/** output method of display column to output file stream 'file' */ static SCIP_DECL_DISPOUTPUT(SCIPdispOutputLpavgiters) { /*lint --e{715}*/ assert(disp != NULL); assert(strcmp(SCIPdispGetName(disp), DISP_NAME_LPAVGITERS) == 0); assert(scip != NULL); if( SCIPgetNNodes(scip) < 2 ) SCIPinfoMessage(scip, file, " - "); else SCIPinfoMessage(scip, file, "%6.1f ", (SCIPgetNLPIterations(scip) - SCIPgetNRootLPIterations(scip)) / (SCIP_Real)(SCIPgetNNodes(scip) - 1) ); return SCIP_OKAY; }
/** output method of display column to output file stream 'file' */ static SCIP_DECL_DISPOUTPUT(SCIPdispOutputNNodes) { /*lint --e{715}*/ assert(disp != NULL); assert(strcmp(SCIPdispGetName(disp), DISP_NAME_NNODES) == 0); assert(scip != NULL); SCIPdispLongint(SCIPgetMessagehdlr(scip), file, SCIPgetNNodes(scip), DISP_WIDT_NNODES); return SCIP_OKAY; }
/** updates heurdata after a run of crossover */ static void updateFailureStatistic( SCIP* scip, /**< original SCIP data structure */ SCIP_HEURDATA* heurdata /**< primal heuristic data */ ) { /* increase number of failures, calculate next node at which crossover should be called and update actual solutions */ heurdata->nfailures++; heurdata->nextnodenumber = (heurdata->nfailures <= 25 ? SCIPgetNNodes(scip) + 100*(2LL << heurdata->nfailures) /*lint !e703*/ : SCIP_LONGINT_MAX); }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecZeroobj) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; /* heuristic's data */ SCIP_Longint nnodes; /* number of stalling nodes for the subproblem */ assert( heur != NULL ); assert( scip != NULL ); assert( result != NULL ); /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); /* calculate the maximal number of branching nodes until heuristic is aborted */ nnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward zeroobj if it succeeded often */ nnodes = (SCIP_Longint)(nnodes * 3.0 * (SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur) + 1.0)); nnodes -= 100 * SCIPheurGetNCalls(heur); /* count the setup costs for the sub-SCIP as 100 nodes */ nnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nnodes -= heurdata->usednodes; nnodes = MIN(nnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nnodes < heurdata->minnodes ) { SCIPdebugMessage("skipping zeroobj: nnodes=%"SCIP_LONGINT_FORMAT", minnodes=%"SCIP_LONGINT_FORMAT"\n", nnodes, heurdata->minnodes); return SCIP_OKAY; } /* do not run zeroobj, if the problem does not have an objective function anyway */ if( SCIPgetNObjVars(scip) == 0 ) { SCIPdebugMessage("skipping zeroobj: pure feasibility problem anyway\n"); return SCIP_OKAY; } if( SCIPisStopped(scip) ) return SCIP_OKAY; SCIP_CALL( SCIPapplyZeroobj(scip, heur, result, heurdata->minimprove, nnodes) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecGcgrens) { /*lint --e{715}*/ SCIP* masterprob; SCIP_HEURDATA* heurdata; /* heuristic's data */ SCIP_Longint nstallnodes; /* number of stalling nodes for the subproblem */ assert( heur != NULL ); assert( scip != NULL ); assert( result != NULL ); /* get master problem */ masterprob = GCGrelaxGetMasterprob(scip); assert( masterprob != NULL); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); *result = SCIP_DELAYED; /* do not execute the heuristic on invalid relaxation solutions * (which is the case if the node has been cut off) */ if( !SCIPisRelaxSolValid(scip) ) { SCIPdebugMessage("skipping GCG RENS: invalid relaxation solution\n"); return SCIP_OKAY; } /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetStage(masterprob) > SCIP_STAGE_SOLVING || SCIPgetLPSolstat(masterprob) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* only continue with some fractional variables */ if( SCIPgetNExternBranchCands(scip) == 0 ) return SCIP_OKAY; /* calculate the maximal number of branching nodes until heuristic is aborted */ nstallnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward RENS if it succeeded often */ nstallnodes = (SCIP_Longint)(nstallnodes * 3.0 * (SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur) + 1.0)); nstallnodes -= 100 * SCIPheurGetNCalls(heur); /* count the setup costs for the sub-SCIP as 100 nodes */ nstallnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nstallnodes -= heurdata->usednodes; nstallnodes = MIN(nstallnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nstallnodes < heurdata->minnodes ) { SCIPdebugMessage("skipping RENS: nstallnodes=%"SCIP_LONGINT_FORMAT", minnodes=%"SCIP_LONGINT_FORMAT"\n", nstallnodes, heurdata->minnodes); return SCIP_OKAY; } if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPapplyGcgrens(scip, heur, result, heurdata->minfixingrate, heurdata->minimprove, heurdata->maxnodes, nstallnodes, heurdata->binarybounds, heurdata->uselprows) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecObjpscostdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR* var; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_Real* lpcandsfrac; SCIP_Real primsol; SCIP_Real frac; SCIP_Real pscostquot; SCIP_Real bestpscostquot; SCIP_Real oldobj; SCIP_Real newobj; SCIP_Real objscale; SCIP_Bool bestcandmayrounddown; SCIP_Bool bestcandmayroundup; SCIP_Bool bestcandroundup; SCIP_Bool mayrounddown; SCIP_Bool mayroundup; SCIP_Bool roundup; SCIP_Bool lperror; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int* roundings; int nvars; int varidx; int nlpcands; int startnlpcands; int depth; int maxdepth; int maxdivedepth; int divedepth; int bestcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only apply heuristic, if only a few solutions have been found */ if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols ) return SCIP_OKAY; /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get fractional variables that should be integral */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the maximal diving depth */ nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); if( SCIPgetNSolsFound(scip) == 0 ) maxdivedepth = (int)(heurdata->depthfacnosol * nvars); else maxdivedepth = (int)(heurdata->depthfac * nvars); maxdivedepth = MIN(maxdivedepth, 10*maxdepth); *result = SCIP_DIDNOTFIND; /* get temporary memory for remembering the current soft roundings */ SCIP_CALL( SCIPallocBufferArray(scip, &roundings, nvars) ); BMSclearMemoryArray(roundings, nvars); /* start diving */ SCIP_CALL( SCIPstartDive(scip) ); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing objpscostdiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth); /* dive as long we are in the given diving depth and iteration limits and fractional variables exist, but * - if the last objective change was in a direction, that corresponds to a feasible rounding, we continue in any case * - if possible, we dive at least with the depth 10 * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving */ lperror = FALSE; lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; divedepth = 0; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; startnlpcands = nlpcands; while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && nlpcands <= startnlpcands - divedepth/10 && heurdata->nlpiterations < maxnlpiterations)) && !SCIPisStopped(scip) ) { SCIP_RETCODE retcode; divedepth++; /* choose variable for objective change: * - prefer variables that may not be rounded without destroying LP feasibility: * - of these variables, change objective value of variable with largest rel. difference of pseudo cost values * - if all remaining fractional variables may be rounded without destroying LP feasibility: * - change objective value of variable with largest rel. difference of pseudo cost values */ bestcand = -1; bestpscostquot = -1.0; bestcandmayrounddown = TRUE; bestcandmayroundup = TRUE; bestcandroundup = FALSE; for( c = 0; c < nlpcands; ++c ) { var = lpcands[c]; mayrounddown = SCIPvarMayRoundDown(var); mayroundup = SCIPvarMayRoundUp(var); primsol = lpcandssol[c]; frac = lpcandsfrac[c]; if( mayrounddown || mayroundup ) { /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */ if( bestcandmayrounddown || bestcandmayroundup ) { /* choose rounding direction: * - if variable may be rounded in both directions, round corresponding to the pseudo cost values * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding * the current fractional solution */ roundup = FALSE; if( mayrounddown && mayroundup ) calcPscostQuot(scip, var, primsol, frac, 0, &pscostquot, &roundup); else if( mayrounddown ) calcPscostQuot(scip, var, primsol, frac, +1, &pscostquot, &roundup); else calcPscostQuot(scip, var, primsol, frac, -1, &pscostquot, &roundup); /* prefer variables, that have already been soft rounded but failed to get integral */ varidx = SCIPvarGetProbindex(var); assert(0 <= varidx && varidx < nvars); if( roundings[varidx] != 0 ) pscostquot *= 1000.0; /* check, if candidate is new best candidate */ if( pscostquot > bestpscostquot ) { bestcand = c; bestpscostquot = pscostquot; bestcandmayrounddown = mayrounddown; bestcandmayroundup = mayroundup; bestcandroundup = roundup; } } } else { /* the candidate may not be rounded: calculate pseudo cost quotient and preferred direction */ calcPscostQuot(scip, var, primsol, frac, 0, &pscostquot, &roundup); /* prefer variables, that have already been soft rounded but failed to get integral */ varidx = SCIPvarGetProbindex(var); assert(0 <= varidx && varidx < nvars); if( roundings[varidx] != 0 ) pscostquot *= 1000.0; /* check, if candidate is new best candidate: prefer unroundable candidates in any case */ if( bestcandmayrounddown || bestcandmayroundup || pscostquot > bestpscostquot ) { bestcand = c; bestpscostquot = pscostquot; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; bestcandroundup = roundup; } } } assert(bestcand != -1); /* if all candidates are roundable, try to round the solution */ if( bestcandmayrounddown || bestcandmayroundup ) { SCIP_Bool success; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("objpscostdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } var = lpcands[bestcand]; /* check, if the best candidate was already subject to soft rounding */ varidx = SCIPvarGetProbindex(var); assert(0 <= varidx && varidx < nvars); if( roundings[varidx] == +1 ) { /* variable was already soft rounded upwards: hard round it downwards */ SCIP_CALL( SCIPchgVarUbDive(scip, var, SCIPfeasFloor(scip, lpcandssol[bestcand])) ); SCIPdebugMessage(" dive %d/%d: var <%s>, round=%u/%u, sol=%g, was already soft rounded upwards -> bounds=[%g,%g]\n", divedepth, maxdivedepth, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var)); } else if( roundings[varidx] == -1 ) { /* variable was already soft rounded downwards: hard round it upwards */ SCIP_CALL( SCIPchgVarLbDive(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) ); SCIPdebugMessage(" dive %d/%d: var <%s>, round=%u/%u, sol=%g, was already soft rounded downwards -> bounds=[%g,%g]\n", divedepth, maxdivedepth, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var)); } else { assert(roundings[varidx] == 0); /* apply soft rounding of best candidate via a change in the objective value */ objscale = divedepth * 1000.0; oldobj = SCIPgetVarObjDive(scip, var); if( bestcandroundup ) { /* soft round variable up: make objective value (more) negative */ if( oldobj < 0.0 ) newobj = objscale * oldobj; else newobj = -objscale * oldobj; newobj = MIN(newobj, -objscale); /* remember, that this variable was soft rounded upwards */ roundings[varidx] = +1; } else { /* soft round variable down: make objective value (more) positive */ if( oldobj > 0.0 ) newobj = objscale * oldobj; else newobj = -objscale * oldobj; newobj = MAX(newobj, objscale); /* remember, that this variable was soft rounded downwards */ roundings[varidx] = -1; } SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) ); SCIPdebugMessage(" dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, bounds=[%g,%g], obj=%g, newobj=%g\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var), oldobj, newobj); } /* resolve the diving LP */ nlpiterations = SCIPgetNLPIterations(scip); retcode = SCIPsolveDiveLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, NULL); lpsolstat = SCIPgetLPSolstat(scip); /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY ) { SCIP_CALL( retcode ); } #endif SCIPwarningMessage(scip, "Error while solving LP in Objpscostdiving heuristic; LP solve terminated with code <%d>\n", retcode); SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n"); } if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* get LP solution status and fractional variables, that should be integral */ if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { /* get new fractional variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); } SCIPdebugMessage(" -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands); } /* check if a solution has been found */ if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("objpscostdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendDive(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; /* free temporary memory for remembering the current soft roundings */ SCIPfreeBufferArray(scip, &roundings); SCIPdebugMessage("objpscostdiving heuristic finished\n"); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecActconsdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR* var; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_Real* lpcandsfrac; SCIP_Real searchubbound; SCIP_Real searchavgbound; SCIP_Real searchbound; SCIP_Real objval; SCIP_Real oldobjval; SCIP_Real frac; SCIP_Real bestfrac; SCIP_Bool bestcandmayrounddown; SCIP_Bool bestcandmayroundup; SCIP_Bool bestcandroundup; SCIP_Bool mayrounddown; SCIP_Bool mayroundup; SCIP_Bool roundup; SCIP_Bool lperror; SCIP_Bool cutoff; SCIP_Bool backtracked; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int nlpcands; int startnlpcands; int depth; int maxdepth; int maxdivedepth; int divedepth; SCIP_Real actscore; SCIP_Real downscore; SCIP_Real upscore; SCIP_Real bestactscore; int bestcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get fractional variables that should be integral */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the objective search bound */ if( SCIPgetNSolsFound(scip) == 0 ) { if( heurdata->maxdiveubquotnosol > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquotnosol > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } else { if( heurdata->maxdiveubquot > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquot > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } searchbound = MIN(searchubbound, searchavgbound); if( SCIPisObjIntegral(scip) ) searchbound = SCIPceil(scip, searchbound); /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */ maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); maxdivedepth = MIN(maxdivedepth, maxdepth); maxdivedepth *= 10; *result = SCIP_DIDNOTFIND; /* start diving */ SCIP_CALL( SCIPstartProbing(scip) ); /* enables collection of variable statistics during probing */ SCIPenableVarHistory(scip); /* get LP objective value */ lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; objval = SCIPgetLPObjval(scip); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing actconsdiving heuristic: depth=%d, %d fractionals, dualbound=%g, avgbound=%g, cutoffbound=%g, searchbound=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), SCIPgetAvgDualbound(scip), SCIPretransformObj(scip, SCIPgetCutoffbound(scip)), SCIPretransformObj(scip, searchbound)); /* dive as long we are in the given objective, depth and iteration limits and fractional variables exist, but * - if possible, we dive at least with the depth 10 * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving */ lperror = FALSE; cutoff = FALSE; divedepth = 0; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; startnlpcands = nlpcands; while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound)) && !SCIPisStopped(scip) ) { divedepth++; SCIP_CALL( SCIPnewProbingNode(scip) ); /* choose variable fixing: * - prefer variables that may not be rounded without destroying LP feasibility: * - of these variables, round variable with least number of locks in corresponding direction * - if all remaining fractional variables