示例#1
0
int larb_clock_off(int larb_id, const char *mod_name) 
{

    larb_on_count--;
    //SMIDBG("larb_clock_off, %s, %d \n", mod_name, larb_on_count);

#ifndef CONFIG_EARLY_LINUX_PORTING

    switch(larb_id)
    {
        case 0: 
            // disable_clock(MT_CG_SMI_COMMON_SW_CG, mod_name);
            // disable_clock(MT_CG_SMI_LARB0_SW_CG, mod_name);
            break;

        default: 
            SMIERR("larb_clock_off: larb_id %s error\n", mod_name);			
            break;
    }

#endif	

    return 0;

}
示例#2
0
/*****************************************************************************
 * FUNCTION
 *    smi_init
 * DESCRIPTION
 *    Call platform_driver_register to register SMI driver
 * PARAMETERS
 *    None.
 * RETURNS
 *    Type: Integer.  zero mean success and others mean fail.
 ****************************************************************************/
static int __init smi_init(void)
{
    if(platform_driver_register(&smiDrv)){
        SMIERR("failed to register MAU driver");
        return -ENODEV;
    }
	return 0;
}
示例#3
0
static int __init smi_init(void)
{
    spin_lock_init(&g_SMIInfo.SMI_lock);

    memset(g_SMIInfo.pu4ConcurrencyTable , 0 , SMI_BWC_SCEN_CNT*sizeof(unsigned long));

    if(platform_driver_register(&smiDrv)){
        SMIERR("failed to register MAU driver");
        return -ENODEV;
    }
    return 0;
}
示例#4
0
int mau_init(void)
{
    int i;

    if(request_irq(MT_SMI_LARB0_IRQ_ID , (irq_handler_t)mau_isr, IRQF_TRIGGER_LOW, "MAU0" , NULL))
    {
        SMIERR("request MAU0 IRQ line failed");
        return -ENODEV;
    }
    if(request_irq(MT_SMI_LARB1_IRQ_ID , (irq_handler_t)mau_isr, IRQF_TRIGGER_LOW, "MAU1" , NULL))
    {
        SMIERR("request MAU1 IRQ line failed");
        return -ENODEV;
    }
    if(request_irq(MT_SMI_LARB2_IRQ_ID , (irq_handler_t)mau_isr, IRQF_TRIGGER_LOW, "MAU2" , NULL))
    {
        SMIERR("request MAU2 IRQ line failed");
        return -ENODEV;
    }
    if(request_irq(MT_SMI_LARB3_IRQ_ID , (irq_handler_t)mau_isr, IRQF_TRIGGER_LOW, "MAU3" , NULL))
    {
        SMIERR("request MAU3 IRQ line failed");
        return -ENODEV;
    }
    if(request_irq(MT_SMI_LARB4_IRQ_ID , (irq_handler_t)mau_isr, IRQF_TRIGGER_LOW, "MAU4" , NULL))
    {
        SMIERR("request MAU4 IRQ line failed");
        return -ENODEV;
    }

    for(i=0; i<SMI_LARB_NR; i++)
    {
        larb_clock_on(i);
        mau_enable_interrupt(i);
        larb_clock_off(i);
    }

    return 0;
}
示例#5
0
int larb_reg_restore(int larb)
{
    unsigned int regval,regval1,regval2;
    unsigned int larb_base = gLarbBaseAddr[larb];

/*
    unsigned int* pReg = pLarbRegBackUp[larb];
    int i;
    
    //warning: larb_con is controlled by set/clr
    regval = *(pReg++);
    M4U_WriteReg32(larb_base, SMI_LARB_CON_CLR, ~(regval));
    M4U_WriteReg32(larb_base, SMI_LARB_CON_SET, (regval));
    
