor<ScalarT> epsilon(num_dims_), epsilonN(num_dims_);
  Intrepid::Tensor<ScalarT> depsilon(num_dims_);
  Intrepid::Tensor<ScalarT> nhat(num_dims_);
    
  ScalarT lambda, mu, kappa;
  ScalarT alpha, alphaN;
  ScalarT p, q, ptr, qtr;
  ScalarT eq, eqN, deq;
  ScalarT snorm;
  ScalarT Phi;
  
  //local unknowns and residual vectors
  std::vector<ScalarT> X(4);
  std::vector<ScalarT> R(4);
  std::vector<ScalarT> dRdX(16);
    
  for (std::size_t cell(0); cell < workset.numCells; ++cell) {
    for (std::size_t pt(0); pt < num_pts_; ++pt) {
      lambda = ( elastic_modulus(cell,pt) * poissons_ratio(cell,pt) ) 
        / ( ( 1 + poissons_ratio(cell,pt) ) * ( 1 - 2 * poissons_ratio(cell,pt) ) );
      mu = elastic_modulus(cell,pt) / ( 2 * ( 1 + poissons_ratio(cell,pt) ) );
      kappa = lambda + 2.0 * mu / 3.0;
    
      // 4-th order elasticity tensor
      Celastic = lambda * id3 + mu * (id1 + id2);
        
      // previous state (the fill doesn't work for state virable)
      //sigmaN.fill( &stressold(cell,pt,0,0) );
      //epsilonN.fill( &strainold(cell,pt,0,0) );

      for (std::size_t i(0); i < num_dims_; ++i) {
        for (std::size_t j(0); j < num_dims_; ++j) {
          sigmaN(i, j) = stressold(cell, pt, i, j);
          epsilonN(i, j) = strainold(cell, pt, i, j);
          //epsilon(i,j) = strain(cell,pt,i,j);
        }
      }
             
      epsilon.fill( &strain(cell,pt,0,0) );
      depsilon = epsilon - epsilonN;                                 
        
      alphaN = frictionold(cell,pt);
      eqN = eqpsold(cell,pt);
        
      // trial state
      sigma = sigmaN + Intrepid::dotdot(Celastic,depsilon);
      ptr = Intrepid::trace(sigma) / 3.0;
      s = sigma - ptr * id;
      snorm = Intrepid::dotdot(s,s);  
      if(snorm > 0) snorm = std::sqrt(snorm);
      qtr = sqrt(3.0/2.0) * snorm;

      // unit deviatoric tensor      
      if (snorm > 0){
        nhat = s / snorm;
       } else{
        nhat = id;
       }
      
      // check yielding
      Phi = qtr + alphaN * ptr - Cf_;
      
      alpha = alphaN;
      p = ptr;
      q = qtr;
      deq = 0.0;
      if(Phi > 1.0e-12) {// plastic yielding  
        
        // initialize local unknown vector
        X[0] = ptr;
        X[1] = qtr;
        X[2] = alpha;
        X[3] = deq;
         
        LocalNonlinearSolver<EvalT, Traits> solver;
        int iter = 0;
        ScalarT norm_residual0(0.0), norm_residual(0.0), relative_residual(0.0);
          
        // local N-R loop
        while (true) {
              
          ResidualJacobian(X, R, dRdX, ptr, qtr, eqN, mu, kappa);
            
          norm_residual = 0.0;
            for (int i = 0; i < 4; i++)
                norm_residual += R[i] * R[i];
          norm_residual = std::sqrt(norm_residual);
            
          if (iter == 0)
            norm_residual0 = norm_residual;
             
          if (norm_residual0 != 0)
              relative_residual = norm_residual / norm_residual0;
          else
              relative_residual = norm_residual0;
            
          //std::cout << iter << " "
          //<< Sacado::ScalarValue<ScalarT>::eval(norm_residual)
            //<< " " << Sacado::ScalarValue<ScalarT>::eval(relative_residual)
            //<< std::endl;
            
          if (relative_residual < 1.0e-11 || norm_residual < 1.0e-11)
              break;
            
          if (iter > 20)
              break;
            
          // call local nonlinear solver
          solver.solve(dRdX, X, R);
            
          iter++;           
              
        } // end of local N-R loop        

      // compute sensitivity information w.r.t. system parameters
      // and pack the sensitivity back to X
      solver.computeFadInfo(dRdX, X, R);        
      
      // update
      p = X[0];
      q = X[1];
      alpha = X[2];
      deq = X[3];
    
      }//end plastic yielding      
          
      eq = eqN + deq;
        
      s = sqrt(2.0/3.0) * q * nhat;
      sigma = s + p * id;
      
      eqps(cell, pt) = eq;
      friction(cell,pt) = alpha;
        
      for (std::size_t i(0); i < num_dims_; ++i) {
        for (std::size_t j(0); j < num_dims_; ++j) {
              stress(cell,pt,i,j) = sigma(i, j);
            }
        }      
         
    }// end loop over pt
  } //  end loop over cell
}