void PolarDecompositionGradient::Compute(const double * M, const double * Q, const double * S, const double * MDot, double * omega, double * QDot, double * SDot, const double * MDotDot, double * omegaDot, double * QDotDot) { // compute omega = G^{-1} (2 * skew(Q^T * MDot)), where G = (tr(S)I - S) * Q^T // (see Barbic and Zhao, SIGGRAPH 2011) // first, construct G, and invert it // tempMatrix = tr(S)I - S double tempMatrix[9]; for(int i=0; i<9; i++) tempMatrix[i] = -S[i]; double trace = S[0] + S[4] + S[8]; tempMatrix[0] += trace; tempMatrix[4] += trace; tempMatrix[8] += trace; double G[9]; // G = (tr(S)I - S) * Q^T MATRIX_MULTIPLY3X3ABT(tempMatrix, Q, G); Mat3d GM(G); Mat3d GInvM = inv(GM); double GInv[9]; GInvM.convertToArray(GInv); // omega = GInv * (2 * skew(R^T * Mdot)) MATRIX_MULTIPLY3X3ATB(Q, MDot, tempMatrix); double rhs[3]; SKEW_PART(tempMatrix, rhs); VECTOR_SCALE3(rhs, 2.0); MATRIX_VECTOR_MULTIPLY3X3(GInv, rhs, omega); // compute QDot = tilde(omega) * Q double omegaTilde[9]; SKEW_MATRIX(omega, omegaTilde); //double QDot[9]; MATRIX_MULTIPLY3X3(omegaTilde, Q, QDot); // compute SDot = Q^T * (MDot - QDot * S) // tempMatrix = MDot - QDot * S MATRIX_MULTIPLY3X3(QDot, S, tempMatrix); for(int i=0; i<9; i++) tempMatrix[i] = MDot[i] - tempMatrix[i]; // SDot = Q^T * tempMatrix MATRIX_MULTIPLY3X3ATB(Q, tempMatrix, SDot); if ((MDotDot != NULL) && (omegaDot != NULL)) { // compute omegaDot = GInv * ( 2 skew(Q^T (ADotDot - omegaTilde * ADot)) - (tr(SDot) I - SDot) * Q^T * omega ) // (see Barbic and Zhao, SIGGRAPH 2011) // tempMatrix = MDotDot - omegaTilde * MDot MATRIX_MULTIPLY3X3(omegaTilde, MDot, tempMatrix); for(int i=0; i<9; i++) tempMatrix[i] = MDotDot[i] - tempMatrix[i]; double tempMatrix2[9]; // tempVector = 2 * skew(Q^T * tempMatrix) MATRIX_MULTIPLY3X3ATB(Q, tempMatrix, tempMatrix2); double tempVector[3]; SKEW_PART(tempMatrix2, tempVector); VECTOR_SCALE3(tempVector, 2.0); // tempMatrix = tr(SDot)I - SDot for(int i=0; i<9; i++) tempMatrix[i] = -SDot[i]; double trace = SDot[0] + SDot[4] + SDot[8]; tempMatrix[0] += trace; tempMatrix[4] += trace; tempMatrix[8] += trace; // tempVector2 = (tempMatrix * Q^T) * omega double tempVector2[3]; MATRIX_MULTIPLY3X3ABT(tempMatrix, Q, tempMatrix2); MATRIX_VECTOR_MULTIPLY3X3(tempMatrix2, omega, tempVector2); // tempVector -= tempVector2 VECTOR_SUBTRACTEQUAL3(tempVector, tempVector2); // tempVector2 = GInv * tempVector MATRIX_VECTOR_MULTIPLY3X3(GInv, tempVector, omegaDot); if (QDotDot != NULL) { double tempMatrix[9]; SKEW_MATRIX(omegaDot, tempMatrix); MATRIX_MULTIPLY3X3(omegaTilde, omegaTilde, tempMatrix2); for(int i=0;i<9;i++) tempMatrix[i] += tempMatrix2[i]; MATRIX_MULTIPLY3X3(tempMatrix, Q, QDotDot); } } }