    M4U_WriteReg32(larb_base, SMI_SHARE_EN, *(pReg++) );
    M4U_WriteReg32(larb_base, SMI_ROUTE_SEL, *(pReg++) );

    for(i=0; i<3; i++)
    {
        M4U_WriteReg32(larb_base, SMI_MAU_ENTR_START(i), *(pReg++));
        M4U_WriteReg32(larb_base, SMI_MAU_ENTR_END(i), *(pReg++));
        M4U_WriteReg32(larb_base, SMI_MAU_ENTR_GID(i), *(pReg++));
    }
*/

    //Clock manager enable LARB clock before call back restore already, it will be disabled after restore call back returns
    //Got to enable OSTD before engine starts
    regval = M4U_ReadReg32(larb_base , SMI_LARB_STAT);
    regval1 = M4U_ReadReg32(larb_base , SMI_LARB_MON_BUS_REQ0);
    regval2 = M4U_ReadReg32(larb_base , SMI_LARB_MON_BUS_REQ1);
    if(0 == regval)
    {
        M4U_WriteReg32(larb_base , SMI_LARB_OSTD_CTRL_EN , 0xffffffff);
    }
    else
    {
        SMIMSG("Larb%d is busy : 0x%x , port:0x%x,0x%x ,fail to set OSTD\n" , larb , regval , regval1 , regval2);
        smi_dumpDebugMsg();
        SMIERR("DISP_MDP LARB%d OSTD cannot be set:0x%x,port:0x%x,0x%x\n" , larb , regval , regval1 , regval2);
    }

    if(0 == g_bInited)
    {
        initSetting();
        g_bInited = 1;
        SMIMSG("SMI init\n");
    }

    return 0;
}
示例#6
0
/*****************************************************************************
 * FUNCTION
 *    smi_common_init
 * DESCRIPTION
 *    Allocate register backup memory.
 * PARAMETERS
 *    None.
 * RETURNS
 *    Type: Integer. always zero.
 ****************************************************************************/
int smi_common_init(void)
{
    int i;

    for(i=0; i<SMI_LARB_NR; i++)
    {
        pLarbRegBackUp[i] = (unsigned int*)kmalloc(LARB_BACKUP_REG_SIZE, GFP_KERNEL|__GFP_ZERO);
        if(pLarbRegBackUp[i]==NULL)
        {
        	  SMIERR("pLarbRegBackUp kmalloc fail %d \n", i);
        }  
    }

    register_larb_monitor(&larb_monitor_handler);
    return 0;
}
/*****************************************************************************
 * FUNCTION
 *    mau_isr
 * DESCRIPTION
 *    1. Print MAU status, such as port ID.
 *    2. Clear interrupt status.
 * PARAMETERS
 *	  param1 : [IN] int irq
 *				  irq number.
 *	  param2 : [IN] void *dev_id
 *				  No use in this function.
 * RETURNS
 *    Type: irqreturn_t. IRQ_HANDLED mean success.
 ****************************************************************************/
static irqreturn_t mau_isr(int irq, void *dev_id)
{
    int larb,i;
    unsigned int larb_base;
    unsigned int regval;

    switch(irq)
    {
        case MT_SMI_LARB0_IRQ_ID:
            larb = 0;
            break;
        default :
            larb=0;
            SMIERR("unkown irq(%d)\n",irq);
            
    }

    larb_clock_on(larb, "MAU");
        
    larb_base = gLarbBaseAddr[larb];

    //dump interrupt debug infomation
    for(i=0; i<MAU_ENTRY_NR; i++)
    {
        regval = M4U_ReadReg32(larb_base, SMI_MAU_ENTR_STAT(i));
        if(F_MAU_STAT_ASSERT(regval))
        {
            //violation happens in this entry
            int port =  F_MAU_STAT_ID(regval);
            SMIMSG("[MAU] larb=%d, entry=%d, port=%d\n",larb,i,port);
            regval = M4U_ReadReg32(larb_base, SMI_MAU_ENTR_START(i));
            SMIMSG("start_addr=0x%x, read_en=%d, write_en=%d\n", F_MAU_START_ADDR_VAL(regval), 
                F_MAU_START_IS_RD(regval), F_MAU_START_IS_WR(regval));
            regval = M4U_ReadReg32(larb_base, SMI_MAU_ENTR_END(i));
            SMIMSG("end_addr=0x%x, virtual=%d\n", F_MAU_END_ADDR_VAL(regval), 
                F_MAU_END_IS_VIR(regval));
            smi_aee_print("violation by %s\n",smi_port_name[port]);
        }