may be rounded without destroying LP feasibility: * - round variable with least number of locks in opposite of its feasible rounding direction */ bestcand = -1; bestactscore = -1.0; bestfrac = SCIP_INVALID; bestcandmayrounddown = TRUE; bestcandmayroundup = TRUE; bestcandroundup = FALSE; for( c = 0; c < nlpcands; ++c ) { var = lpcands[c]; mayrounddown = SCIPvarMayRoundDown(var); mayroundup = SCIPvarMayRoundUp(var); frac = lpcandsfrac[c]; if( mayrounddown || mayroundup ) { /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */ if( bestcandmayrounddown || bestcandmayroundup ) { /* choose rounding direction: * - if variable may be rounded in both directions, round corresponding to the fractionality * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding * the current fractional solution */ if( mayrounddown && mayroundup ) roundup = (frac > 0.5); else roundup = mayrounddown; if( roundup ) frac = 1.0 - frac; actscore = getNActiveConsScore(scip, var, &downscore, &upscore); /* penalize too small fractions */ if( frac < 0.01 ) actscore *= 0.01; /* prefer decisions on binary variables */ if( !SCIPvarIsBinary(var) ) actscore *= 0.01; /* check, if candidate is new best candidate */ assert(0.0 < frac && frac < 1.0); if( SCIPisGT(scip, actscore, bestactscore) || (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) ) { bestcand = c; bestactscore = actscore; bestfrac = frac; bestcandmayrounddown = mayrounddown; bestcandmayroundup = mayroundup; bestcandroundup = roundup; } } } else { /* the candidate may not be rounded */ actscore = getNActiveConsScore(scip, var, &downscore, &upscore); roundup = (downscore < upscore); if( roundup ) frac = 1.0 - frac; /* penalize too small fractions */ if( frac < 0.01 ) actscore *= 0.01; /* prefer decisions on binary variables */ if( !SCIPvarIsBinary(var) ) actscore *= 0.01; /* check, if candidate is new best candidate: prefer unroundable candidates in any case */ assert(0.0 < frac && frac < 1.0); if( bestcandmayrounddown || bestcandmayroundup || SCIPisGT(scip, actscore, bestactscore) || (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) ) { bestcand = c; bestactscore = actscore; bestfrac = frac; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; bestcandroundup = roundup; } assert(bestfrac < SCIP_INVALID); } } assert(bestcand != -1); /* if all candidates are roundable, try to round the solution */ if( bestcandmayrounddown || bestcandmayroundup ) { SCIP_Bool success; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("actconsdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } assert(bestcand != -1); var = lpcands[bestcand]; backtracked = FALSE; do { /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have * occured or variable was fixed by propagation while backtracking => Abort diving! */ if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 ) { SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g] (solval: %.9f), diving aborted \n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]); cutoff = TRUE; break; } if( SCIPisFeasLT(scip, lpcandssol[bestcand], SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, lpcandssol[bestcand], SCIPvarGetUbLocal(var)) ) { SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]); assert(backtracked); break; } /* apply rounding of best candidate */ if( bestcandroundup == !backtracked ) { /* round variable up */ SCIPdebugMessage(" dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), SCIPfeasCeil(scip, lpcandssol[bestcand]), SCIPvarGetUbLocal(var)); SCIP_CALL( SCIPchgVarLbProbing(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) ); } else { /* round variable down */ SCIPdebugMessage(" dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), SCIPvarGetLbLocal(var), SCIPfeasFloor(scip, lpcandssol[bestcand])); SCIP_CALL( SCIPchgVarUbProbing(scip, lpcands[bestcand], SCIPfeasFloor(scip, lpcandssol[bestcand])) ); } /* apply domain propagation */ SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, NULL) ); if( !cutoff ) { /* resolve the diving LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG SCIP_RETCODE retstat; nlpiterations = SCIPgetNLPIterations(scip); retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Actconsdiving heuristic; LP solve terminated with code <%d>\n",retstat); } #else nlpiterations = SCIPgetNLPIterations(scip); SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) ); #endif if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* get LP solution status, objective value, and fractional variables, that should be integral */ lpsolstat = SCIPgetLPSolstat(scip); assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE && (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip))))); } /* perform backtracking if a cutoff was detected */ if( cutoff && !backtracked && heurdata->backtrack ) { SCIPdebugMessage(" *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip)); SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) ); SCIP_CALL( SCIPnewProbingNode(scip) ); backtracked = TRUE; } else backtracked = FALSE; } while( backtracked ); if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { /* get new objective value */ oldobjval = objval; objval = SCIPgetLPObjval(scip); /* update pseudo cost values */ if( SCIPisGT(scip, objval, oldobjval) ) { if( bestcandroundup ) { SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 1.0-lpcandsfrac[bestcand], objval - oldobjval, 1.0) ); } else { SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 0.0-lpcandsfrac[bestcand], objval - oldobjval, 1.0) ); } } /* get new fractional variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); } SCIPdebugMessage(" -> lpsolstat=%d, objval=%g/%g, nfrac=%d\n", lpsolstat, objval, searchbound, nlpcands); } /* check if a solution has been found */ if( nlpcands == 0 && !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("actconsdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendProbing(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") finished actconsdiving heuristic: %d fractionals, dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT", objval=%g/%g, lpsolstat=%d, cutoff=%u\n", SCIPgetNNodes(scip), nlpcands, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPretransformObj(scip, objval), SCIPretransformObj(scip, searchbound), lpsolstat, cutoff); return SCIP_OKAY; }
/** execution method of event handler */ static SCIP_DECL_EVENTEXEC(eventExecBoundwriting) { /*lint --e{715}*/ SCIP_EVENTHDLRDATA* eventhdlrdata; assert(scip != NULL); assert(eventhdlr != NULL); assert(strcmp(SCIPeventhdlrGetName(eventhdlr), EVENTHDLR_NAME) == 0); assert(event != NULL); assert(((SCIPeventGetType(event) & SCIP_EVENTTYPE_NODESOLVED) == SCIP_EVENTTYPE_NODEFEASIBLE) || ((SCIPeventGetType(event) & SCIP_EVENTTYPE_NODESOLVED) == SCIP_EVENTTYPE_NODEINFEASIBLE) || ((SCIPeventGetType(event) & SCIP_EVENTTYPE_NODESOLVED) == SCIP_EVENTTYPE_NODEBRANCHED)); SCIPdebugMessage("exec method of event handler for writing primal- and dualbounds\n"); eventhdlrdata = SCIPeventhdlrGetData(eventhdlr); assert(eventhdlrdata != NULL); #ifdef ONEFILE /* check if we need to open the file */ if( strlen(eventhdlrdata->filename) > 0 && !eventhdlrdata->isopen ) { assert(eventhdlrdata->file == NULL); assert(eventhdlrdata->oldfilename[0] == '\0'); eventhdlrdata->file = fopen(eventhdlrdata->filename, "w"); (void)strncpy(eventhdlrdata->oldfilename, eventhdlrdata->filename, SCIP_MAXSTRLEN); if( eventhdlrdata->file == NULL ) { SCIPerrorMessage("cannot create file <%s> for writing\n", eventhdlrdata->filename); SCIPprintSysError(eventhdlrdata->filename); return SCIP_FILECREATEERROR; } eventhdlrdata->isopen = TRUE; #ifdef LONGSTATS SCIPinfoMessage(scip, eventhdlrdata->file, "Problem: %s (%d Original Constraints, %d Original Variables)\n", SCIPgetProbName(scip), SCIPgetNOrigConss(scip), SCIPgetNOrigVars(scip) ); SCIPinfoMessage(scip, eventhdlrdata->file, "\t (%d Presolved Constraints, %d Presolved Variables, (%d binary, %d integer, %d implicit integer, %d continuous))\n", SCIPgetNConss(scip), SCIPgetNVars(scip), SCIPgetNBinVars(scip), SCIPgetNIntVars(scip), SCIPgetNImplVars(scip), SCIPgetNContVars(scip)); SCIPinfoMessage(scip, eventhdlrdata->file, "\n"); #endif } #endif /* call writing only at right moment */ if( eventhdlrdata->freq == 0 || (SCIPgetNNodes(scip) % eventhdlrdata->freq) != 0 ) return SCIP_OKAY; #ifndef ONEFILE if( strlen(eventhdlrdata->filename) > 0 ) { char name[SCIP_MAXSTRLEN]; char number[SCIP_MAXSTRLEN]; char* pch; int n; assert(eventhdlrdata->file == NULL); assert(!eventhdlrdata->isopen); if( eventhdlrdata->oldfilename[0] == '\0' ) (void)strncpy(eventhdlrdata->oldfilename, eventhdlrdata->filename, SCIP_MAXSTRLEN); /* find last '.' to append filenumber */ pch=strrchr(eventhdlrdata->filename,'.'); assert(eventhdlrdata->filenumber > 0); n=sprintf(number, "%"SCIP_LONGINT_FORMAT"", eventhdlrdata->filenumber * eventhdlrdata->freq); assert(n > 0); assert(n < SCIP_MAXSTRLEN); /* if no point is found, extend directly */ if( pch == NULL ) { (void)strncpy(name, eventhdlrdata->filename, (unsigned int)(SCIP_MAXSTRLEN - n)); strncat(name, number, (unsigned int)n); } else { int len; if( (pch-(eventhdlrdata->filename)) > (SCIP_MAXSTRLEN - n) ) /*lint !e776*/ len = SCIP_MAXSTRLEN - n; else len = (int) (pch-(eventhdlrdata->filename)); (void)strncpy(name, eventhdlrdata->filename, (unsigned int)len); name[len] = '\0'; strncat(name, number, (unsigned int)n); assert(len+n < SCIP_MAXSTRLEN); name[len+n] = '\0'; if( len + n + strlen(&(eventhdlrdata->filename[len])) < SCIP_MAXSTRLEN ) /*lint !e776*/ { strncat(name, &(eventhdlrdata->filename[len]), strlen(&(eventhdlrdata->filename[len]))); name[strlen(eventhdlrdata->filename)+n] = '\0'; } } eventhdlrdata->file = fopen(name, "w"); if( eventhdlrdata->file == NULL ) { SCIPerrorMessage("cannot create file <%s> for writing\n", eventhdlrdata->filename); SCIPprintSysError(eventhdlrdata->filename); return SCIP_FILECREATEERROR; } eventhdlrdata->isopen = TRUE; #ifdef LONGSTATS SCIPinfoMessage(scip, eventhdlrdata->file, "Problem: %s (%d Original Constraints, %d Original Variables)\n", SCIPgetProbName(scip), SCIPgetNOrigConss(scip), SCIPgetNOrigVars(scip) ); SCIPinfoMessage(scip, eventhdlrdata->file, "\t (%d Active Constraints, %d Active Variables, (%d binary, %d integer, %d implicit integer, %d continuous))\n", SCIPgetNConss(scip), SCIPgetNVars(scip), SCIPgetNBinVars(scip), SCIPgetNIntVars(scip), SCIPgetNImplVars(scip), SCIPgetNContVars(scip)); SCIPinfoMessage(scip, eventhdlrdata->file, "\n"); #endif } #endif #ifndef NDEBUG /* check the filename did not change during the solving */ if( strlen(eventhdlrdata->filename) > 0 && eventhdlrdata->isopen ) { char tmp[SCIP_MAXSTRLEN]; (void)strncpy(tmp, eventhdlrdata->filename, SCIP_MAXSTRLEN); /* the name should stay the same */ assert(strcmp(tmp, eventhdlrdata->oldfilename) == 0); } #endif #ifdef FOCUSNODE /* call writing method */ SCIP_CALL( writeBoundsFocusNode(scip, eventhdlrdata) ); #else /* call writing method */ SCIP_CALL( writeBounds(scip, eventhdlrdata->file, eventhdlrdata->writesubmipdualbound) ); #endif #ifndef ONEFILE if( strlen(eventhdlrdata->filename) > 0 ) { assert(eventhdlrdata->isopen); (void) fclose(eventhdlrdata->file); eventhdlrdata->isopen = FALSE; eventhdlrdata->file = NULL; ++(eventhdlrdata->filenumber); } #endif return SCIP_OKAY; }
/** node selection method of node selector */ static SCIP_DECL_NODESELSELECT(nodeselSelectHybridestim) { /*lint --e{715}*/ SCIP_NODESELDATA* nodeseldata; int minplungedepth; int maxplungedepth; int plungedepth; int bestnodefreq; SCIP_Real maxplungequot; assert(nodesel != NULL); assert(strcmp(SCIPnodeselGetName(nodesel), NODESEL_NAME) == 0); assert(scip != NULL); assert(selnode != NULL); *selnode = NULL; /* get node selector user data */ nodeseldata = SCIPnodeselGetData(nodesel); assert(nodeseldata != NULL); /* calculate minimal and maximal plunging depth */ minplungedepth = nodeseldata->minplungedepth; maxplungedepth = nodeseldata->maxplungedepth; maxplungequot = nodeseldata->maxplungequot; if( minplungedepth == -1 ) { minplungedepth = SCIPgetMaxDepth(scip)/10; if( SCIPgetNStrongbranchLPIterations(scip) > 2*SCIPgetNNodeLPIterations(scip) ) minplungedepth += 10; if( maxplungedepth >= 0 ) minplungedepth = MIN(minplungedepth, maxplungedepth); } if( maxplungedepth == -1 ) maxplungedepth = SCIPgetMaxDepth(scip)/2; maxplungedepth = MAX(maxplungedepth, minplungedepth); bestnodefreq = (nodeseldata->bestnodefreq == 0 ? INT_MAX : nodeseldata->bestnodefreq); /* check, if we exceeded the maximal plunging depth */ plungedepth = SCIPgetPlungeDepth(scip); if( plungedepth > maxplungedepth ) { /* we don't want to plunge again: select best node from the tree */ SCIPdebugMessage("plungedepth: [%d,%d], cur: %d -> abort plunging\n", minplungedepth, maxplungedepth, plungedepth); if( SCIPgetNNodes(scip) % bestnodefreq == 0 ) *selnode = SCIPgetBestboundNode(scip); else *selnode = SCIPgetBestNode(scip); SCIPdebugMessage(" -> best node : lower=%g\n", *selnode != NULL ? SCIPnodeGetLowerbound(*selnode) : SCIPinfinity(scip)); } else { SCIP_NODE* node; SCIP_Real lowerbound; SCIP_Real cutoffbound; SCIP_Real maxbound; /* get global lower and cutoff bound */ lowerbound = SCIPgetLowerbound(scip); cutoffbound = SCIPgetCutoffbound(scip); /* if we didn't find a solution yet, the cutoff bound is usually very bad: * use only 20% of the gap as cutoff bound */ if( SCIPgetNSolsFound(scip) == 0 ) cutoffbound = lowerbound + 0.2 * (cutoffbound - lowerbound); /* check, if plunging is forced at the current depth */ if( plungedepth < minplungedepth ) maxbound = SCIPinfinity(scip); else { /* calculate maximal plunging bound */ maxbound = lowerbound + maxplungequot * (cutoffbound - lowerbound); } SCIPdebugMessage("plungedepth: [%d,%d], cur: %d, bounds: [%g,%g], maxbound: %g\n", minplungedepth, maxplungedepth, plungedepth, lowerbound, cutoffbound, maxbound); /* we want to plunge again: prefer children over siblings, and siblings over leaves, * but only select a child or sibling, if its estimate is small enough; * prefer using nodes with higher node selection priority assigned by the branching rule */ node = SCIPgetPrioChild(scip); if( node != NULL && SCIPnodeGetEstimate(node) < maxbound ) { *selnode = node; SCIPdebugMessage(" -> selected prio child: estimate=%g\n", SCIPnodeGetEstimate(*selnode)); } else { node = SCIPgetBestChild(scip); if( node != NULL && SCIPnodeGetEstimate(node) < maxbound ) { *selnode = node; SCIPdebugMessage(" -> selected best child: estimate=%g\n", SCIPnodeGetEstimate(*selnode)); } else { node = SCIPgetPrioSibling(scip); if( node != NULL && SCIPnodeGetEstimate(node) < maxbound ) { *selnode = node; SCIPdebugMessage(" -> selected prio sibling: estimate=%g\n", SCIPnodeGetEstimate(*selnode)); } else { node = SCIPgetBestSibling(scip); if( node != NULL && SCIPnodeGetEstimate(node) < maxbound ) { *selnode = node; SCIPdebugMessage(" -> selected best sibling: estimate=%g\n", SCIPnodeGetEstimate(*selnode)); } else { if( SCIPgetNNodes(scip) % bestnodefreq == 0 ) *selnode = SCIPgetBestboundNode(scip); else *selnode = SCIPgetBestNode(scip); SCIPdebugMessage(" -> selected best leaf: estimate=%g\n", *selnode != NULL ? SCIPnodeGetEstimate(*selnode) : SCIPinfinity(scip)); } } } } } return SCIP_OKAY; }
