示例#1
0
float
__ieee754_y1f(float x)
{
	float z, s,c,ss,cc,u,v;
	int32_t hx,ix;

	GET_FLOAT_WORD(hx,x);
	ix = 0x7fffffff&hx;
    /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
	if(__builtin_expect(ix>=0x7f800000, 0)) return  one/(x+x*x);
	if(__builtin_expect(ix==0, 0))
		return -HUGE_VALF+x;  /* -inf and overflow exception.  */
	if(__builtin_expect(hx<0, 0)) return zero/(zero*x);
	if(ix >= 0x40000000) {  /* |x| >= 2.0 */
		SET_RESTORE_ROUNDF (FE_TONEAREST);
		__sincosf (x, &s, &c);
		ss = -s-c;
		cc = s-c;
		if(ix<0x7f000000) {  /* make sure x+x not overflow */
		    z = __cosf(x+x);
		    if ((s*c)>zero) cc = z/ss;
		    else            ss = z/cc;
		}
	/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
	 * where x0 = x-3pi/4
	 *      Better formula:
	 *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
	 *                      =  1/sqrt(2) * (sin(x) - cos(x))
	 *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
	 *                      = -1/sqrt(2) * (cos(x) + sin(x))
	 * To avoid cancellation, use
	 *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
	 * to compute the worse one.
	 */
		if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x);
		else {
		    u = ponef(x); v = qonef(x);
		    z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x);
		}
		return z;
	}
	if(__builtin_expect(ix<=0x33000000, 0)) {    /* x < 2**-25 */
	    z = -tpi / x;
	    if (__isinff (z))
		__set_errno (ERANGE);
	    return z;
	}
	z = x*x;
	u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
	v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
	return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
}
示例#2
0
float
__ieee754_gammaf_r (float x, int *signgamp)
{
  int32_t hx;
  float ret;

  GET_FLOAT_WORD (hx, x);

  if (__glibc_unlikely ((hx & 0x7fffffff) == 0))
    {
      /* Return value for x == 0 is Inf with divide by zero exception.  */
      *signgamp = 0;
      return 1.0 / x;
    }
  if (__builtin_expect (hx < 0, 0)
      && (u_int32_t) hx < 0xff800000 && __rintf (x) == x)
    {
      /* Return value for integer x < 0 is NaN with invalid exception.  */
      *signgamp = 0;
      return (x - x) / (x - x);
    }
  if (__glibc_unlikely (hx == 0xff800000))
    {
      /* x == -Inf.  According to ISO this is NaN.  */
      *signgamp = 0;
      return x - x;
    }
  if (__glibc_unlikely ((hx & 0x7f800000) == 0x7f800000))
    {
      /* Positive infinity (return positive infinity) or NaN (return
	 NaN).  */
      *signgamp = 0;
      return x + x;
    }

  if (x >= 36.0f)
    {
      /* Overflow.  */
      *signgamp = 0;
      ret = math_narrow_eval (FLT_MAX * FLT_MAX);
      return ret;
    }
  else
    {
      SET_RESTORE_ROUNDF (FE_TONEAREST);
      if (x > 0.0f)
	{
	  *signgamp = 0;
	  int exp2_adj;
	  float tret = gammaf_positive (x, &exp2_adj);
	  ret = __scalbnf (tret, exp2_adj);
	}
      else if (x >= -FLT_EPSILON / 4.0f)
	{
	  *signgamp = 0;
	  ret = 1.0f / x;
	}
      else
	{
	  float tx = __truncf (x);
	  *signgamp = (tx == 2.0f * __truncf (tx / 2.0f)) ? -1 : 1;
	  if (x <= -42.0f)
	    /* Underflow.  */
	    ret = FLT_MIN * FLT_MIN;
	  else
	    {
	      float frac = tx - x;
	      if (frac > 0.5f)
		frac = 1.0f - frac;
	      float sinpix = (frac <= 0.25f
			      ? __sinf ((float) M_PI * frac)
			      : __cosf ((float) M_PI * (0.5f - frac)));
	      int exp2_adj;
	      float tret = (float) M_PI / (-x * sinpix
					   * gammaf_positive (-x, &exp2_adj));
	      ret = __scalbnf (tret, -exp2_adj);
	      math_check_force_underflow_nonneg (ret);
	    }
	}
      ret = math_narrow_eval (ret);
    }
  if (isinf (ret) && x != 0)
    {
      if (*signgamp < 0)
	{
	  ret = math_narrow_eval (-__copysignf (FLT_MAX, ret) * FLT_MAX);
	  ret = -ret;
	}
      else
	ret = math_narrow_eval (__copysignf (FLT_MAX, ret) * FLT_MAX);
      return ret;
    }
  else if (ret == 0)
    {
      if (*signgamp < 0)
	{
	  ret = math_narrow_eval (-__copysignf (FLT_MIN, ret) * FLT_MIN);
	  ret = -ret;
	}
      else
	ret = math_narrow_eval (__copysignf (FLT_MIN, ret) * FLT_MIN);
      return ret;
    }
  else
    return ret;
}
示例#3
0
float
__lgamma_negf (float x, int *signgamp)
{
  /* Determine the half-integer region X lies in, handle exact
     integers and determine the sign of the result.  */
  int i = __floorf (-2 * x);
  if ((i & 1) == 0 && i == -2 * x)
    return 1.0f / 0.0f;
  float xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2);
  i -= 4;
  *signgamp = ((i & 2) == 0 ? -1 : 1);