        //clear interrupt status
        regval = M4U_ReadReg32(larb_base, SMI_MAU_ENTR_STAT(i));
        M4U_WriteReg32(larb_base, SMI_MAU_ENTR_STAT(i), regval);
    }

    larb_clock_off(larb, "MAU");
    return IRQ_HANDLED;
}
示例#8
0
/*****************************************************************************
 * FUNCTION
 *    smi_ioctl
 * DESCRIPTION
 *	  File operations - unlocked_ioctl
 *		1. call copy_from_user to get user space parameter
 *		2. call internal function by operation.
 * PARAMETERS
 *	  param1 : [IN] struct file * pFile
 *				  file structure*.
 *	  param2 : [IN] unsigned int cmd
 *				  operation command.
 *	  param3 : [IN] unsigned long param
 *				  parameter of ioctl.
 * RETURNS
 *    Type: Integer. zero means success and others mean error.
 ****************************************************************************/
static long smi_ioctl(struct file * pFile,
                       unsigned int cmd,
                       unsigned long param)
{
    int ret = 0;
    
    switch (cmd)
    {
        case MTK_CONFIG_MM_MAU:
        {
        	MTK_MAU_CONFIG b;
       		if(copy_from_user(&b, (void __user *)param, sizeof(b)))
        	{
            	SMIERR("copy_from_user failed!");
            	ret = -EFAULT;
        	} else {
                mau_config(&b);
			}
        	return ret;
    	}
        case MTK_IOC_SMI_BWC_CONFIG:
            {
                MTK_SMI_BWC_CONFIG cfg;
                ret = copy_from_user(&cfg, (void*)param , sizeof(MTK_SMI_BWC_CONFIG));
                if(ret)
                {
                    SMIMSG(" SMI_BWC_CONFIG, copy_from_user failed: %d\n", ret);
                    return -EFAULT;
                }  

                smi_bwc_config( &cfg );
            
            }
            break;

        default:
            return -1;
    }

	return ret;
}
示例#9
0
static void process_dbg_opt(const char *opt)
{
    //m4u log
    if (0 == strncmp(opt, "m4u_log:", 8))
    {
        if (0 == strncmp(opt + 8, "on", 2)) 
            m4u_log_on();
        else if (0 == strncmp(opt + 8, "off", 3)) 
            m4u_log_off();
        else
            goto Error;
    }
    //m4u debug
    if (0 == strncmp(opt, "m4u_debug:", 10))
    {
        unsigned int command;
        char *p = (char *)opt + 10;
        command = (unsigned int) simple_strtoul(p, &p, 10);
        SMIMSG("m4u_debug_command, command=%d ", command);
        m4u_debug_command(command);
    }

    //mau dump
    if (0 == strncmp(opt, "mau_stat:", 9))
    {
		char *p = (char *)opt + 9;
        unsigned int larb=(unsigned int)simple_strtoul(p, &p, 16);
        if(larb>SMI_LARB_NR)
            SMIERR("debug error: larb=%d\n", larb);
        mau_dump_status(larb);
    }