/** call writing method */ static SCIP_RETCODE writeBoundsFocusNode( SCIP* scip, /**< SCIP data structure */ SCIP_EVENTHDLRDATA* eventhdlrdata /**< event handler data */ ) { FILE* file; SCIP_Bool writesubmipdualbound; SCIP_NODE* node; assert(scip != NULL); assert(eventhdlrdata != NULL); file = eventhdlrdata->file; writesubmipdualbound = eventhdlrdata->writesubmipdualbound; node = SCIPgetCurrentNode(scip); /* do not process probing nodes */ if( SCIPnodeGetType(node) == SCIP_NODETYPE_PROBINGNODE ) return SCIP_OKAY; /* do not process cutoff nodes */ if( SCIPisInfinity(scip, SCIPgetNodeDualbound(scip, node)) ) return SCIP_OKAY; if( !SCIPisEQ(scip, eventhdlrdata->lastpb, SCIPgetPrimalbound(scip)) ) { #ifdef LONGSTATS SCIPinfoMessage(scip, file, "Status after %"SCIP_LONGINT_FORMAT" processed nodes (%d open)\n", SCIPgetNNodes(scip), SCIPgetNNodesLeft(scip)); SCIPinfoMessage(scip, file, "Primalbound: %g\n", SCIPgetPrimalbound(scip)); SCIPinfoMessage(scip, file, "Dualbound: %g\n", SCIPgetDualbound(scip)); #else SCIPinfoMessage(scip, file, "PB %g\n", SCIPgetPrimalbound(scip)); #endif eventhdlrdata->lastpb = SCIPgetPrimalbound(scip); } if( writesubmipdualbound ) { SCIP* subscip; SCIP_Bool valid; SCIP_Real submipdb; SCIP_Bool cutoff; SCIP_CALL( SCIPcreate(&subscip) ); submipdb = SCIP_INVALID; valid = FALSE; cutoff = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, NULL, NULL, "__boundwriting", FALSE, FALSE, TRUE, &valid) ); if( valid ) { /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* solve only root node */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", 1LL) ); #if 0 /* disable heuristics in subscip */ SCIP_CALL( SCIPsetHeuristics(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); #endif /* set cutoffbound as objective limit for subscip */ SCIP_CALL( SCIPsetObjlimit(subscip, SCIPgetCutoffbound(scip)) ); SCIP_CALL( SCIPsolve(subscip) ); cutoff = (SCIPgetStatus(subscip) == SCIP_STATUS_INFEASIBLE); submipdb = SCIPgetDualbound(subscip) * SCIPgetTransObjscale(scip) + SCIPgetTransObjoffset(scip); } #ifdef LONGSTATS SCIPinfoMessage(scip, file, "Node %"SCIP_LONGINT_FORMAT" (depth %d): dualbound: %g, nodesubmiprootdualbound: %g %s\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node), submipdb, cutoff ? "(cutoff)" : ""); #else SCIPinfoMessage(scip, file, "%"SCIP_LONGINT_FORMAT" %d %g %g %s\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node), submipdb, cutoff ? "(cutoff)" : ""); #endif SCIP_CALL( SCIPfree(&subscip) ); } else { #ifdef LONGSTATS SCIPinfoMessage(scip, file, "Node %"SCIP_LONGINT_FORMAT" (depth %d): dualbound: %g\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node)); #else SCIPinfoMessage(scip, file, "%"SCIP_LONGINT_FORMAT" %d %g\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node)); #endif } #ifdef LONGSTATS SCIPinfoMessage(scip, file, "\n"); #endif return SCIP_OKAY; }
/** call writing method */ static SCIP_RETCODE writeBounds( SCIP* scip, /**< SCIP data structure */ FILE* file, /**< file to write to or NULL */ SCIP_Bool writesubmipdualbound/**< write dualbounds of submip roots for all open nodes */ ) { SCIP_NODE** opennodes; int nopennodes; int n; int v; assert(scip != NULL); nopennodes = -1; #ifdef LONGSTATS SCIPinfoMessage(scip, file, "Status after %"SCIP_LONGINT_FORMAT" processed nodes (%d open)\n", SCIPgetNNodes(scip), SCIPgetNNodesLeft(scip)); SCIPinfoMessage(scip, file, "Primalbound: %g\n", SCIPgetPrimalbound(scip)); SCIPinfoMessage(scip, file, "Dualbound: %g\n", SCIPgetDualbound(scip)); #else SCIPinfoMessage(scip, file, "PB %g\n", SCIPgetPrimalbound(scip)); #endif /* get all open nodes and therefor print all dualbounds */ for( v = 2; v >= 0; --v ) { SCIP_NODE* node; switch( v ) { case 2: SCIP_CALL( SCIPgetChildren(scip, &opennodes, &nopennodes) ); break; case 1: SCIP_CALL( SCIPgetSiblings(scip, &opennodes, &nopennodes) ); break; case 0: SCIP_CALL( SCIPgetLeaves(scip, &opennodes, &nopennodes) ); break; default: assert(0); break; } assert(nopennodes >= 0); /* print all node information */ for( n = nopennodes - 1; n >= 0 && !SCIPisStopped(scip); --n ) { node = opennodes[n]; if( writesubmipdualbound ) { SCIP* subscip; SCIP_Bool valid; SCIP_HASHMAP* varmap; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ int nvars; SCIP_Real submipdb; SCIP_Bool cutoff; SCIP_CALL( SCIPcreate(&subscip) ); SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmap, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); submipdb = SCIP_INVALID; valid = FALSE; cutoff = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmap, NULL, "__boundwriting", TRUE, FALSE, TRUE, &valid) ); if( valid ) { SCIP_VAR** branchvars; SCIP_Real* branchbounds; SCIP_BOUNDTYPE* boundtypes; int nbranchvars; int size; size = SCIPnodeGetDepth(node); /* allocate memory for all branching decisions */ SCIP_CALL( SCIPallocBufferArray(scip, &branchvars, size) ); SCIP_CALL( SCIPallocBufferArray(scip, &branchbounds, size) ); SCIP_CALL( SCIPallocBufferArray(scip, &boundtypes, size) ); /* we assume that we only have one branching decision at each node */ SCIPnodeGetAncestorBranchings( node, branchvars, branchbounds, boundtypes, &nbranchvars, size ); /* check if did not have enough memory */ if( nbranchvars > size ) { size = nbranchvars; SCIP_CALL( SCIPallocBufferArray(scip, &branchvars, size) ); SCIP_CALL( SCIPallocBufferArray(scip, &branchbounds, size) ); SCIP_CALL( SCIPallocBufferArray(scip, &boundtypes, size) ); /* now getting all information */ SCIPnodeGetAncestorBranchings( node, branchvars, branchbounds, boundtypes, &nbranchvars, size ); } /* apply all changes to the submip */ SCIP_CALL( applyDomainChanges(subscip, branchvars, branchbounds, boundtypes, nbranchvars, varmap) ); /* free memory for all branching decisions */ SCIPfreeBufferArray(scip, &boundtypes); SCIPfreeBufferArray(scip, &branchbounds); SCIPfreeBufferArray(scip, &branchvars); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* solve only root node */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", 1LL) ); /* set cutoffbound as objective limit for subscip */ SCIP_CALL( SCIPsetObjlimit(subscip, SCIPgetCutoffbound(scip)) ); SCIP_CALL( SCIPsolve(subscip) ); cutoff = (SCIPgetStatus(subscip) == SCIP_STATUS_INFEASIBLE); submipdb = SCIPgetDualbound(subscip) * SCIPgetTransObjscale(scip) + SCIPgetTransObjoffset(scip); } #ifdef LONGSTATS SCIPinfoMessage(scip, file, "Node %"SCIP_LONGINT_FORMAT" (depth %d): dualbound: %g, nodesubmiprootdualbound: %g %s\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node), submipdb, cutoff ? "(cutoff)" : ""); #else SCIPinfoMessage(scip, file, "%"SCIP_LONGINT_FORMAT" %d %g %g %s\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node), submipdb, cutoff ? "(cutoff)" : ""); #endif /* free hash map */ SCIPhashmapFree(&varmap); SCIP_CALL( SCIPfree(&subscip) ); } else { #ifdef LONGSTATS SCIPinfoMessage(scip, file, "Node %"SCIP_LONGINT_FORMAT" (depth %d): dualbound: %g\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node)); #else SCIPinfoMessage(scip, file, "%"SCIP_LONGINT_FORMAT" %d %g\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node)); #endif } } } #ifdef LONGSTATS SCIPinfoMessage(scip, file, "\n"); #endif return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecRounding) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* sol; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_ROW** lprows; SCIP_Real* activities; SCIP_ROW** violrows; int* violrowpos; SCIP_Real obj; SCIP_Real bestroundval; SCIP_Real minobj; int nlpcands; int nlprows; int nfrac; int nviolrows; int c; int r; SCIP_Longint nlps; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nnodes; assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DIDNOTRUN; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* don't call heuristic, if we have already processed the current LP solution */ nlps = SCIPgetNLPs(scip); if( nlps == heurdata->lastlp ) return SCIP_OKAY; heurdata->lastlp = nlps; /* don't call heuristic, if it was not successful enough in the past */ ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + SCIPheurGetNSolsFound(heur); nnodes = SCIPgetNNodes(scip); if( nnodes % ((ncalls/heurdata->successfactor)/(nsolsfound+1)+1) != 0 ) return SCIP_OKAY; /* get fractional variables, that should be integral */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, NULL) ); nfrac = nlpcands; /* only call heuristic, if LP solution is fractional */ if( nfrac == 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; /* get LP rows */ SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) ); SCIPdebugMessage("executing rounding heuristic: %d LP rows, %d fractionals\n", nlprows, nfrac); /* get memory for activities, violated rows, and row violation positions */ SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &violrows, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &violrowpos, nlprows) ); /* get the activities for all globally valid rows; * the rows should be feasible, but due to numerical inaccuracies in the LP solver, they can be violated */ nviolrows = 0; for( r = 0; r < nlprows; ++r ) { SCIP_ROW* row; row = lprows[r]; assert(SCIProwGetLPPos(row) == r); if( !SCIProwIsLocal(row) ) { activities[r] = SCIPgetRowActivity(scip, row); if( SCIPisFeasLT(scip, activities[r], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[r], SCIProwGetRhs(row)) ) { violrows[nviolrows] = row; violrowpos[r] = nviolrows; nviolrows++; } else violrowpos[r] = -1; } } /* get the working solution from heuristic's local data */ sol = heurdata->sol; assert(sol != NULL); /* copy the current LP solution to the working solution */ SCIP_CALL( SCIPlinkLPSol(scip, sol) ); /* calculate the minimal objective value possible after rounding fractional variables */ minobj = SCIPgetSolTransObj(scip, sol); assert(minobj < SCIPgetCutoffbound(scip)); for( c = 0; c < nlpcands; ++c ) { obj = SCIPvarGetObj(lpcands[c]); bestroundval = obj > 0.0 ? SCIPfeasFloor(scip, lpcandssol[c]) : SCIPfeasCeil(scip, lpcandssol[c]); minobj += obj * (bestroundval - lpcandssol[c]); } /* try to round remaining variables in order to become/stay feasible */ while( nfrac > 0 ) { SCIP_VAR* roundvar; SCIP_Real oldsolval; SCIP_Real newsolval; SCIPdebugMessage("rounding heuristic: nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n", nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj)); /* minobj < SCIPgetCutoffbound(scip) should be true, otherwise the rounding variable selection * should have returned NULL. Due to possible cancellation we use SCIPisLE. */ assert( SCIPisLE(scip, minobj, SCIPgetCutoffbound(scip)) ); /* choose next variable to process: * - if a violated row exists, round a variable decreasing the violation, that has least impact on other rows * - otherwise, round a variable, that has strongest devastating impact on rows in opposite direction */ if( nviolrows > 0 ) { SCIP_ROW* row; int rowpos; row = violrows[nviolrows-1]; rowpos = SCIProwGetLPPos(row); assert(0 <= rowpos && rowpos < nlprows); assert(violrowpos[rowpos] == nviolrows-1); SCIPdebugMessage("rounding heuristic: try to fix violated row <%s>: %g <= %g <= %g\n", SCIProwGetName(row), SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row)); if( SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) ) { /* lhs is violated: select a variable rounding, that increases the activity */ SCIP_CALL( selectIncreaseRounding(scip, sol, minobj, row, &roundvar, &oldsolval, &newsolval) ); } else { assert(SCIPisFeasGT(scip, activities[rowpos], SCIProwGetRhs(row))); /* rhs is violated: select a variable rounding, that decreases the activity */ SCIP_CALL( selectDecreaseRounding(scip, sol, minobj, row, &roundvar, &oldsolval, &newsolval) ); } } else { SCIPdebugMessage("rounding heuristic: search rounding variable and try to stay feasible\n"); SCIP_CALL( selectEssentialRounding(scip, sol, minobj, lpcands, nlpcands, &roundvar, &oldsolval, &newsolval) ); } /* check, whether rounding was possible */ if( roundvar == NULL ) { SCIPdebugMessage("rounding heuristic: -> didn't find a rounding variable\n"); break; } SCIPdebugMessage("rounding heuristic: -> round var <%s>, oldval=%g, newval=%g, obj=%g\n", SCIPvarGetName(roundvar), oldsolval, newsolval, SCIPvarGetObj(roundvar)); /* update row activities of globally valid rows */ SCIP_CALL( updateActivities(scip, activities, violrows, violrowpos, &nviolrows, nlprows, roundvar, oldsolval, newsolval) ); /* store new solution value and decrease fractionality counter */ SCIP_CALL( SCIPsetSolVal(scip, sol, roundvar, newsolval) ); nfrac--; /* update minimal objective value possible after rounding remaining variables */ obj = SCIPvarGetObj(roundvar); if( obj > 0.0 && newsolval > oldsolval ) minobj += obj; else if( obj < 0.0 && newsolval < oldsolval ) minobj -= obj; SCIPdebugMessage("rounding heuristic: -> nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n", nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj)); } /* check, if the new solution is feasible */ if( nfrac == 0 && nviolrows == 0 ) { SCIP_Bool stored; /* check solution for feasibility, and add it to solution store if possible * neither integrality nor feasibility of LP rows has to be checked, because this is already * done in the rounding heuristic itself; however, be better check feasibility of LP rows, * because of numerical problems with activity updating */ SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) ); if( stored ) { #ifdef SCIP_DEBUG SCIPdebugMessage("found feasible rounded solution:\n"); SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ); #endif *result = SCIP_FOUNDSOL; } } /* free memory buffers */ SCIPfreeBufferArray(scip, &violrowpos); SCIPfreeBufferArray(scip, &violrows); SCIPfreeBufferArray(scip, &activities); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecOneopt) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* bestsol; /* incumbent solution */ SCIP_SOL* worksol; /* heuristic's working solution */ SCIP_VAR** vars; /* SCIP variables */ SCIP_VAR** shiftcands; /* shiftable variables */ SCIP_ROW** lprows; /* SCIP LP rows */ SCIP_Real* activities; /* row activities for working solution */ SCIP_Real* shiftvals; SCIP_Real lb; SCIP_Real ub; SCIP_Bool localrows; SCIP_Bool valid; int nchgbound; int nbinvars; int nintvars; int nvars; int nlprows; int i; int nshiftcands; int shiftcandssize; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); *result = SCIP_DELAYED; /* we only want to process each solution once */ bestsol = SCIPgetBestSol(scip); if( bestsol == NULL || heurdata->lastsolindex == SCIPsolGetIndex(bestsol) ) return SCIP_OKAY; /* reset the timing mask to its default value (at the root node it could be different) */ if( SCIPgetNNodes(scip) > 1 ) SCIPheurSetTimingmask(heur, HEUR_TIMING); /* get problem variables */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); nintvars += nbinvars; /* do not run if there are no discrete variables */ if( nintvars == 0 ) { *result = SCIP_DIDNOTRUN; return SCIP_OKAY; } if( heurtiming == SCIP_HEURTIMING_BEFOREPRESOL ) { SCIP* subscip; /* the subproblem created by zeroobj */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_Real* subsolvals; /* solution values of the subproblem */ SCIP_Real timelimit; /* time limit for zeroobj subproblem */ SCIP_Real memorylimit; /* memory limit for zeroobj subproblem */ SCIP_SOL* startsol; SCIP_SOL** subsols; int nsubsols; if( !heurdata->beforepresol ) return SCIP_OKAY; /* check whether there is enough time and memory left */ timelimit = 0.0; memorylimit = 0.0; SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) return SCIP_OKAY; /* initialize the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); /* copy complete SCIP instance */ valid = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "oneopt", TRUE, FALSE, TRUE, &valid) ); SCIP_CALL( SCIPtransformProb(subscip) ); /* get variable image */ for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* copy the solution */ SCIP_CALL( SCIPallocBufferArray(scip, &subsolvals, nvars) ); SCIP_CALL( SCIPgetSolVals(scip, bestsol, nvars, vars, subsolvals) ); /* create start solution for the subproblem */ SCIP_CALL( SCIPcreateOrigSol(subscip, &startsol, NULL) ); SCIP_CALL( SCIPsetSolVals(subscip, startsol, nvars, subvars, subsolvals) ); /* try to add new solution to sub-SCIP and free it immediately */ valid = FALSE; SCIP_CALL( SCIPtrySolFree(subscip, &startsol, FALSE, FALSE, FALSE, FALSE, &valid) ); SCIPfreeBufferArray(scip, &subsolvals); SCIPhashmapFree(&varmapfw); /* disable statistic timing inside sub SCIP */ SCIP_CALL( SCIPsetBoolParam(subscip, "timing/statistictiming", FALSE) ); /* deactivate basically everything except oneopt in the sub-SCIP */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); SCIP_CALL( SCIPsetHeuristics(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", 1LL) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* if necessary, some of the parameters have to be unfixed first */ if( SCIPisParamFixed(subscip, "lp/solvefreq") ) { SCIPwarningMessage(scip, "unfixing