void CorotationalLinearFEM::ComputeForceAndStiffnessMatrixOfSubmesh(double * u, double * f, SparseMatrix * stiffnessMatrix, int warp, int elementLo, int elementHi) { // clear f to zero if (f != NULL) memset(f, 0, sizeof(double) * 3 * numVertices); // clear stiffness matrix to zero if (stiffnessMatrix != NULL) stiffnessMatrix->ResetToZero(); for (int el=elementLo; el < elementHi; el++) { int vtxIndex[4]; for (int vtx=0; vtx<4; vtx++) vtxIndex[vtx] = tetMesh->getVertexIndex(el, vtx); double KElement[144]; // element stiffness matrix, to be computed below; row-major if (warp > 0) { double P[16]; // the current world-coordinate positions (row-major) /* P = [ v0 v1 v2 v3 ] [ 1 1 1 1 ] */ // rows 1,2,3 for(int i=0; i<3; i++) for(int j=0; j<4; j++) P[4 * i + j] = undeformedPositions[3 * vtxIndex[j] + i] + u[3 * vtxIndex[j] + i]; // row 4 for(int j=0; j<4; j++) P[12 + j] = 1; // F = P * Inverse(M) double F[9]; // upper-left 3x3 block for(int i=0; i<3; i++) for(int j=0; j<3; j++) { F[3 * i + j] = 0; for(int k=0; k<4; k++) F[3 * i + j] += P[4 * i + k] * MInverse[el][4 * k + j]; } double R[9]; // rotation (row-major) double S[9]; // symmetric (row-major) double tolerance = 1E-6; int forceRotation = 1; PolarDecomposition::Compute(F, R, S, tolerance, forceRotation); // RK = R * K // KElement = R * K * R^T double RK[144]; // row-major WarpMatrix(KElementUndeformed[el], R, RK, KElement); // f = RK (RT x - x0) double fElement[12]; for(int i=0; i<12; i++) { fElement[i] = 0; for(int j=0; j<4; j++) for(int l=0; l<3; l++) fElement[i] += KElement[12 * i + 3 * j + l] * P[4 * l + j] - RK[12 * i + 3 * j + l] * undeformedPositions[3 * vtxIndex[j] + l]; } // add fElement into the global f if (f != NULL) { for(int j=0; j<4; j++) for(int l=0; l<3; l++) f[3 * vtxIndex[j] + l] += fElement[3 * j + l]; } // compute exact stiffness matrix if (warp == 2) { // compute G = (tr(S) I - S) R^T double G[9]; double tr = S[0] + S[4] + S[8]; double temp[9]; for(int i=0; i<9; i++) temp[i] = -S[i]; temp[0] += tr; temp[4] += tr; temp[8] += tr; // G = temp * R^T MATRIX_MULTIPLY3X3ABT(temp, R, G); double invG[9]; // invG = G^{-1} inverse3x3(G, invG); double rhs[27]; // 3 x 9 matrix (column-major) for(int i=0; i<3; i++) for(int j=0; j<3; j++) { double temp[9]; for(int k=0; k<9; k++) temp[k] = 0.0; // copy i-th row of R into column j of temp for(int k=0; k<3; k++) temp[3 * k + j] = R[3 * i + k]; // extract the skew-symmetric part SKEW_PART(temp, &rhs[3 * (3 * i + j)]); } // must undo division by 2 from inside the SKEW_PART macro for(int i=0; i<27; i++) rhs[i] *= 2.0; // solve G * omega = rhs double omega[27]; // column-major for(int i=0; i<9; i++) { MATRIX_VECTOR_MULTIPLY3X3(invG, &rhs[3 * i], &omega[3 * i]); } double dRdF[81]; // each column is skew(omega) * R ; column-major for(int i=0; i<9; i++) { double skew[9]; SKEW_MATRIX(&omega[3 * i], skew); MATRIX_MULTIPLY3X3(skew, R, &dRdF[9 * i]); } double B[3][3][9]; // re-arrange dRdF into B, for easier dRdF * dFdx multiplication (to exploit sparsity of dFdx) for(int i=0; i<3; i++) for(int j=0; j<3; j++) for(int k=0; k<3; k++) for(int l=0; l<3; l++) { int row = 3 * i + k; int column = 3 * j + l; B[i][j][3 * k + l] = dRdF[9 * column + row]; } // four pointers to a 3-vector