    if (0 == strncmp(opt, "mau_config:", 11 ))
    {
        MTK_MAU_CONFIG MauConf;
		unsigned int larb,entry, rd, wt, vir, start, end, port_msk;
		char *p = (char *)opt + 11;
		larb = (unsigned int) simple_strtoul(p, &p, 16);
		p++;
		entry = (unsigned int) simple_strtoul(p, &p, 16);
		p++;
		rd = (unsigned int) simple_strtoul(p, &p, 16);
		p++;
		wt = (unsigned int) simple_strtoul(p, &p, 16);
		p++;
		vir = (unsigned int) simple_strtoul(p, &p, 16);
		p++;
		start = (unsigned int) simple_strtoul(p, &p, 16);
        p++;
		end = (unsigned int) simple_strtoul(p, &p, 16);
		p++;
		port_msk = (unsigned int) simple_strtoul(p, &p, 16);

		SMIMSG("larb=%d,entry=%d,rd=%d wt=%d vir=%d \n"
            "start=0x%x end=0x%x msk=0x%x \n",
            larb, entry, rd, wt, vir, start, end, port_msk);

        MauConf.larb = larb;
        MauConf.entry = entry;
        MauConf.monitor_read = rd;
        MauConf.monitor_write = wt;
        MauConf.virt = vir;
        MauConf.start = start;
        MauConf.end = end;
        MauConf.port_msk = port_msk;
        mau_config(&MauConf);

    }

    if (0 == strncmp(opt, "spc_config:", 11 ))
    {
        MTK_SPC_CONFIG pCfg;
		char *p = (char *)opt + 11;

        SMIMSG("%s", p);
        //0-no protect; 1-sec rw; 2-sec_rw nonsec_r; 3-no access
		pCfg.domain_0_prot = (unsigned int) simple_strtoul(p, &p, 16);

        SMIMSG("%d,%s", pCfg.domain_0_prot, p);
		p++;
		pCfg.domain_1_prot = (unsigned int) simple_strtoul(p, &p, 16);
		p++;
        SMIMSG("%d", pCfg.domain_1_prot);
		pCfg.domain_2_prot = (unsigned int) simple_strtoul(p, &p, 16);
		p++;
        SMIMSG("%d", pCfg.domain_2_prot);
		pCfg.domain_3_prot = (unsigned int) simple_strtoul(p, &p, 16);
		p++;
        SMIMSG("%d", pCfg.domain_3_prot);
		pCfg.start = (unsigned int) simple_strtoul(p, &p, 16);
		p++;
        SMIMSG("%d", pCfg.domain_0_prot);
		pCfg.end = (unsigned int) simple_strtoul(p, &p, 16);

		SMIMSG("prot=(%d,%d,%d,%d), start=0x%x, end=0x%x\n",
            pCfg.domain_0_prot,pCfg.domain_1_prot,
            pCfg.domain_2_prot,pCfg.domain_3_prot,
            pCfg.start,pCfg.end);

        spc_config(&pCfg);

    }

    if (0 == strncmp(opt, "spc_status", 10 ))
    {
        spc_status_check();
    }

    if (0 == strncmp(opt, "spc_dump_reg", 12 ))
    {
        spc_dump_reg();
    }

    if (0 == strncmp(opt, "touch_sysram", 10 ))
    {
        volatile unsigned int *va;
        unsigned int i;

        //va = ioremap_nocache(0x1200C000, 1024*80);
        va=(volatile unsigned int *)0xf2000000;

        for(i=0; i<1024*80/4; i++)
        {
            va[i] = i;
        }
        
        SMIMSG("cpu read sysram: 0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x",
            va[0],va[1],va[2],va[3],va[100],va[222],va[444]);
            
    }

    if (0 == strncmp(opt, "set_reg:", 8 ))
    {
        unsigned int addr, val;
		char *p = (char *)opt + 8;

		addr = (unsigned int) simple_strtoul(p, &p, 16);
		p++;
		val = (unsigned int) simple_strtoul(p, &p, 16);

		SMIMSG("set register: 0x%x = 0x%x\n", addr, val);