parameter lp/solvefreq in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "lp/solvefreq") ); } SCIP_CALL( SCIPsetIntParam(subscip, "lp/solvefreq", -1) ); if( SCIPisParamFixed(subscip, "heuristics/oneopt/freq") ) { SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/freq in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/freq") ); } SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/oneopt/freq", 1) ); if( SCIPisParamFixed(subscip, "heuristics/oneopt/forcelpconstruction") ) { SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/forcelpconstruction in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/forcelpconstruction") ); } SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/forcelpconstruction", TRUE) ); /* avoid recursive call, which would lead to an endless loop */ if( SCIPisParamFixed(subscip, "heuristics/oneopt/beforepresol") ) { SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/beforepresol in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/beforepresol") ); } SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/beforepresol", FALSE) ); if( valid ) { retcode = SCIPsolve(subscip); /* errors in solving the subproblem should not kill the overall solving process; * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode); } #ifdef SCIP_DEBUG SCIP_CALL( SCIPprintStatistics(subscip, NULL) ); #endif } /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); valid = FALSE; for( i = 0; i < nsubsols && !valid; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &valid) ); if( valid ) *result = SCIP_FOUNDSOL; } /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; } /* we can only work on solutions valid in the transformed space */ if( SCIPsolIsOriginal(bestsol) ) return SCIP_OKAY; if( heurtiming == SCIP_HEURTIMING_BEFORENODE && (SCIPhasCurrentNodeLP(scip) || heurdata->forcelpconstruction) ) { SCIP_Bool cutoff; cutoff = FALSE; SCIP_CALL( SCIPconstructLP(scip, &cutoff) ); SCIP_CALL( SCIPflushLP(scip) ); /* get problem variables again, SCIPconstructLP() might have added new variables */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); nintvars += nbinvars; } /* we need an LP */ if( SCIPgetNLPRows(scip) == 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; nchgbound = 0; /* initialize data */ nshiftcands = 0; shiftcandssize = 8; heurdata->lastsolindex = SCIPsolGetIndex(bestsol); SCIP_CALL( SCIPcreateSolCopy(scip, &worksol, bestsol) ); SCIPsolSetHeur(worksol,heur); SCIPdebugMessage("Starting bound adjustment in 1-opt heuristic\n"); /* maybe change solution values due to global bound changes first */ for( i = nvars - 1; i >= 0; --i ) { SCIP_VAR* var; SCIP_Real solval; var = vars[i]; lb = SCIPvarGetLbGlobal(var); ub = SCIPvarGetUbGlobal(var); solval = SCIPgetSolVal(scip, bestsol,var); /* old solution value is smaller than the actual lower bound */ if( SCIPisFeasLT(scip, solval, lb) ) { /* set the solution value to the global lower bound */ SCIP_CALL( SCIPsetSolVal(scip, worksol, var, lb) ); ++nchgbound; SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to lb %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, lb); } /* old solution value is greater than the actual upper bound */ else if( SCIPisFeasGT(scip, solval, SCIPvarGetUbGlobal(var)) ) { /* set the solution value to the global upper bound */ SCIP_CALL( SCIPsetSolVal(scip, worksol, var, ub) ); ++nchgbound; SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to ub %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, ub); } } SCIPdebugMessage("number of bound changes (due to global bounds) = %d\n", nchgbound); SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) ); localrows = FALSE; valid = TRUE; /* initialize activities */ for( i = 0; i < nlprows; ++i ) { SCIP_ROW* row; row = lprows[i]; assert(SCIProwGetLPPos(row) == i); if( !SCIProwIsLocal(row) ) { activities[i] = SCIPgetRowSolActivity(scip, row, worksol); SCIPdebugMessage("Row <%s> has activity %g\n", SCIProwGetName(row), activities[i]); if( SCIPisFeasLT(scip, activities[i], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[i], SCIProwGetRhs(row)) ) { valid = FALSE; SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) ); SCIPdebugMessage("row <%s> activity %g violates bounds, lhs = %g, rhs = %g\n", SCIProwGetName(row), activities[i], SCIProwGetLhs(row), SCIProwGetRhs(row)); break; } } else localrows = TRUE; } if( !valid ) { /** @todo try to correct lp rows */ SCIPdebugMessage("Some global bound changes were not valid in lp rows.\n"); goto TERMINATE; } SCIP_CALL( SCIPallocBufferArray(scip, &shiftcands, shiftcandssize) ); SCIP_CALL( SCIPallocBufferArray(scip, &shiftvals, shiftcandssize) ); SCIPdebugMessage("Starting 1-opt heuristic\n"); /* enumerate all integer variables and find out which of them are shiftable */ for( i = 0; i < nintvars; i++ ) { if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN ) { SCIP_Real shiftval; SCIP_Real solval; /* find out whether the variable can be shifted */ solval = SCIPgetSolVal(scip, worksol, vars[i]); shiftval = calcShiftVal(scip, vars[i], solval, activities); /* insert the variable into the list of shifting candidates */ if( !SCIPisFeasZero(scip, shiftval) ) { SCIPdebugMessage(" -> Variable <%s> can be shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval); if( nshiftcands == shiftcandssize) { shiftcandssize *= 8; SCIP_CALL( SCIPreallocBufferArray(scip, &shiftcands, shiftcandssize) ); SCIP_CALL( SCIPreallocBufferArray(scip, &shiftvals, shiftcandssize) ); } shiftcands[nshiftcands] = vars[i]; shiftvals[nshiftcands] = shiftval; nshiftcands++; } } } /* if at least one variable can be shifted, shift variables sorted by their objective */ if( nshiftcands > 0 ) { SCIP_Real shiftval; SCIP_Real solval; SCIP_VAR* var; /* the case that exactly one variable can be shifted is slightly easier */ if( nshiftcands == 1 ) { var = shiftcands[0]; assert(var != NULL); solval = SCIPgetSolVal(scip, worksol, var); shiftval = shiftvals[0]; assert(!SCIPisFeasZero(scip,shiftval)); SCIPdebugMessage(" Only one shiftcand found, var <%s>, which is now shifted by<%1.1f> \n", SCIPvarGetName(var), shiftval); SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) ); } else { SCIP_Real* objcoeffs; SCIP_CALL( SCIPallocBufferArray(scip, &objcoeffs, nshiftcands) ); SCIPdebugMessage(" %d shiftcands found \n", nshiftcands); /* sort the variables by their objective, optionally weighted with the shiftval */ if( heurdata->weightedobj ) { for( i = 0; i < nshiftcands; ++i ) objcoeffs[i] = SCIPvarGetObj(shiftcands[i])*shiftvals[i]; } else { for( i = 0; i < nshiftcands; ++i ) objcoeffs[i] = SCIPvarGetObj(shiftcands[i]); } /* sort arrays with respect to the first one */ SCIPsortRealPtr(objcoeffs, (void**)shiftcands, nshiftcands); /* try to shift each variable -> Activities have to be updated */ for( i = 0; i < nshiftcands; ++i ) { var = shiftcands[i]; assert(var != NULL); solval = SCIPgetSolVal(scip, worksol, var); shiftval = calcShiftVal(scip, var, solval, activities); SCIPdebugMessage(" -> Variable <%s> is now shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval); assert(i > 0 || !SCIPisFeasZero(scip, shiftval)); assert(SCIPisFeasGE(scip, solval+shiftval, SCIPvarGetLbGlobal(var)) && SCIPisFeasLE(scip, solval+shiftval, SCIPvarGetUbGlobal(var))); SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) ); SCIP_CALL( updateRowActivities(scip, activities, var, shiftval) ); } SCIPfreeBufferArray(scip, &objcoeffs); } /* if the problem is a pure IP, try to install the solution, if it is a MIP, solve LP again to set the continuous * variables to the best possible value */ if( nvars == nintvars || !SCIPhasCurrentNodeLP(scip) || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* since we ignore local rows, we cannot guarantee their feasibility and have to set the checklprows flag to * TRUE if local rows are present */ SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, localrows, &success) ); if( success ) { SCIPdebugMessage("found feasible shifted solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) ); heurdata->lastsolindex = SCIPsolGetIndex(bestsol); *result = SCIP_FOUNDSOL; } } else { SCIP_Bool lperror; #ifdef NDEBUG SCIP_RETCODE retstat; #endif SCIPdebugMessage("shifted solution should be feasible -> solve LP to fix continuous variables to best values\n"); /* start diving to calculate the LP relaxation */ SCIP_CALL( SCIPstartDive(scip) ); /* set the bounds of the variables: fixed for integers, global bounds for continuous */ for( i = 0; i < nvars; ++i ) { if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN ) { SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], SCIPvarGetLbGlobal(vars[i])) ); SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], SCIPvarGetUbGlobal(vars[i])) ); } } /* apply this after global bounds to not cause an error with intermediate empty domains */ for( i = 0; i < nintvars; ++i ) { if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN ) { solval = SCIPgetSolVal(scip, worksol, vars[i]); SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], solval) ); SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], solval) ); } } /* solve LP */ SCIPdebugMessage(" -> old LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip)); /**@todo in case of an MINLP, if SCIPisNLPConstructed() is TRUE, say, rather solve the NLP instead of the LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG retstat = SCIPsolveDiveLP(scip, -1, &lperror, NULL); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Oneopt heuristic; LP solve terminated with code <%d>\n",retstat); } #else SCIP_CALL( SCIPsolveDiveLP(scip, -1, &lperror, NULL) ); #endif SCIPdebugMessage(" -> new LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip)); SCIPdebugMessage(" -> error=%u, status=%d\n", lperror, SCIPgetLPSolstat(scip)); /* check if this is a feasible solution */ if( !lperror && SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* copy the current LP solution to the working solution */ SCIP_CALL( SCIPlinkLPSol(scip, worksol) ); SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check solution for feasibility */ if( success ) { SCIPdebugMessage("found feasible shifted solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) ); heurdata->lastsolindex = SCIPsolGetIndex(bestsol); *result = SCIP_FOUNDSOL; } } /* terminate the diving */ SCIP_CALL( SCIPendDive(scip) ); } } SCIPdebugMessage("Finished 1-opt heuristic\n"); SCIPfreeBufferArray(scip, &shiftvals); SCIPfreeBufferArray(scip, &shiftcands); TERMINATE: SCIPfreeBufferArray(scip, &activities); SCIP_CALL( SCIPfreeSol(scip, &worksol) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecRootsoldiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_VAR** vars; SCIP_Real* rootsol; SCIP_Real* objchgvals; int* softroundings; int* intvalrounds; int nvars; int nbinvars; int nintvars; int nlpcands; SCIP_LPSOLSTAT lpsolstat; SCIP_Real absstartobjval; SCIP_Real objstep; SCIP_Real alpha; SCIP_Real oldobj; SCIP_Real newobj; SCIP_Bool lperror; SCIP_Bool lpsolchanged; SCIP_Longint nsolsfound; SCIP_Longint ncalls; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int depth; int maxdepth; int maxdivedepth; int divedepth; int startnlpcands; int ncycles; int i; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only apply heuristic, if only a few solutions have been found */ if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols ) return SCIP_OKAY; /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get number of fractional variables, that should be integral */ nlpcands = SCIPgetNLPBranchCands(scip); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the maximal diving depth */ nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); if( SCIPgetNSolsFound(scip) == 0 ) maxdivedepth = (int)(heurdata->depthfacnosol * nvars); else maxdivedepth = (int)(heurdata->depthfac * nvars); maxdivedepth = MAX(maxdivedepth, 10); *result = SCIP_DIDNOTFIND; /* get all variables of LP */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); /* get root solution value of all binary and integer variables */ SCIP_CALL( SCIPallocBufferArray(scip, &rootsol, nbinvars + nintvars) ); for( i = 0; i < nbinvars + nintvars; i++ ) rootsol[i] = SCIPvarGetRootSol(vars[i]); /* get current LP objective value, and calculate length of a single step in an objective coefficient */ absstartobjval = SCIPgetLPObjval(scip); absstartobjval = ABS(absstartobjval); absstartobjval = MAX(absstartobjval, 1.0); objstep = absstartobjval / 10.0; /* initialize array storing the preferred soft rounding directions and counting the integral value rounds */ SCIP_CALL( SCIPallocBufferArray(scip, &softroundings, nbinvars + nintvars) ); BMSclearMemoryArray(softroundings, nbinvars + nintvars); SCIP_CALL( SCIPallocBufferArray(scip, &intvalrounds, nbinvars + nintvars) ); BMSclearMemoryArray(intvalrounds, nbinvars + nintvars); /* allocate temporary memory for buffering objective changes */ SCIP_CALL( SCIPallocBufferArray(scip, &objchgvals, nbinvars + nintvars) ); /* start diving */ SCIP_CALL( SCIPstartDive(scip) ); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing rootsoldiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d, LPobj=%g, objstep=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth, SCIPgetLPObjval(scip), objstep); lperror = FALSE; divedepth = 0; lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; alpha = heurdata->alpha; ncycles = 0; lpsolchanged = TRUE; startnlpcands = nlpcands; while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && ncycles < 10 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations)) && !SCIPisStopped(scip) ) { SCIP_Bool success; int hardroundingidx; int hardroundingdir; SCIP_Real hardroundingoldbd; SCIP_Real hardroundingnewbd; SCIP_Bool boundschanged; SCIP_RETCODE retcode; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("rootsoldiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } divedepth++; hardroundingidx = -1; hardroundingdir = 0; hardroundingoldbd = 0.0; hardroundingnewbd = 0.0; boundschanged = FALSE; SCIPdebugMessage("dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT":\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations); /* round solution x* from diving LP: * - x~_j = down(x*_j) if x*_j is integer or binary variable and x*_j <= root solution_j * - x~_j = up(x*_j) if x*_j is integer or binary variable and x*_j > root solution_j * - x~_j = x*_j if x*_j is continuous variable * change objective function in diving LP: * - if x*_j is integral, or j is a continuous variable, set obj'_j = alpha * obj_j * - otherwise, set obj'_j = alpha * obj_j + sign(x*_j - x~_j) */ for( i = 0; i < nbinvars + nintvars; i++ ) { SCIP_VAR* var; SCIP_Real solval; var = vars[i]; oldobj = SCIPgetVarObjDive(scip, var); newobj = oldobj; solval = SCIPvarGetLPSol(var); if( SCIPisFeasIntegral(scip, solval) ) { /* if the variable became integral after a soft rounding, count the rounds; after a while, fix it to its * current integral value; * otherwise, fade out the objective value */ if( softroundings[i] != 0 && lpsolchanged ) { intvalrounds[i]++; if( intvalrounds[i] == 5 && SCIPgetVarLbDive(scip, var) < SCIPgetVarUbDive(scip, var) - 0.5 ) { /* use exact integral value, if the variable is only integral within numerical tolerances */ solval = SCIPfloor(scip, solval+0.5); SCIPdebugMessage(" -> fixing <%s> = %g\n", SCIPvarGetName(var), solval); SCIP_CALL( SCIPchgVarLbDive(scip, var, solval) ); SCIP_CALL( SCIPchgVarUbDive(scip, var, solval) ); boundschanged = TRUE; } } else newobj = alpha * oldobj; } else if( solval <= rootsol[i] ) { /* if the variable was soft rounded most of the time downwards, round it downwards by changing the bounds; * otherwise, apply soft rounding by changing the objective value */ softroundings[i]--; if( softroundings[i] <= -10 && hardroundingidx == -1 ) { SCIPdebugMessage(" -> hard rounding <%s>[%g] <= %g\n", SCIPvarGetName(var), solval, SCIPfeasFloor(scip, solval)); hardroundingidx = i; hardroundingdir = -1; hardroundingoldbd = SCIPgetVarUbDive(scip, var); hardroundingnewbd = SCIPfeasFloor(scip, solval); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd) ); boundschanged = TRUE; } else newobj = alpha * oldobj + objstep; } else { /* if the variable was soft rounded most of the time upwards, round it upwards by changing the bounds; * otherwise, apply soft rounding by changing the objective value */ softroundings[i]++; if( softroundings[i] >= +10 && hardroundingidx == -1 ) { SCIPdebugMessage(" -> hard rounding <%s>[%g] >= %g\n", SCIPvarGetName(var), solval, SCIPfeasCeil(scip, solval)); hardroundingidx = i; hardroundingdir = +1; hardroundingoldbd = SCIPgetVarLbDive(scip, var); hardroundingnewbd = SCIPfeasCeil(scip, solval); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd) ); boundschanged = TRUE; } else newobj = alpha * oldobj - objstep; } /* remember the objective change */ objchgvals[i] = newobj; } /* apply objective changes if there was no bound change */ if( !boundschanged ) { /* apply cached changes on integer variables */ for( i = 0; i < nbinvars + nintvars; ++i ) { SCIP_VAR* var; var = vars[i]; SCIPdebugMessage(" -> i=%d var <%s>, solval=%g, rootsol=%g, oldobj=%g, newobj=%g\n", i, SCIPvarGetName(var), SCIPvarGetLPSol(var), rootsol[i], SCIPgetVarObjDive(scip, var), objchgvals[i]); SCIP_CALL( SCIPchgVarObjDive(scip, var, objchgvals[i]) ); } /* fade out the objective values of the continuous variables */ for( i = nbinvars + nintvars; i < nvars; i++ ) { SCIP_VAR* var; var = vars[i]; oldobj = SCIPgetVarObjDive(scip, var); newobj = alpha * oldobj; SCIPdebugMessage(" -> i=%d var <%s>, solval=%g, oldobj=%g, newobj=%g\n", i, SCIPvarGetName(var), SCIPvarGetLPSol(var), oldobj, newobj); SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) ); } } SOLVEAGAIN: /* resolve the diving LP */ nlpiterations = SCIPgetNLPIterations(scip); retcode = SCIPsolveDiveLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror); lpsolstat = SCIPgetLPSolstat(scip); /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY ) { SCIP_CALL( retcode ); } #endif SCIPwarningMessage(scip, "Error while solving LP in Rootsoldiving heuristic; LP solve terminated with code <%d>\n", retcode); SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n"); } if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* if no LP iterations were performed, we stayed at the same solution -> count this cycling */ lpsolchanged = (SCIPgetNLPIterations(scip) != nlpiterations); if( lpsolchanged ) ncycles = 0; else if( !boundschanged ) /* do not count if integral variables have been fixed */ ncycles++; /* get LP solution status and number of fractional variables, that should be integral */ if( lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE && hardroundingidx != -1 ) { SCIP_VAR* var; var = vars[hardroundingidx]; /* round the hard rounded variable to the opposite direction and resolve the LP */ if( hardroundingdir == -1 ) { SCIPdebugMessage(" -> opposite hard rounding <%s> >= %g\n", SCIPvarGetName(var), hardroundingnewbd + 1.0); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingoldbd) ); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd + 1.0) ); } else { SCIPdebugMessage(" -> opposite hard rounding <%s> <= %g\n", SCIPvarGetName(var), hardroundingnewbd - 1.0); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingoldbd) ); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd - 1.0) ); } hardroundingidx = -1; goto SOLVEAGAIN; } if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) nlpcands = SCIPgetNLPBranchCands(scip); SCIPdebugMessage(" -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands); } SCIPdebugMessage("---> diving finished: lpsolstat = %d, depth %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT"\n", lpsolstat, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations); /* check if a solution has been found */ if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("rootsoldiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendDive(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; /* free temporary memory */ SCIPfreeBufferArray(scip, &objchgvals); SCIPfreeBufferArray(scip, &intvalrounds); SCIPfreeBufferArray(scip, &softroundings); SCIPfreeBufferArray(scip, &rootsol); SCIPdebugMessage("rootsoldiving heuristic finished\n"); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecIntdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR** pseudocands; SCIP_VAR** fixcands; SCIP_Real* fixcandscores; SCIP_Real searchubbound; SCIP_Real searchavgbound; SCIP_Real searchbound; SCIP_Real objval; SCIP_Bool lperror; SCIP_Bool cutoff; SCIP_Bool backtracked; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int nfixcands; int nbinfixcands; int depth; int maxdepth; int maxdivedepth; int divedepth; int nextcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 100); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get unfixed integer variables */ SCIP_CALL( SCIPgetPseudoBranchCands(scip, &pseudocands, &nfixcands, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nfixcands == 0 ) return SCIP_OKAY; /* calculate the objective search bound */ if( SCIPgetNSolsFound(scip) == 0 ) { if( heurdata->maxdiveubquotnosol > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquotnosol > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } else { if( heurdata->maxdiveubquot > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquot > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } searchbound = MIN(searchubbound, searchavgbound); if( SCIPisObjIntegral(scip) ) searchbound = SCIPceil(scip, searchbound); /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */ maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); maxdivedepth = MIN(maxdivedepth, maxdepth); maxdivedepth *= 10; *result = SCIP_DIDNOTFIND; /* start diving */ SCIP_CALL( SCIPstartProbing(scip) ); /* enables collection of variable statistics during probing */ SCIPenableVarHistory(scip); SCIPdebugMessage("(node %" SCIP_LONGINT_FORMAT ") executing intdiving heuristic: depth=%d, %d non-fixed, dualbound=%g, searchbound=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nfixcands, SCIPgetDualbound(scip), SCIPretransformObj(scip, searchbound)); /* copy the pseudo candidates into own array, because we want to reorder them */ SCIP_CALL( SCIPduplicateBufferArray(scip, &fixcands, pseudocands, nfixcands) ); /* sort non-fixed variables by non-increasing inference score, but prefer binaries over integers in any case */ SCIP_CALL( SCIPallocBufferArray(scip, &fixcandscores, nfixcands) ); nbinfixcands = 0; for( c = 0; c < nfixcands; ++c ) { SCIP_VAR* var; SCIP_Real score; int colveclen; int left; int right; int i; assert(c >= nbinfixcands); var = fixcands[c]; assert(SCIPvarIsIntegral(var)); colveclen = (SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN ? SCIPcolGetNNonz(SCIPvarGetCol(var)) : 0); if( SCIPvarIsBinary(var) ) { score = 500.0 * SCIPvarGetNCliques(var, TRUE) + 100.0 * SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/100.0; /* shift the non-binary variables one slot to the right */ for( i = c; i > nbinfixcands; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } /* put the new candidate into the first nbinfixcands slot */ left = 0; right = nbinfixcands; nbinfixcands++; } else { score = 5.0 * (SCIPvarGetNCliques(var, FALSE) + SCIPvarGetNCliques(var, TRUE)) + SCIPvarGetNImpls(var, FALSE) + SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/10000.0; /* put the new candidate in the slots after the binary candidates */ left = nbinfixcands; right = c; } for( i = right; i > left && score > fixcandscores[i-1]; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } fixcands[i] = var; fixcandscores[i] = score; SCIPdebugMessage(" <%s>: ncliques=%d/%d, nimpls=%d/%d, inferencescore=%g, colveclen=%d -> score=%g\n", SCIPvarGetName(var), SCIPvarGetNCliques(var, FALSE), SCIPvarGetNCliques(var, TRUE), SCIPvarGetNImpls(var, FALSE), SCIPvarGetNImpls(var, TRUE), SCIPgetVarAvgInferenceScore(scip, var), colveclen, score); } SCIPfreeBufferArray(scip, &fixcandscores); /* get LP objective value */ lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; objval = SCIPgetLPObjval(scip); /* dive as long we are in the given objective, depth and iteration limits, but if possible, we dive at least with * the depth 10 */ lperror = FALSE; cutoff = FALSE; divedepth = 0; nextcand = 0; while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && (divedepth < 10 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound)) && !SCIPisStopped(scip) ) { SCIP_VAR* var; SCIP_Real bestsolval; SCIP_Real bestfixval; int bestcand; SCIP_Longint nnewlpiterations; SCIP_Longint nnewdomreds; /* open a new probing node if this will not exceed the maximal tree depth, otherwise stop here */ if( SCIPgetDepth(scip) < SCIPgetDepthLimit(scip) ) { SCIP_CALL( SCIPnewProbingNode(scip) ); divedepth++; } else break; nnewlpiterations = 0; nnewdomreds = 0; /* fix binary variable that is closest to 1 in the LP solution to 1; * if all binary variables are fixed, fix integer variable with least fractionality in LP solution */ bestcand = -1; bestsolval = -1.0; bestfixval = 1.0; /* look in the binary variables for fixing candidates */ for( c = nextcand; c < nbinfixcands; ++c ) { SCIP_Real solval; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetLbLocal(var) > 0.5 || SCIPvarGetUbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); if( solval > bestsolval ) { bestcand = c; bestfixval = 1.0; bestsolval = solval; if( SCIPisGE(scip, bestsolval, 1.0) ) { /* we found an unfixed binary variable with LP solution value of 1.0 - there cannot be a better candidate */ break; } else if( SCIPisLE(scip, bestsolval, 0.0) ) { /* the variable is currently at 0.0 - this is the only situation where we want to fix it to 0.0 */ bestfixval = 0.0; } } } /* if all binary variables are fixed, look in the integer variables for a fixing candidate */ if( bestcand == -1 ) { SCIP_Real bestfrac; bestfrac = SCIP_INVALID; for( c = MAX(nextcand, nbinfixcands); c < nfixcands; ++c ) { SCIP_Real solval; SCIP_Real frac; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); frac = SCIPfrac(scip, solval); /* ignore integer variables that are currently integral */ if( SCIPisFeasFracIntegral(scip, frac) ) continue; if( frac < bestfrac ) { bestcand = c; bestsolval = solval; bestfrac = frac; bestfixval = SCIPfloor(scip, bestsolval + 0.5); if( SCIPisZero(scip, bestfrac) ) { /* we found an unfixed integer variable with integral LP solution value */ break; } } } } assert(-1 <= bestcand && bestcand < nfixcands); /* if there is no unfixed candidate left, we are done */ if( bestcand == -1 ) break; var = fixcands[bestcand]; assert(var != NULL); assert(SCIPvarIsIntegral(var)); assert(SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) > 0.5); assert(SCIPisGE(scip, bestfixval, SCIPvarGetLbLocal(var))); assert(SCIPisLE(scip, bestfixval, SCIPvarGetUbLocal(var))); backtracked = FALSE; do { /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have * occured or variable was fixed by propagation while backtracking => Abort diving! */ if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 ) { SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g], diving aborted \n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var)); cutoff = TRUE; break; } if( SCIPisFeasLT(scip, bestfixval, SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, bestfixval, SCIPvarGetUbLocal(var)) ) { SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); assert(backtracked); break; } /* apply fixing of best candidate */ SCIPdebugMessage(" dive %d/%d, LP iter %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", %d unfixed: var <%s>, sol=%g, oldbounds=[%g,%g], fixed to %g\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPgetNPseudoBranchCands(scip), SCIPvarGetName(var), bestsolval, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); SCIP_CALL( SCIPfixVarProbing(scip, var, bestfixval) ); /* apply domain propagation */ SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, &nnewdomreds) ); if( !cutoff ) { /* if the best candidate was just fixed to its LP value and no domain reduction was found, the LP solution * stays valid, and the LP does not need to be resolved */ if( nnewdomreds > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* resolve the diving LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG SCIP_RETCODE retstat; nlpiterations = SCIPgetNLPIterations(scip); retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Intdiving heuristic; LP solve terminated with code <%d>\n",retstat); } #else nlpiterations = SCIPgetNLPIterations(scip); SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) ); #endif if( lperror ) break; /* update iteration count */ nnewlpiterations = SCIPgetNLPIterations(scip) - nlpiterations; heurdata->nlpiterations += nnewlpiterations; /* get LP solution status */ lpsolstat = SCIPgetLPSolstat(scip); assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE && (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip))))); } } /* perform backtracking if a cutoff was detected */ if( cutoff && !backtracked && heurdata->backtrack ) { SCIPdebugMessage(" *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip)); SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) ); /* after backtracking there has to be at least one open node without exceeding the maximal tree depth */ assert(SCIPgetDepthLimit(scip) > SCIPgetDepth(scip)); SCIP_CALL( SCIPnewProbingNode(scip) ); bestfixval = SCIPvarIsBinary(var) ? 1.0 - bestfixval : (SCIPisGT(scip, bestsolval, bestfixval) && SCIPisFeasLE(scip, bestfixval + 1, SCIPvarGetUbLocal(var)) ? bestfixval + 1 : bestfixval - 1); backtracked = TRUE; } else backtracked = FALSE; } while( backtracked ); if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* get new objective value */ objval = SCIPgetLPObjval(scip); if( nnewlpiterations > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* we must start again with the first candidate, since the LP solution changed */ nextcand = 0; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("intdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } else nextcand = bestcand+1; /* continue with the next candidate in the following loop */ } SCIPdebugMessage(" -> lpsolstat=%d, objval=%g/%g\n", lpsolstat, objval, searchbound); } /* free temporary memory */ SCIPfreeBufferArray(scip, &fixcands); /* end diving */ SCIP_CALL( SCIPendProbing(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; SCIPdebugMessage("intdiving heuristic finished\n"); return SCIP_OKAY; }