double * minv[4] = { &MInverse[el][0], &MInverse[el][4], &MInverse[el][8], &MInverse[el][12] }; // the four rows of MInverse (last column ignored) double dRdx[108]; // derivative of the element rotation matrix with respect to the positions of the tet vertices; column-major for(int k=0; k<4; k++) for(int i=0; i<3; i++) for(int j=0; j<3; j++) { double temp[3]; MATRIX_VECTOR_MULTIPLY3X3(B[i][j], minv[k], temp); int row = 3 * i; int column = 3 * k + j; VECTOR_SET3(&dRdx[9 * column + row], temp); } // add contribution of dRdx to KElement // term 1: \hat{dR/dxl} K (R^T x - m) // compute K (R^T x - m) double tempVec[12]; // R^T x - m for(int vtx=0; vtx<4; vtx++) { double pos[3]; for(int i=0; i<3; i++) pos[i] = P[4 * i + vtx]; MATRIX_VECTOR_MULTIPLY3X3T(R, pos, &tempVec[3*vtx]); // subtract m for(int i=0; i<3; i++) tempVec[3*vtx+i] -= undeformedPositions[3 * vtxIndex[vtx] + i]; } double a[12]; // a = K * tempVec for (int i=0; i<12; i++) { a[i] = 0.0; for (int j=0; j<12; j++) a[i] += KElementUndeformed[el][12 * i + j] * tempVec[j]; } // add [\hat{dR/dxl} K R^T x]_l, l=1 to 12 for(int column=0; column<12; column++) { double b[12]; // b = \hat{dR/dxl} * a for(int j=0; j<4; j++) { MATRIX_VECTOR_MULTIPLY3X3(&dRdx[9 * column], &a[3*j], &b[3*j]); } // write b into KElement (add b to i-th column) for(int row=0; row<12; row++) KElement[12 * row + column] += b[row]; // KElement is row-major } // term 2: (R K \hat{dRdxl}^T)x // re-write positions into a for(int vtx=0; vtx<4; vtx++) { for(int i=0; i<3; i++) a[3 * vtx + i] = P[4 * i + vtx]; } // compute [\hat{dRdxl}^T x)]_l, l=1 to 12 for(int column=0; column<12; column++) { double b[12]; // b = \hat{dRdxl}^T * a for(int j=0; j<4; j++) { MATRIX_VECTOR_MULTIPLY3X3T(&dRdx[9 * column], &a[3*j], &b[3*j]); } // add RK * b to column of KElement int rowStart = 0; for (int row=0; row<12; row++) { double contrib = 0.0; for (int j=0; j<12; j++) contrib += RK[rowStart + j] * b[j]; KElement[rowStart + column] += contrib; rowStart += 12; } } } } else { // no warp memcpy(KElement, KElementUndeformed[el], sizeof(double) * 144); // f = K u double fElement[12]; for(int i=0; i<12; i++) { fElement[i] = 0; for(int j=0; j<4; j++) { fElement[i] += KElement[12 * i + 3 * j + 0] * u[3 * vtxIndex[j] + 0] + KElement[12 * i + 3 * j + 1] * u[3 * vtxIndex[j] + 1] + KElement[12 * i + 3 * j + 2] * u[3 * vtxIndex[j] + 2]; } } // add fElement into the global f if (f != NULL) { for(int j=0; j<4; j++) { f[3 * vtxIndex[j] + 0] += fElement[3 * j + 0]; f[3 * vtxIndex[j] + 1] += fElement[3 * j + 1]; f[3 * vtxIndex[j] + 2] += fElement[3 * j + 2]; } } } if (stiffnessMatrix != NULL) { int * rowIndex = rowIndices[el]; int * columnIndex = columnIndices[el]; // add KElement to the global stiffness matrix for (int i=0; i<4; i++) for (int j=0; j<4; j++) for(int k=0; k<3; k++) for(int l=0; l<3; l++) stiffnessMatrix->AddEntry(3 * rowIndex[i] + k, 3 * columnIndex[4 * i + j] + l, KElement[12 * (3 * i + k) + 3 * j + l]); } } }