        COM_WriteReg32(addr, val);
    }
    if (0 == strncmp(opt, "get_reg:", 8 ))
    {
        unsigned int addr;
		char *p = (char *)opt + 8;

		addr = (unsigned int) simple_strtoul(p, &p, 16);

		SMIMSG("get register: 0x%x = 0x%x \n", addr, COM_ReadReg32(addr));
    }
    

    
    return;
Error:
    SMIERR("parse command error!\n");
    SMIMSG("%s", STR_HELP);
}
示例#10
0
static int smi_probe(struct platform_device *pdev)
{
    struct device* smiDevice = NULL;

    if (NULL == pdev) {
        SMIERR("platform data missed");
        return -ENXIO;
    }

    if (smi_register()) {
        dev_err(&pdev->dev,"register char failed\n");
        return -EAGAIN;
    }

    pSmiClass = class_create(THIS_MODULE, "MTK_SMI");
    if (IS_ERR(pSmiClass)) {
        int ret = PTR_ERR(pSmiClass);
        SMIERR("Unable to create class, err = %d", ret);
        return ret;
    }
    smiDevice = device_create(pSmiClass, NULL, smiDevNo, NULL, "MTK_SMI");

    smi_common_init();

#ifdef __MAU_SPC_ENABLE__
    mau_init();

    MTK_SPC_Init(&(pdev->dev));

#endif

    SMI_DBG_Init();

#ifdef __MAU_SPC_ENABLE__
    //init mau to monitor mva 0~0x2ffff & 0x40000000~0xffffffff
#if 0
    {
        MTK_MAU_CONFIG cfg;
        int i;
        for( i=0 ; i < SMI_LARB_NR ; i++)
        {
            cfg.larb = i;
            cfg.entry = 0;
            cfg.port_msk = 0xffffffff;
            cfg.virt = 1;
            cfg.monitor_read = 1;
            cfg.monitor_write = 1;
            cfg.start = 0;
            cfg.end = 0x2ffff;
            mau_config(&cfg);

            cfg.entry = 1;
            cfg.start = 0x40000000;
            cfg.end = 0xffffffff;
            mau_config(&cfg);
        }
    }
#endif 
#endif
    return 0;
}
示例#11
0
static long smi_ioctl( struct file * pFile,
						 unsigned int cmd,
						 unsigned long param)
{
    int ret = 0;

//    unsigned long * pu4Cnt = (unsigned long *)pFile->private_data;

    switch (cmd)
    {
#ifdef __MAU_SPC_ENABLE__ 
        case MTK_CONFIG_MM_MAU:
        {
        	MTK_MAU_CONFIG b;
       		if(copy_from_user(&b, (void __user *)param, sizeof(b)))
        	{
            	SMIERR("copy_from_user failed!");
            	ret = -EFAULT;
        	} else {
                mau_config(&b);
			}
        	return ret;
    	}
        case MTK_IOC_SPC_CONFIG :
        {
            MTK_SPC_CONFIG cfg;
            ret = copy_from_user(&cfg, (void*)param , sizeof(MTK_SPC_CONFIG));
            if(ret)
            {
            	SMIMSG(" SPC_CONFIG, copy_from_user failed: %d\n", ret);
            	return -EFAULT;
            }  

            spc_config(&cfg);

        }
            break;

        case MTK_IOC_SPC_DUMP_REG :
            spc_dump_reg();
            break;


        case MTK_IOC_SPC_DUMP_STA :
            spc_status_check();    	
            break;

        case MTK_IOC_SPC_CMD :
            spc_test(param);
            break;
#endif

        case MTK_IOC_SMI_BWC_CONFIG:
            {
                MTK_SMI_BWC_CONFIG cfg;
                ret = copy_from_user(&cfg, (void*)param , sizeof(MTK_SMI_BWC_CONFIG));
                if(ret)
                {
                    SMIMSG(" SMI_BWC_CONFIG, copy_from_user failed: %d\n", ret);
                    return -EFAULT;
                }  