/** LP solution separation method of separator */ static SCIP_DECL_SEPAEXECLP(sepaExeclpClosecuts) { /*lint --e{715}*/ SCIP_SEPADATA* sepadata; SCIP_Longint currentnodenumber; SCIP_Bool isroot; assert( sepa != NULL ); assert( strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0 ); assert( result != NULL ); *result = SCIP_DIDNOTRUN; /* only call separator, if there are fractional variables */ if ( SCIPgetNLPBranchCands(scip) == 0 ) return SCIP_OKAY; sepadata = SCIPsepaGetData(sepa); assert( sepadata != NULL ); currentnodenumber = SCIPnodeGetNumber(SCIPgetCurrentNode(scip)); if ( sepadata->discardnode == currentnodenumber ) return SCIP_OKAY; isroot = FALSE; if (SCIPgetNNodes(scip) == 0) isroot = TRUE; /* only separate close cuts in the root if required */ if ( sepadata->separootonly || isroot ) { SCIP_SOL* point = NULL; SCIPdebugMessage("Separation method of closecuts separator.\n"); *result = SCIP_DIDNOTFIND; /* check whether we have to compute a relative interior point */ if ( sepadata->separelint ) { /* check if previous relative interior point should be forgotten, * otherwise it is computed only once and the same point is used for all nodes */ if ( sepadata->recomputerelint && sepadata->sepasol != NULL ) { SCIP_CALL( SCIPfreeSol(scip, &sepadata->sepasol) ); } if ( sepadata->sepasol == NULL ) { SCIPverbMessage(scip, SCIP_VERBLEVEL_MINIMAL, 0, "Computing relative interior point (norm type: %c) ...\n", sepadata->relintnormtype); assert(sepadata->relintnormtype == 'o' || sepadata->relintnormtype == 's'); SCIP_CALL( SCIPcomputeLPRelIntPoint(scip, TRUE, sepadata->inclobjcutoff, sepadata->relintnormtype, &sepadata->sepasol) ); } } else { /* get best solution (NULL if not present) */ sepadata->sepasol = SCIPgetBestSol(scip); } /* separate close cuts */ if ( sepadata->sepasol != NULL ) { SCIPdebugMessage("Generating close cuts ... (combination value: %f)\n", sepadata->sepacombvalue); /* generate point to be separated */ SCIP_CALL( generateCloseCutPoint(scip, sepadata, &point) ); /* apply a separation round to generated point */ if ( point != NULL ) { int noldcuts; SCIP_Bool delayed; SCIP_Bool cutoff; noldcuts = SCIPgetNCuts(scip); SCIP_CALL( SCIPseparateSol(scip, point, isroot, FALSE, &delayed, &cutoff) ); SCIP_CALL( SCIPfreeSol(scip, &point) ); assert( point == NULL ); /* the cuts can be not violated by the current LP if the computed point is strange */ SCIP_CALL( SCIPremoveInefficaciousCuts(scip) ); if ( cutoff ) *result = SCIP_CUTOFF; else { if ( SCIPgetNCuts(scip) - noldcuts > sepadata->sepathreshold ) { sepadata->nunsuccessful = 0; *result = SCIP_NEWROUND; } else { if ( SCIPgetNCuts(scip) > noldcuts ) { sepadata->nunsuccessful = 0; *result = SCIP_SEPARATED; } else ++sepadata->nunsuccessful; } } SCIPdebugMessage("Separated close cuts: %d (enoughcuts: %d, unsuccessful: %d).\n", SCIPgetNCuts(scip) - noldcuts, SCIPgetNCuts(scip) - noldcuts > sepadata->sepathreshold, sepadata->nunsuccessful); if ( sepadata->maxunsuccessful >= 0 && sepadata->nunsuccessful > sepadata->maxunsuccessful ) { SCIPdebugMessage("Turn off close cut separation, because of %d unsuccessful calls.\n", sepadata->nunsuccessful); sepadata->discardnode = currentnodenumber; } } } } return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecLocalbranching) { /*lint --e{715}*/ SCIP_Longint maxnnodes; /* maximum number of subnodes */ SCIP_Longint nsubnodes; /* nodelimit for subscip */ SCIP_HEURDATA* heurdata; SCIP* subscip; /* the subproblem created by localbranching */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_SOL* bestsol; /* best solution so far */ SCIP_EVENTHDLR* eventhdlr; /* event handler for LP events */ SCIP_Real timelimit; /* timelimit for subscip (equals remaining time of scip) */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real upperbound; SCIP_Real memorylimit; SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; int nvars; int i; SCIP_Bool success; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); /* there should be enough binary variables that a local branching constraint makes sense */ if( SCIPgetNBinVars(scip) < 2*heurdata->neighborhoodsize ) return SCIP_OKAY; *result = SCIP_DELAYED; /* only call heuristic, if an IP solution is at hand */ if( SCIPgetNSols(scip) <= 0 ) return SCIP_OKAY; bestsol = SCIPgetBestSol(scip); assert(bestsol != NULL); /* only call heuristic, if the best solution comes from transformed problem */ if( SCIPsolIsOriginal(bestsol) ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip, bestsol) < heurdata->nwaitingnodes) return SCIP_OKAY; /* only call heuristic, if the best solution does not come from trivial heuristic */ if( SCIPsolGetHeur(bestsol) != NULL && strcmp(SCIPheurGetName(SCIPsolGetHeur(bestsol)), "trivial") == 0 ) return SCIP_OKAY; /* reset neighborhood and minnodes, if new solution was found */ if( heurdata->lastsol != bestsol ) { heurdata->curneighborhoodsize = heurdata->neighborhoodsize; heurdata->curminnodes = heurdata->minnodes; heurdata->emptyneighborhoodsize = 0; heurdata->callstatus = EXECUTE; heurdata->lastsol = bestsol; } /* if no new solution was found and local branching also seems to fail, just keep on waiting */ if( heurdata->callstatus == WAITFORNEWSOL ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* calculate the maximal number of branching nodes until heuristic is aborted */ maxnnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward local branching if it succeeded often */ maxnnodes = (SCIP_Longint)(maxnnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0))); maxnnodes -= 100 * SCIPheurGetNCalls(heur); /* count the setup costs for the sub-MIP as 100 nodes */ maxnnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nsubnodes = maxnnodes - heurdata->usednodes; nsubnodes = MIN(nsubnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call sub problem solving */ if( nsubnodes < heurdata->curminnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIPdebugMessage("running localbranching heuristic ...\n"); /* get the data of the variables and the best solution */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; eventhdlr = NULL; if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_localbranchsub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_localbranchsub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "localbranchsub", TRUE, FALSE, TRUE, &success) ); if( heurdata->copycuts ) { /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } /* create event handler for LP events */ SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecLocalbranching, NULL) ); if( eventhdlr == NULL ) { SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n"); return SCIP_PLUGINNOTFOUND; } } SCIPdebugMessage("Copying the plugins was %ssuccessful.\n", success ? "" : "not "); for (i = 0; i < nvars; ++i) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); /* if the subproblem could not be created, free memory and return */ if( !success ) { *result = SCIP_DIDNOTRUN; goto TERMINATE; } /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); #ifndef SCIP_DEBUG /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); #endif /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ heurdata->nodelimit = nsubnodes; SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) ); SCIP_CALL( SCIPsetLongintParam(subscip, "limits/stallnodes", MAX(10, nsubnodes/10)) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/bestsol", 3) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 500) ); } /* copy the original problem and add the local branching constraint */ if( heurdata->uselprows ) { SCIP_CALL( createSubproblem(scip, subscip, subvars) ); } SCIP_CALL( addLocalBranchingConstraint(scip, subscip, subvars, heurdata) ); /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* catch LP events of sub-SCIP */ if( !heurdata->uselprows ) { assert(eventhdlr != NULL); SCIP_CALL( SCIPtransformProb(subscip) ); SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) ); } /* solve the subproblem */ SCIPdebugMessage("solving local branching subproblem with neighborhoodsize %d and maxnodes %"SCIP_LONGINT_FORMAT"\n", heurdata->curneighborhoodsize, nsubnodes); retcode = SCIPsolve(subscip); /* drop LP events of sub-SCIP */ if( !heurdata->uselprows ) { assert(eventhdlr != NULL); SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) ); } /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in local branching heuristic; sub-SCIP terminated with code <%d>\n",retcode); } /* print solving statistics of subproblem if we are in SCIP's debug mode */ SCIPdebug( SCIP_CALL( SCIPprintStatistics(subscip, NULL) ) ); heurdata->usednodes += SCIPgetNNodes(subscip); SCIPdebugMessage("local branching used %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT" nodes\n", SCIPgetNNodes(subscip), nsubnodes); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); } if( success ) { SCIPdebugMessage("-> accepted solution of value %g\n", SCIPgetSolOrigObj(subscip, subsols[i])); *result = SCIP_FOUNDSOL; } } /* check the status of the sub-MIP */ switch( SCIPgetStatus(subscip) ) { case SCIP_STATUS_OPTIMAL: case SCIP_STATUS_BESTSOLLIMIT: heurdata->callstatus = WAITFORNEWSOL; /* new solution will immediately be installed at next call */ SCIPdebugMessage(" -> found new solution\n"); break; case SCIP_STATUS_NODELIMIT: case SCIP_STATUS_STALLNODELIMIT: case SCIP_STATUS_TOTALNODELIMIT: heurdata->callstatus = EXECUTE; heurdata->curneighborhoodsize = (heurdata->emptyneighborhoodsize + heurdata->curneighborhoodsize)/2; heurdata->curminnodes *= 2; SCIPdebugMessage(" -> node limit reached: reduced neighborhood to %d, increased minnodes to %d\n", heurdata->curneighborhoodsize, heurdata->curminnodes); if( heurdata->curneighborhoodsize <= heurdata->emptyneighborhoodsize ) { heurdata->callstatus = WAITFORNEWSOL; SCIPdebugMessage(" -> new neighborhood was already proven to be empty: wait for new solution\n"); } break; case SCIP_STATUS_INFEASIBLE: case SCIP_STATUS_INFORUNBD: heurdata->emptyneighborhoodsize = heurdata->curneighborhoodsize; heurdata->curneighborhoodsize += heurdata->curneighborhoodsize/2; heurdata->curneighborhoodsize = MAX(heurdata->curneighborhoodsize, heurdata->emptyneighborhoodsize + 2); heurdata->callstatus = EXECUTE; SCIPdebugMessage(" -> neighborhood is empty: increased neighborhood to %d\n", heurdata->curneighborhoodsize); break; case SCIP_STATUS_UNKNOWN: case SCIP_STATUS_USERINTERRUPT: case SCIP_STATUS_TIMELIMIT: case SCIP_STATUS_MEMLIMIT: case SCIP_STATUS_GAPLIMIT: case SCIP_STATUS_SOLLIMIT: case SCIP_STATUS_UNBOUNDED: default: heurdata->callstatus = WAITFORNEWSOL; SCIPdebugMessage(" -> unexpected sub-MIP status <%d>: waiting for new solution\n", SCIPgetStatus(subscip)); break; } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecCrossover) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; /* primal heuristic data */ SCIP* subscip; /* the subproblem created by crossover */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_SOL** sols; SCIP_Real memorylimit; /* memory limit for the subproblem */ SCIP_Real timelimit; /* time limit for the subproblem */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real upperbound; SCIP_Bool success; SCIP_Longint nstallnodes; /* node limit for the subproblem */ int* selection; /* pool of solutions crossover uses */ int nvars; /* number of original problem's variables */ int nbinvars; int nintvars; int nusedsols; int i; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); nusedsols = heurdata->nusedsols; *result = SCIP_DELAYED; /* only call heuristic, if enough solutions are at hand */ if( SCIPgetNSols(scip) < nusedsols ) return SCIP_OKAY; sols = SCIPgetSols(scip); assert(sols != NULL); /* if one good solution was found, heuristic should not be delayed any longer */ if( sols[nusedsols-1] != heurdata->prevlastsol ) { heurdata->nextnodenumber = SCIPgetNNodes(scip); if( sols[0] != heurdata->prevbestsol ) heurdata->nfailures = 0; } /* in nonrandomized mode: only recall heuristic, if at least one new good solution was found in the meantime */ else if( !heurdata->randomization ) return SCIP_OKAY; /* if heuristic should be delayed, wait until certain number of nodes is reached */ if( SCIPgetNNodes(scip) < heurdata->nextnodenumber ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip)) < heurdata->nwaitingnodes && (SCIPgetDepth(scip) > 0 || !heurdata->dontwaitatroot) ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* calculate the maximal number of branching nodes until heuristic is aborted */ nstallnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward Crossover if it succeeded often */ nstallnodes = (SCIP_Longint) (nstallnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0))); /* count the setup costs for the sub-MIP as 100 nodes */ nstallnodes -= 100 * SCIPheurGetNCalls(heur); nstallnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nstallnodes -= heurdata->usednodes; nstallnodes = MIN(nstallnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nstallnodes < heurdata->minnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); assert(nvars > 0); /* check whether discrete variables are available */ if( nbinvars == 0 && nintvars == 0 ) return SCIP_OKAY; /* initializing the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_crossoversub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_crossoversub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "crossover", TRUE, FALSE, TRUE, &success) ); if( heurdata->copycuts ) { /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } } SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &selection, nusedsols) ); for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) (size_t) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); success = FALSE; /* create a new problem, which fixes variables with same value in a certain set of solutions */ SCIP_CALL( setupSubproblem(scip, subscip, subvars, selection, heurdata, &success) ); heurdata->prevbestsol = SCIPgetBestSol(scip); heurdata->prevlastsol = sols[heurdata->nusedsols-1]; /* if creation of sub-SCIP was aborted (e.g. due to number of fixings), free sub-SCIP and abort */ if( !success ) { *result = SCIP_DIDNOTRUN; /* this run will be counted as a failure since no new solution tuple could be generated or the neighborhood of the * solution was not fruitful in the sense that it was too big */ updateFailureStatistic(scip, heurdata); goto TERMINATE; } /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nstallnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert(!SCIPisInfinity(scip, SCIPgetUpperbound(scip))); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* permute the subproblem to increase diversification */ if( heurdata->permute ) { SCIP_CALL( SCIPpermuteProb(subscip, (unsigned int) SCIPheurGetNCalls(heur), TRUE, TRUE, TRUE, TRUE, TRUE) ); } /* solve the subproblem */ SCIPdebugMessage("Solve Crossover subMIP\n"); retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process. * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in Crossover heuristic; sub-SCIP terminated with code <%d>\n", retcode); } heurdata->usednodes += SCIPgetNNodes(subscip); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; int solindex; /* index of the solution created by crossover */ /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; solindex = -1; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &solindex, &success) ); } if( success ) { int tmp; assert(solindex != -1); *result = SCIP_FOUNDSOL; /* insert all crossings of the new solution and (nusedsols-1) of its parents into the hashtable * in order to avoid incest ;) */ for( i = 0; i < nusedsols; i++ ) { SOLTUPLE* elem; tmp = selection[i]; selection[i] = solindex; SCIP_CALL( createSolTuple(scip, &elem, selection, nusedsols, heurdata) ); SCIP_CALL( SCIPhashtableInsert(heurdata->hashtable, elem) ); selection[i] = tmp; } /* if solution was among the best ones, crossover should not be called until another good solution was found */ if( !heurdata->randomization ) { heurdata->prevbestsol = SCIPgetBestSol(scip); heurdata->prevlastsol = SCIPgetSols(scip)[heurdata->nusedsols-1]; } } /* if solution is not better then incumbent or could not be added to problem => run is counted as a failure */ if( !success || solindex != SCIPsolGetIndex(SCIPgetBestSol(scip)) ) updateFailureStatistic(scip, heurdata); } else { /* if no new solution was found, run was a failure */ updateFailureStatistic(scip, heurdata); } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &selection); SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecShifting) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* sol; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_ROW** lprows; SCIP_Real* activities; SCIP_ROW** violrows; SCIP_Real* nincreases; SCIP_Real* ndecreases; int* violrowpos; int* nfracsinrow; SCIP_Real increaseweight; SCIP_Real obj; SCIP_Real bestshiftval; SCIP_Real minobj; int nlpcands; int nlprows; int nvars; int nfrac; int nviolrows; int nprevviolrows; int minnviolrows; int nnonimprovingshifts; int c; int r; SCIP_Longint nlps; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nnodes; assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DIDNOTRUN; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* don't call heuristic, if we have already processed the current LP solution */ nlps = SCIPgetNLPs(scip); if( nlps == heurdata->lastlp ) return SCIP_OKAY; heurdata->lastlp = nlps; /* don't call heuristic, if it was not successful enough in the past */ ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + SCIPheurGetNSolsFound(heur); nnodes = SCIPgetNNodes(scip); if( nnodes % ((ncalls/100)/(nsolsfound+1)+1) != 0 ) return SCIP_OKAY; /* get fractional variables, that should be integral */ /* todo check if heuristic should include implicit integer variables for its calculations */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, NULL) ); nfrac = nlpcands; /* only call heuristic, if LP solution is fractional */ if( nfrac == 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; /* get LP rows */ SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) ); SCIPdebugMessage("executing shifting heuristic: %d LP rows, %d fractionals\n", nlprows, nfrac); /* get memory for activities, violated rows, and row violation positions */ nvars = SCIPgetNVars(scip); SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &violrows, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &violrowpos, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &nfracsinrow, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &nincreases, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &ndecreases, nvars) ); BMSclearMemoryArray(nfracsinrow, nlprows); BMSclearMemoryArray(nincreases, nvars); BMSclearMemoryArray(ndecreases, nvars); /* get the activities for all globally valid rows; * the rows should be feasible, but due to numerical inaccuracies in the LP solver, they can be violated */ nviolrows = 0; for( r = 0; r < nlprows; ++r ) { SCIP_ROW* row; row = lprows[r]; assert(SCIProwGetLPPos(row) == r); if( !SCIProwIsLocal(row) ) { activities[r] = SCIPgetRowActivity(scip, row); if( SCIPisFeasLT(scip, activities[r], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[r], SCIProwGetRhs(row)) ) { violrows[nviolrows] = row; violrowpos[r] = nviolrows; nviolrows++; } else violrowpos[r] = -1; } } /* calc the current number of fractional variables in rows */ for( c = 0; c < nlpcands; ++c ) addFracCounter(nfracsinrow, nlprows, lpcands[c], +1); /* get the working solution from heuristic's local data */ sol = heurdata->sol; assert(sol != NULL); /* copy the current LP solution to the working solution */ SCIP_CALL( SCIPlinkLPSol(scip, sol) ); /* calculate the minimal objective value possible after rounding fractional variables */ minobj = SCIPgetSolTransObj(scip, sol); assert(minobj < SCIPgetCutoffbound(scip)); for( c = 0; c < nlpcands; ++c ) { obj = SCIPvarGetObj(lpcands[c]); bestshiftval = obj > 0.0 ? SCIPfeasFloor(scip, lpcandssol[c]) : SCIPfeasCeil(scip, lpcandssol[c]); minobj += obj * (bestshiftval - lpcandssol[c]); } /* try to shift remaining variables in order to become/stay feasible */ nnonimprovingshifts = 0; minnviolrows = INT_MAX; increaseweight = 1.0; while( (nfrac > 0 || nviolrows > 0) && nnonimprovingshifts < MAXSHIFTINGS ) { SCIP_VAR* shiftvar; SCIP_Real oldsolval; SCIP_Real newsolval; SCIP_Bool oldsolvalisfrac; int probindex; SCIPdebugMessage("shifting heuristic: nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g), cutoff=%g\n", nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj), SCIPretransformObj(scip, SCIPgetCutoffbound(scip))); nprevviolrows = nviolrows; /* choose next variable to process: * - if a violated row exists, shift a variable decreasing the violation, that has least impact on other rows * - otherwise, shift a variable, that has strongest devastating impact on rows in opposite direction */ shiftvar = NULL; oldsolval = 0.0; newsolval = 0.0; if( nviolrows > 0 && (nfrac == 0 || nnonimprovingshifts < MAXSHIFTINGS-1) ) { SCIP_ROW* row; int rowidx; int rowpos; int direction; rowidx = -1; rowpos = -1; row = NULL; if( nfrac > 0 ) { for( rowidx = nviolrows-1; rowidx >= 0; --rowidx ) { row = violrows[rowidx]; rowpos = SCIProwGetLPPos(row); assert(violrowpos[rowpos] == rowidx); if( nfracsinrow[rowpos] > 0 ) break; } } if( rowidx == -1 ) { rowidx = SCIPgetRandomInt(0, nviolrows-1, &heurdata->randseed); row = violrows[rowidx]; rowpos = SCIProwGetLPPos(row); assert(0 <= rowpos && rowpos < nlprows); assert(violrowpos[rowpos] == rowidx); assert(nfracsinrow[rowpos] == 0); } assert(violrowpos[rowpos] == rowidx); SCIPdebugMessage("shifting heuristic: try to fix violated row <%s>: %g <= %g <= %g\n", SCIProwGetName(row), SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row)); SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) ); /* get direction in which activity must be shifted */ assert(SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[rowpos], SCIProwGetRhs(row))); direction = SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) ? +1 : -1; /* search a variable that can shift the activity in the necessary direction */ SCIP_CALL( selectShifting(scip, sol, row, activities[rowpos], direction, nincreases, ndecreases, increaseweight, &shiftvar, &oldsolval, &newsolval) ); } if( shiftvar == NULL && nfrac > 0 ) { SCIPdebugMessage("shifting heuristic: search rounding variable and try to stay feasible\n"); SCIP_CALL( selectEssentialRounding(scip, sol, minobj, lpcands, nlpcands, &shiftvar, &oldsolval, &newsolval) ); } /* check, whether shifting was possible */ if( shiftvar == NULL || SCIPisEQ(scip, oldsolval, newsolval) ) { SCIPdebugMessage("shifting heuristic: -> didn't find a shifting variable\n"); break; } SCIPdebugMessage("shifting heuristic: -> shift var <%s>[%g,%g], type=%d, oldval=%g, newval=%g, obj=%g\n", SCIPvarGetName(shiftvar), SCIPvarGetLbGlobal(shiftvar), SCIPvarGetUbGlobal(shiftvar), SCIPvarGetType(shiftvar), oldsolval, newsolval, SCIPvarGetObj(shiftvar)); /* update row activities of globally valid rows */ SCIP_CALL( updateActivities(scip, activities, violrows, violrowpos, &nviolrows, nlprows, shiftvar, oldsolval, newsolval) ); if( nviolrows >= nprevviolrows ) nnonimprovingshifts++; else if( nviolrows < minnviolrows ) { minnviolrows = nviolrows; nnonimprovingshifts = 0; } /* store new solution value and decrease fractionality counter */ SCIP_CALL( SCIPsetSolVal(scip, sol, shiftvar, newsolval) ); /* update fractionality counter and minimal objective value possible after shifting remaining variables */ oldsolvalisfrac = !SCIPisFeasIntegral(scip, oldsolval) && (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER); obj = SCIPvarGetObj(shiftvar); if( (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER) && oldsolvalisfrac ) { assert(SCIPisFeasIntegral(scip, newsolval)); nfrac--; nnonimprovingshifts = 0; minnviolrows = INT_MAX; addFracCounter(nfracsinrow, nlprows, shiftvar, -1); /* the rounding was already calculated into the minobj -> update only if rounding in "wrong" direction */ if( obj > 0.0 && newsolval > oldsolval ) minobj += obj; else if( obj < 0.0 && newsolval < oldsolval ) minobj -= obj; } else { /* update minimal possible objective value */ minobj += obj * (newsolval - oldsolval); } /* update increase/decrease arrays */ if( !oldsolvalisfrac ) { probindex = SCIPvarGetProbindex(shiftvar); assert(0 <= probindex && probindex < nvars); increaseweight *= WEIGHTFACTOR; if( newsolval < oldsolval ) ndecreases[probindex] += increaseweight; else nincreases[probindex] += increaseweight; if( increaseweight >= 1e+09 ) { int i; for( i = 0; i < nvars; ++i ) { nincreases[i] /= increaseweight; ndecreases[i] /= increaseweight; } increaseweight = 1.0; } } SCIPdebugMessage("shifting heuristic: -> nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n", nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj)); } /* check, if the new solution is feasible */ if( nfrac == 0 && nviolrows == 0 ) { SCIP_Bool stored; /* check solution for feasibility, and add it to solution store if possible * neither integrality nor feasibility of LP rows has to be checked, because this is already * done in the shifting heuristic itself; however, we better check feasibility of LP rows, * because of numerical problems with activity updating */ SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) ); if( stored ) { SCIPdebugMessage("found feasible shifted solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ) ); *result = SCIP_FOUNDSOL; } } /* free memory buffers */ SCIPfreeBufferArray(scip, &ndecreases); SCIPfreeBufferArray(scip, &nincreases); SCIPfreeBufferArray(scip, &nfracsinrow); SCIPfreeBufferArray(scip, &violrowpos); SCIPfreeBufferArray(scip, &violrows); SCIPfreeBufferArray(scip, &activities); return SCIP_OKAY; }
/** * Selects a variable from a set of candidates by strong branching * * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref * SCIP_Retcode "SCIP_RETCODE" for a complete list of error codes. * * @note The variables in the lpcands array must have a fractional value in the current LP solution */ SCIP_RETCODE SCIPselectVarPseudoStrongBranching( SCIP* scip, /**< original SCIP data structure */ SCIP_VAR** pseudocands, /**< branching candidates */ SCIP_Bool* skipdown, /**< should down branchings be skipped? */ SCIP_Bool* skipup, /**< should up branchings be skipped? */ int npseudocands, /**< number of branching candidates */ int npriopseudocands, /**< number of priority branching candidates */ SCIP_Bool allowaddcons, /**< is the branching rule allowed to add constraints? */ int* bestpseudocand, /**< best candidate for branching */ SCIP_Real* bestdown, /**< objective value of the down branch for bestcand */ SCIP_Real* bestup, /**< objective value of the up branch for bestcand */ SCIP_Real* bestscore, /**< score for bestcand */ SCIP_Bool* bestdownvalid, /**< is bestdown a valid dual bound for the down branch? */ SCIP_Bool* bestupvalid, /**< is bestup a valid dual bound for the up branch? */ SCIP_Real* provedbound, /**< proved dual bound for current subtree */ SCIP_RESULT* result /**< result pointer */ ) { SCIP_Real lpobjval; SCIP_Bool allcolsinlp; SCIP_Bool exactsolve; #ifndef NDEBUG SCIP_Real cutoffbound; cutoffbound = SCIPgetCutoffbound(scip); #endif assert(scip != NULL); assert(pseudocands != NULL); assert(bestpseudocand != NULL); assert(skipdown != NULL); assert(skipup != NULL); assert(bestdown != NULL); assert(bestup != NULL); assert(bestscore != NULL); assert(bestdownvalid != NULL); assert(bestupvalid != NULL); assert(provedbound != NULL); assert(result != NULL); assert(SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL); /* get current LP objective bound of the local sub problem and global cutoff bound */ lpobjval = SCIPgetLPObjval(scip); /* check, if we want to solve the problem exactly, meaning that strong branching information is not useful * for cutting off sub problems and improving lower bounds of children */ exactsolve = SCIPisExactSolve(scip); /* check, if all existing columns are in LP, and thus the strong branching results give lower bounds */ allcolsinlp = SCIPallColsInLP(scip); /* if only one candidate exists, choose this one without applying strong branching */ *bestpseudocand = 0; *bestdown = lpobjval; *bestup = lpobjval; *bestdownvalid = TRUE; *bestupvalid = TRUE; *bestscore = -SCIPinfinity(scip); *provedbound = lpobjval; if( npseudocands > 1 ) { SCIP_BRANCHRULE* branchrule; SCIP_BRANCHRULEDATA* branchruledata; SCIP_Real solval; SCIP_Real down; SCIP_Real up; SCIP_Real downgain; SCIP_Real upgain; SCIP_Real score; SCIP_Bool integral; SCIP_Bool lperror; SCIP_Bool downvalid; SCIP_Bool upvalid; SCIP_Bool downinf; SCIP_Bool upinf; SCIP_Bool downconflict; SCIP_Bool upconflict; int nsbcalls; int i; int c; branchrule = SCIPfindBranchrule(scip, BRANCHRULE_NAME); assert(branchrule != NULL); /* get branching rule data */ branchruledata = SCIPbranchruleGetData(branchrule); assert(branchruledata != NULL); /* initialize strong branching */ SCIP_CALL( SCIPstartStrongbranch(scip, FALSE) ); /* search the full strong candidate: * cycle through the candidates, starting with the position evaluated in the last run */ nsbcalls = 0; for( i = 0, c = branchruledata->lastcand; i < npseudocands; ++i, ++c ) { c = c % npseudocands; assert(pseudocands[c] != NULL); /* we can only apply strong branching on COLUMN variables that are in the current LP */ if( !SCIPvarIsInLP(pseudocands[c]) ) continue; solval = SCIPvarGetLPSol(pseudocands[c]); integral = SCIPisFeasIntegral(scip, solval); SCIPdebugMessage("applying strong branching on %s variable <%s>[%g,%g] with solution %g\n", integral ? "integral" : "fractional", SCIPvarGetName(pseudocands[c]), SCIPvarGetLbLocal(pseudocands[c]), SCIPvarGetUbLocal(pseudocands[c]), solval); up = -SCIPinfinity(scip); down = -SCIPinfinity(scip); if( integral ) { SCIP_CALL( SCIPgetVarStrongbranchInt(scip, pseudocands[c], INT_MAX, skipdown[c] ? NULL : &down, skipup[c] ? NULL : &up, &downvalid, &upvalid, &downinf, &upinf, &downconflict, &upconflict, &lperror) ); } else { SCIP_CALL( SCIPgetVarStrongbranchFrac(scip, pseudocands[c], INT_MAX, skipdown[c] ? NULL : &down, skipup[c] ? NULL : &up, &downvalid, &upvalid, &downinf, &upinf, &downconflict, &upconflict, &lperror) ); } nsbcalls++; /* display node information line in root node */ if( SCIPgetDepth(scip) == 0 && nsbcalls % 100 == 0 ) { SCIP_CALL( SCIPprintDisplayLine(scip, NULL, SCIP_VERBLEVEL_HIGH, TRUE) ); } /* check for an error in strong branching */ if( lperror ) { SCIPverbMessage(scip, SCIP_VERBLEVEL_HIGH, NULL, "(node %"SCIP_LONGINT_FORMAT") error in strong branching call for variable <%s> with solution %g\n", SCIPgetNNodes(scip), SCIPvarGetName(pseudocands[c]), solval); break; } /* evaluate strong branching */ down = MAX(down, lpobjval); up = MAX(up, lpobjval); downgain = down - lpobjval; upgain = up - lpobjval; assert(!allcolsinlp || exactsolve || !downvalid || downinf == SCIPisGE(scip, down, cutoffbound)); assert(!allcolsinlp || exactsolve || !upvalid || upinf == SCIPisGE(scip, up, cutoffbound)); assert(downinf || !downconflict); assert(upinf || !upconflict); /* check if there are infeasible roundings */ if( downinf || upinf ) { assert(allcolsinlp); assert(!exactsolve); /* if for both infeasibilities, a conflict constraint was created, we don't need to fix the variable by hand, * but better wait for the next propagation round to fix them as an inference, and potentially produce a * cutoff that can be analyzed */ if( allowaddcons && downinf == downconflict && upinf == upconflict ) { *result = SCIP_CONSADDED; break; /* terminate initialization loop, because constraint was added */ } else if( downinf && upinf ) { if( integral ) { SCIP_Bool infeasible; SCIP_Bool fixed; /* both bound changes are infeasible: variable can be fixed to its current value */ SCIP_CALL( SCIPfixVar(scip, pseudocands[c], solval, &infeasible, &fixed) ); assert(!infeasible); assert(fixed); *result = SCIP_REDUCEDDOM; SCIPdebugMessage(" -> integral variable <%s> is infeasible in both directions\n", SCIPvarGetName(pseudocands[c])); break; /* terminate initialization loop, because LP was changed */ } else { /* both roundings are infeasible: the node is infeasible */ *result = SCIP_CUTOFF; SCIPdebugMessage(" -> fractional variable <%s> is infeasible in both directions\n", SCIPvarGetName(pseudocands[c])); break; /* terminate initialization loop, because node is infeasible */ } } else if( downinf ) { SCIP_Real newlb; /* downwards rounding is infeasible -> change lower bound of variable to upward rounding */ newlb = SCIPfeasCeil(scip, solval); if( SCIPvarGetLbLocal(pseudocands[c]) < newlb - 0.5 ) { SCIP_CALL( SCIPchgVarLb(scip, pseudocands[c], newlb) ); *result = SCIP_REDUCEDDOM; SCIPdebugMessage(" -> variable <%s> is infeasible in downward branch\n", SCIPvarGetName(pseudocands[c])); break; /* terminate initialization loop, because LP was changed */ } } else { SCIP_Real newub; /* upwards rounding is infeasible -> change upper bound of variable to downward rounding */ assert(upinf); newub = SCIPfeasFloor(scip, solval); if( SCIPvarGetUbLocal(pseudocands[c]) > newub + 0.5 ) { SCIP_CALL( SCIPchgVarUb(scip, pseudocands[c], newub) ); *result = SCIP_REDUCEDDOM; SCIPdebugMessage(" -> variable <%s> is infeasible in upward branch\n", SCIPvarGetName(pseudocands[c])); break; /* terminate initialization loop, because LP was changed */ } } } else if( allcolsinlp && !exactsolve && downvalid && upvalid ) { SCIP_Real minbound; /* the minimal lower bound of both children is a proved lower bound of the current subtree */ minbound = MIN(down, up); *provedbound = MAX(*provedbound, minbound); } /* check for a better score, if we are within the maximum priority candidates */ if( c < npriopseudocands ) { if( integral ) { if( skipdown[c] ) { downgain = 0.0; score = SCIPgetBranchScore(scip, pseudocands[c], downgain, upgain); } else if( skipup[c] ) { upgain = 0.0; score = SCIPgetBranchScore(scip, pseudocands[c], downgain, upgain); } else { SCIP_Real gains[3]; gains[0] = downgain; gains[1] = 0.0; gains[2] = upgain; score = SCIPgetBranchScoreMultiple(scip, pseudocands[c], 3, gains); } } else score = SCIPgetBranchScore(scip, pseudocands[c], downgain, upgain); if( score > *bestscore ) { *bestpseudocand = c; *bestdown = down; *bestup = up; *bestdownvalid = downvalid; *bestupvalid = upvalid; *bestscore = score; } } else score = 0.0; /* update pseudo cost values */ if( !downinf ) { SCIP_CALL( SCIPupdateVarPseudocost(scip, pseudocands[c], solval-SCIPfeasCeil(scip, solval-1.0), downgain, 1.0) ); } if( !upinf ) { SCIP_CALL( SCIPupdateVarPseudocost(scip, pseudocands[c], solval-SCIPfeasFloor(scip, solval+1.0), upgain, 1.0) ); } SCIPdebugMessage(" -> var <%s> (solval=%g, downgain=%g, upgain=%g, score=%g) -- best: <%s> (%g)\n", SCIPvarGetName(pseudocands[c]), solval, downgain, upgain, score, SCIPvarGetName(pseudocands[*bestpseudocand]), *bestscore); } /* remember last evaluated candidate */ branchruledata->lastcand = c; /* end strong branching */ SCIP_CALL( SCIPendStrongbranch(scip) ); } return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecMutation) { /*lint --e{715}*/ SCIP_Longint maxnnodes; SCIP_Longint nsubnodes; /* node limit for the subproblem */ SCIP_HEURDATA* heurdata; /* heuristic's data */ SCIP* subscip; /* the subproblem created by mutation */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real maxnnodesr; SCIP_Real memorylimit; SCIP_Real timelimit; /* timelimit for the subproblem */ SCIP_Real upperbound; int nvars; /* number of original problem's variables */ int i; SCIP_Bool success; SCIP_RETCODE retcode; assert( heur != NULL ); assert( scip != NULL ); assert( result != NULL ); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); *result = SCIP_DELAYED; /* only call heuristic, if feasible solution is available */ if( SCIPgetNSols(scip) <= 0 ) return SCIP_OKAY; /* only call heuristic, if the best solution comes from transformed problem */ assert( SCIPgetBestSol(scip) != NULL ); if( SCIPsolIsOriginal(SCIPgetBestSol(scip)) ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip)) < heurdata->nwaitingnodes) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* only call heuristic, if discrete variables are present */ if( SCIPgetNBinVars(scip) == 0 && SCIPgetNIntVars(scip) == 0 ) return SCIP_OKAY; /* calculate the maximal number of branching nodes until heuristic is aborted */ maxnnodesr = heurdata->nodesquot * SCIPgetNNodes(scip); /* reward mutation if it succeeded often, count the setup costs for the sub-MIP as 100 nodes */ maxnnodesr *= 1.0 + 2.0 * (SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur) + 1.0); maxnnodes = (SCIP_Longint) maxnnodesr - 100 * SCIPheurGetNCalls(heur); maxnnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nsubnodes = maxnnodes - heurdata->usednodes; nsubnodes = MIN(nsubnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nsubnodes < heurdata->minnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_mutationsub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_mutationsub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_Bool valid; valid = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "rens", TRUE, FALSE, TRUE, &valid) ); if( heurdata->copycuts ) { /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not "); } for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); /* create a new problem, which fixes variables with same value in bestsol and LP relaxation */ SCIP_CALL( createSubproblem(scip, subscip, subvars, heurdata->minfixingrate, &heurdata->randseed, heurdata->uselprows) ); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handlers; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no decutions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) ); } /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip, SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip, -1.0 * SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove) * SCIPgetUpperbound(scip) + heurdata->minimprove * SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* solve the subproblem */ SCIPdebugMessage("Solve Mutation subMIP\n"); retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in Mutation heuristic; sub-SCIP terminated with code <%d>\n",retcode); } heurdata->usednodes += SCIPgetNNodes(subscip); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); } if( success ) *result = SCIP_FOUNDSOL; } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecOctane) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* sol; SCIP_SOL** first_sols; /* stores the first ffirst sols in order to check for common violation of a row */ SCIP_VAR** vars; /* the variables of the problem */ SCIP_VAR** fracvars; /* variables, that are fractional in current LP solution */ SCIP_VAR** subspacevars; /* the variables on which the search is performed. Either coinciding with vars or with the * space of all fractional variables of the current LP solution */ SCIP_Real p; /* n/2 - <delta,x> ( for some facet delta ) */ SCIP_Real q; /* <delta,a> */ SCIP_Real* rayorigin; /* origin of the ray, vector x in paper */ SCIP_Real* raydirection; /* direction of the ray, vector a in paper */ SCIP_Real* negquotient; /* negated quotient of rayorigin and raydirection, vector v in paper */ SCIP_Real* lambda; /* stores the distance of the facets (s.b.) to the origin of the ray */ SCIP_Bool usefracspace; /* determines whether the search concentrates on fractional variables and fixes integer ones */ SCIP_Bool cons_viol; /* used for checking whether a linear constraint is violated by one of the possible solutions */ SCIP_Bool success; SCIP_Bool* sign; /* signature of the direction of the ray */ SCIP_Bool** facets; /* list of extended facets */ int nvars; /* number of variables */ int nbinvars; /* number of 0-1-variables */ int nfracvars; /* number of fractional variables in current LP solution */ int nsubspacevars; /* dimension of the subspace on which the search is performed */ int nfacets; /* number of facets hidden by the ray that where already found */ int i; /* counter */ int j; /* counter */ int f_max; /* {0,1}-points to be checked */ int f_first; /* {0,1}-points to be generated at first in order to check whether a restart is necessary */ int r; /* counter */ int firstrule; int* perm; /* stores the way in which the coordinates were permuted */ int* fracspace; /* maps the variables of the subspace to the original variables */ assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, NULL, NULL, NULL) ); /* OCTANE is for use in 0-1 programs only */ if( nvars != nbinvars ) return SCIP_OKAY; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); /* don't call heuristic, if it was not successful enough in the past */ /*lint --e{647}*/ if( SCIPgetNNodes(scip) % (SCIPheurGetNCalls(heur) / (100 * SCIPheurGetNBestSolsFound(heur) + 10*heurdata->nsuccess + 1) + 1) != 0 ) return SCIP_OKAY; SCIP_CALL( SCIPgetLPBranchCands(scip, &fracvars, NULL, NULL, &nfracvars, NULL) ); /* don't use integral starting points */ if( nfracvars == 0 ) return SCIP_OKAY; /* get working pointers from heurdata */ sol = heurdata->sol; assert( sol != NULL ); f_max = heurdata->f_max; f_first = heurdata->f_first; usefracspace = heurdata->usefracspace; SCIP_CALL( SCIPallocBufferArray(scip, &fracspace, nvars) ); /* determine the space one which OCTANE should work either as the whole space or as the space of fractional variables */ if( usefracspace ) { nsubspacevars = nfracvars; SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) ); BMScopyMemoryArray(subspacevars, fracvars, nsubspacevars); for( i = nvars - 1; i >= 0; --i ) fracspace[i] = -1; for( i = nsubspacevars - 1; i >= 0; --i ) fracspace[SCIPvarGetProbindex(subspacevars[i])] = i; } else { int currentindex; nsubspacevars = nvars; SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) ); /* only copy the variables which are in the current LP */ currentindex = 0; for( i = 0; i < nvars; ++i ) { if( SCIPcolGetLPPos(SCIPvarGetCol(vars[i])) >= 0 ) { subspacevars[currentindex] = vars[i]; fracspace[i] = currentindex; ++currentindex; } else { fracspace[i] = -1; --nsubspacevars; } } } /* nothing to do for empty search space */ if( nsubspacevars == 0 ) return SCIP_OKAY; assert(0 < nsubspacevars && nsubspacevars <= nvars); for( i = 0; i < nsubspacevars; i++) assert(fracspace[SCIPvarGetProbindex(subspacevars[i])] == i); /* at most 2^(n-1) facets can be hit */ if( nsubspacevars < 30 ) { /*lint --e{701}*/ assert(f_max > 0); f_max = MIN(f_max, 1 << (nsubspacevars - 1) ); } f_first = MIN(f_first, f_max); /* memory allocation */ SCIP_CALL( SCIPallocBufferArray(scip, &rayorigin, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &raydirection, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &negquotient, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &sign, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &perm, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &lambda, f_max + 1) ); SCIP_CALL( SCIPallocBufferArray(scip, &facets, f_max + 1) ); for( i = f_max; i >= 0; --i ) { /*lint --e{866}*/ SCIP_CALL( SCIPallocBufferArray(scip, &facets[i], nsubspacevars) ); } SCIP_CALL( SCIPallocBufferArray(scip, &first_sols, f_first) ); *result = SCIP_DIDNOTFIND; /* starting OCTANE */ SCIPdebugMessage("run Octane heuristic on %s variables, which are %d vars, generate at most %d facets, using rule number %d\n", usefracspace ? "fractional" : "all", nsubspacevars, f_max, (heurdata->lastrule+1)%5); /* generate starting point in original coordinates */ SCIP_CALL( generateStartingPoint(scip, rayorigin, subspacevars, nsubspacevars) ); for( i = nsubspacevars - 1; i >= 0; --i ) rayorigin[i] -= 0.5; firstrule = heurdata->lastrule; ++firstrule; for( r = firstrule; r <= firstrule + 10 && !SCIPisStopped(scip); r++ ) { SCIP_ROW** rows; int nrows; /* generate shooting ray in original coordinates by certain rules */ switch(r % 5) { case 1: if( heurdata->useavgnbray ) { SCIP_CALL( generateAverageNBRay(scip, raydirection, fracspace, subspacevars, nsubspacevars) ); } break; case 2: if( heurdata->useobjray ) { SCIP_CALL( generateObjectiveRay(scip, raydirection, subspacevars, nsubspacevars) ); } break; case 3: if( heurdata->usediffray ) { SCIP_CALL( generateDifferenceRay(scip, raydirection, subspacevars, nsubspacevars) ); } break; case 4: if( heurdata->useavgwgtray && SCIPisLPSolBasic(scip) ) { SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, TRUE) ); } break; case 0: if( heurdata->useavgray && SCIPisLPSolBasic(scip) ) { SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, FALSE) ); } break; default: SCIPerrorMessage("invalid ray rule identifier\n"); SCIPABORT(); } /* there must be a feasible direction for the shooting ray */ if( isZero(scip, raydirection, nsubspacevars) ) continue; /* transform coordinates such that raydirection >= 0 */ flipCoords(rayorigin, raydirection, sign, nsubspacevars); for( i = f_max - 1; i >= 0; --i) lambda[i] = SCIPinfinity(scip); /* calculate negquotient, initialize perm, facets[0], p, and q */ p = 0.5 * nsubspacevars; q = 0.0; for( i = nsubspacevars - 1; i >= 0; --i ) { /* calculate negquotient, the ratio of rayorigin and raydirection, paying special attention to the case raydirection[i] == 0 */ if( SCIPisFeasZero(scip, raydirection[i]) ) { if( rayorigin[i] < 0 ) negquotient[i] = SCIPinfinity(scip); else negquotient[i] = -SCIPinfinity(scip); } else negquotient[i] = - (rayorigin[i] / raydirection[i]); perm[i] = i; /* initialization of facets[0] to the all-one facet with p and q its characteristic values */ facets[0][i] = TRUE; p -= rayorigin[i]; q += raydirection[i]; } assert(SCIPisPositive(scip, q)); /* resort the coordinates in nonincreasing order of negquotient */ SCIPsortDownRealRealRealBoolPtr( negquotient, raydirection, rayorigin, sign, (void**) subspacevars, nsubspacevars); #ifndef NDEBUG for( i = 0; i < nsubspacevars; i++ ) assert( raydirection[i] >= 0 ); for( i = 1; i < nsubspacevars; i++ ) assert( negquotient[i - 1] >= negquotient[i] ); #endif /* finished initialization */ /* find the first facet of the octahedron hit by a ray shot from rayorigin into direction raydirection */ for( i = 0; i < nsubspacevars && negquotient[i] * q > p; ++i ) { facets[0][i] = FALSE; p += 2 * rayorigin[i]; q -= 2 * raydirection[i]; assert(SCIPisPositive(scip, p)); assert(SCIPisPositive(scip, q)); } /* avoid dividing by values close to 0.0 */ if( !SCIPisFeasPositive(scip, q) ) continue; /* assert necessary for flexelint */ assert(q > 0); lambda[0] = p / q; nfacets = 1; /* find the first facets hit by the ray */ for( i = 0; i < nfacets && i < f_first; ++i) generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets); /* construct the first ffirst possible solutions */ for( i = 0; i < nfacets && i < f_first; ++i ) { SCIP_CALL( SCIPcreateSol(scip, &first_sols[i], heur) ); SCIP_CALL( getSolFromFacet(scip, facets[i], first_sols[i], sign, subspacevars, nsubspacevars) ); assert( first_sols[i] != NULL ); } /* try, whether there is a row violated by all of the first ffirst solutions */ cons_viol = FALSE; SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); for( i = nrows - 1; i >= 0; --i ) { if( !SCIProwIsLocal(rows[i]) ) { SCIP_COL** cols; SCIP_Real constant; SCIP_Real lhs; SCIP_Real rhs; SCIP_Real rowval; SCIP_Real* coeffs; int nnonzerovars; int k; /* get the row's data */ constant = SCIProwGetConstant(rows[i]); lhs = SCIProwGetLhs(rows[i]); rhs = SCIProwGetRhs(rows[i]); coeffs = SCIProwGetVals(rows[i]); nnonzerovars = SCIProwGetNNonz(rows[i]); cols = SCIProwGetCols(rows[i]); rowval = constant; for( j = nnonzerovars - 1; j >= 0; --j ) rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[0], SCIPcolGetVar(cols[j])); /* if the row's lhs is violated by the first sol, test, whether it is violated by the next ones, too */ if( lhs > rowval ) { cons_viol = TRUE; for( k = MIN(f_first, nfacets) - 1; k > 0; --k ) { rowval = constant; for( j = nnonzerovars - 1; j >= 0; --j ) rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j])); if( lhs <= rowval ) { cons_viol = FALSE; break; } } } /* dito for the right hand side */ else if( rhs < rowval ) { cons_viol = TRUE; for( k = MIN(f_first, nfacets) - 1; k > 0; --k ) { rowval = constant; for( j = nnonzerovars - 1; j >= 0; --j ) rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j])); if( rhs >= rowval ) { cons_viol = FALSE; break; } } } /* break as soon as one row is violated by all of the ffirst solutions */ if( cons_viol ) break; } } if( !cons_viol ) { /* if there was no row violated by all solutions, try whether one or more of them are feasible */ for( i = MIN(f_first, nfacets) - 1; i >= 0; --i ) { assert(first_sols[i] != NULL); SCIP_CALL( SCIPtrySol(scip, first_sols[i], FALSE, TRUE, FALSE, TRUE, &success) ); if( success ) *result = SCIP_FOUNDSOL; } /* search for further facets and construct and try solutions out of facets fixed as closest ones */ for( i = f_first; i < f_max; ++i) { if( i >= nfacets ) break; generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets); SCIP_CALL( getSolFromFacet(scip, facets[i], sol, sign, subspacevars, nsubspacevars) ); SCIP_CALL( SCIPtrySol(scip, sol, FALSE, TRUE, FALSE, TRUE, &success) ); if( success ) *result = SCIP_FOUNDSOL; } } /* finished OCTANE */ for( i = MIN(f_first, nfacets) - 1; i >= 0; --i ) { SCIP_CALL( SCIPfreeSol(scip, &first_sols[i]) ); } } heurdata->lastrule = r; if( *result == SCIP_FOUNDSOL ) ++(heurdata->nsuccess); /* free temporary memory */ SCIPfreeBufferArray(scip, &first_sols); for( i = f_max; i >= 0; --i ) SCIPfreeBufferArray(scip, &facets[i]); SCIPfreeBufferArray(scip, &facets); SCIPfreeBufferArray(scip, &lambda); SCIPfreeBufferArray(scip, &perm); SCIPfreeBufferArray(scip, &sign); SCIPfreeBufferArray(scip, &negquotient); SCIPfreeBufferArray(scip, &raydirection); SCIPfreeBufferArray(scip, &rayorigin); SCIPfreeBufferArray(scip, &subspacevars); SCIPfreeBufferArray(scip, &fracspace); return SCIP_OKAY; }