  SET_RESTORE_ROUNDF (FE_TONEAREST);

  /* Expand around the zero X0 = X0_HI + X0_LO.  */
  float x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1];
  float xdiff = x - x0_hi - x0_lo;

  /* For arguments in the range -3 to -2, use polynomial
     approximations to an adjusted version of the gamma function.  */
  if (i < 2)
    {
      int j = __floorf (-8 * x) - 16;
      float xm = (-33 - 2 * j) * 0.0625f;
      float x_adj = x - xm;
      size_t deg = poly_deg[j];
      size_t end = poly_end[j];
      float g = poly_coeff[end];
      for (size_t j = 1; j <= deg; j++)
	g = g * x_adj + poly_coeff[end - j];
      return __log1pf (g * xdiff / (x - xn));
    }

  /* The result we want is log (sinpi (X0) / sinpi (X))
     + log (gamma (1 - X0) / gamma (1 - X)).  */
  float x_idiff = fabsf (xn - x), x0_idiff = fabsf (xn - x0_hi - x0_lo);
  float log_sinpi_ratio;
  if (x0_idiff < x_idiff * 0.5f)
    /* Use log not log1p to avoid inaccuracy from log1p of arguments
       close to -1.  */
    log_sinpi_ratio = __ieee754_logf (lg_sinpi (x0_idiff)
				      / lg_sinpi (x_idiff));
  else
    {
      /* Use log1p not log to avoid inaccuracy from log of arguments
	 close to 1.  X0DIFF2 has positive sign if X0 is further from
	 XN than X is from XN, negative sign otherwise.  */
      float x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * 0.5f;
      float sx0d2 = lg_sinpi (x0diff2);
      float cx0d2 = lg_cospi (x0diff2);
      log_sinpi_ratio = __log1pf (2 * sx0d2
				  * (-sx0d2 + cx0d2 * lg_cotpi (x_idiff)));
    }

  float log_gamma_ratio;
  float y0 = math_narrow_eval (1 - x0_hi);
  float y0_eps = -x0_hi + (1 - y0) - x0_lo;
  float y = math_narrow_eval (1 - x);
  float y_eps = -x + (1 - y);
  /* We now wish to compute LOG_GAMMA_RATIO
     = log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)).  XDIFF
     accurately approximates the difference Y0 + Y0_EPS - Y -
     Y_EPS.  Use Stirling's approximation.  */
  float log_gamma_high
    = (xdiff * __log1pf ((y0 - e_hi - e_lo + y0_eps) / e_hi)
       + (y - 0.5f + y_eps) * __log1pf (xdiff / y));
  /* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)).  */
  float y0r = 1 / y0, yr = 1 / y;
  float y0r2 = y0r * y0r, yr2 = yr * yr;
  float rdiff = -xdiff / (y * y0);
  float bterm[NCOEFF];
  float dlast = rdiff, elast = rdiff * yr * (yr + y0r);
  bterm[0] = dlast * lgamma_coeff[0];
  for (size_t j = 1; j < NCOEFF; j++)
    {
      float dnext = dlast * y0r2 + elast;
      float enext = elast * yr2;
      bterm[j] = dnext * lgamma_coeff[j];
      dlast = dnext;
      elast = enext;
    }
  float log_gamma_low = 0;
  for (size_t j = 0; j < NCOEFF; j++)
    log_gamma_low += bterm[NCOEFF - 1 - j];
  log_gamma_ratio = log_gamma_high + log_gamma_low;

  return log_sinpi_ratio + log_gamma_ratio;
}