//                ret = smi_bwc_config( &cfg , pu4Cnt);
                ret = smi_bwc_config( &cfg , NULL);
            
            }
            break;
    // GMP start 
    case MTK_IOC_SMI_BWC_INFO_SET:
        {
            MTK_SMI_BWC_INFO_SET cfg;
            SMIMSG("Handle MTK_IOC_SMI_BWC_INFO_SET request... start");
            ret = copy_from_user(&cfg, (void*)param , sizeof(MTK_SMI_BWC_INFO_SET));
            if(ret)
            {
                SMIMSG(" MTK_IOC_SMI_BWC_INFO_SET, copy_to_user failed: %d\n", ret);
                return -EFAULT;
            }  
            // Set the address to the value assigned by user space program
            smi_bwc_mm_info_set(cfg.property, cfg.value1, cfg.value2);
            SMIMSG("Handle MTK_IOC_SMI_BWC_INFO_SET request... finish");
            break;  
        }
    case MTK_IOC_SMI_BWC_INFO_GET:
        {
            MTK_SMI_BWC_INFO_GET cfg;
            MTK_SMI_BWC_MM_INFO * return_address = NULL;
            
            SMIMSG("Handle MTK_IOC_SMI_BWC_INFO_GET request... start");
            ret = copy_from_user(&cfg, (void*)param , sizeof(MTK_SMI_BWC_INFO_GET));

            if(ret)
            {
                SMIMSG(" MTK_IOC_SMI_BWC_INFO_GET, copy_to_user failed: %d\n", ret);
                return -EFAULT;
            }  

            return_address = (MTK_SMI_BWC_MM_INFO *)cfg.return_address;
            if( return_address != NULL){
                ret = copy_to_user((void*) return_address, (void*)&g_smi_bwc_mm_info, sizeof(MTK_SMI_BWC_MM_INFO));

                if(ret)
                {
                    SMIMSG(" MTK_IOC_SMI_BWC_INFO_GET, copy_to_user failed: %d\n", ret);
                    return -EFAULT;
                }
            }
            SMIMSG("Handle MTK_IOC_SMI_BWC_INFO_GET request... finish");
            break;
        }
     // GMP end   
        
        default:
            return -1;
    }

	return ret;
}
示例#12
0
static int smi_bwc_config( MTK_SMI_BWC_CONFIG* p_conf , unsigned long * pu4LocalCnt)
{
    int i;
    unsigned long u4Concurrency = 0;
    MTK_SMI_BWC_SCEN eFinalScen;
    static MTK_SMI_BWC_SCEN ePreviousFinalScen = SMI_BWC_SCEN_CNT;

    if((SMI_BWC_SCEN_CNT <= p_conf->scenario) || (0 > p_conf->scenario))
    {
        SMIERR("Incorrect SMI BWC config : 0x%x, how could this be...\n" , p_conf->scenario);
        return -1;
    }
//Debug - S
//SMIMSG("SMI setTo%d,%s,%d\n" , p_conf->scenario , (p_conf->b_on_off ? "on" : "off") , ePreviousFinalScen);
//Debug - E

    spin_lock(&g_SMIInfo.SMI_lock);

    if(p_conf->b_on_off)
    {
        //turn on certain scenario
        g_SMIInfo.pu4ConcurrencyTable[p_conf->scenario] += 1;

        if(NULL != pu4LocalCnt)
        {
            pu4LocalCnt[p_conf->scenario] += 1;
        }
    }
    else
    {
        //turn off certain scenario
        if(0 == g_SMIInfo.pu4ConcurrencyTable[p_conf->scenario])
        {
            SMIMSG("Too many turning off for global SMI profile:%d,%d\n" , p_conf->scenario , g_SMIInfo.pu4ConcurrencyTable[p_conf->scenario]);
        }
        else
        {
            g_SMIInfo.pu4ConcurrencyTable[p_conf->scenario] -= 1;
        }

        if(NULL != pu4LocalCnt)
        {
            if(0 == pu4LocalCnt[p_conf->scenario])
            {
                SMIMSG("Process : %s did too many turning off for local SMI profile:%d,%d\n" , current->comm ,p_conf->scenario , pu4LocalCnt[p_conf->scenario]);
            }
            else
            {
                pu4LocalCnt[p_conf->scenario] -= 1;
            }
        }
    }

    for(i=0 ; i < SMI_BWC_SCEN_CNT ; i++)
    {
        if(g_SMIInfo.pu4ConcurrencyTable[i])
        {
            u4Concurrency |= (1 << i);
        }
    }

    if((1 << SMI_BWC_SCEN_VR) & u4Concurrency)
    {
        eFinalScen = SMI_BWC_SCEN_VR;
    }
    else if((1 << SMI_BWC_SCEN_VP) & u4Concurrency)
    {
        eFinalScen = SMI_BWC_SCEN_VP;
    }
    else
    {
        eFinalScen = SMI_BWC_SCEN_NORMAL;
    }

    if(ePreviousFinalScen == eFinalScen)
    {
        SMIMSG("Scen equal%d,don't change\n" , eFinalScen);
        spin_unlock(&g_SMIInfo.SMI_lock);
        return 0;
    }
    else
    {
        ePreviousFinalScen = eFinalScen;
    }

    /*turn on larb clock*/
    for( i=0 ; i < SMI_LARB_NR ; i++){
        larb_clock_on(i);
    }

    /*Bandwidth Limiter*/
    switch( eFinalScen )
    {
    case SMI_BWC_SCEN_VP:
        SMIMSG( "[SMI_PROFILE] : %s\n", "SMI_BWC_VP");
#if 1
        M4U_WriteReg32(REG_SMI_M4U_TH , 0 , ((0x2 << 15) + (0x3 << 10) + (0x4 << 5) + 0x5));// 2 non-ultra write, 3 write command , 4 non-ultra read , 5 ultra read
        M4U_WriteReg32(REG_SMI_L1LEN , 0 , 0xB);//Level 1 LARB, apply new outstanding control method, 1/4 bandwidth limiter overshoot control , enable warb channel
        M4U_WriteReg32(REG_SMI_READ_FIFO_TH , 0 , 0xC8F);//total 8 commnads between smi common to M4U, 12 non ultra commands between smi common to M4U, 1 commnads can in write AXI slice for all LARBs

        M4U_WriteReg32(REG_SMI_L1ARB0 , 0 , 0xC57);//1111/4096 maximum grant counts, soft limiter
        M4U_WriteReg32(REG_SMI_L1ARB1 , 0 , 0x9F7);//503/4096 maximum grant counts, soft limiter
        M4U_WriteReg32(REG_SMI_L1ARB2 , 0 , 0x961);//353/4096 maximum grant counts, soft limiter
        M4U_WriteReg32(REG_SMI_L1ARB3 , 0 , 0x885A25);//549/4096 maximum grant counts, hard limiter, 2 read 2 write outstanding limit

        M4U_WriteReg32(LARB0_BASE , 0x200 , 0x8);//OVL
        M4U_WriteReg32(LARB0_BASE , 0x204 , 0x8);//RDMA
        M4U_WriteReg32(LARB0_BASE , 0x208 , 0x3);//WDMA
        M4U_WriteReg32(LARB0_BASE , 0x20C , 0x1);//CMDQ
        M4U_WriteReg32(LARB0_BASE , 0x210 , 0x2);//MDP_RDMA
        M4U_WriteReg32(LARB0_BASE , 0x214 , 0x1);//MDP_WDMA
        M4U_WriteReg32(LARB0_BASE , 0x218 , 0x4);//MDP_ROTO
        M4U_WriteReg32(LARB0_BASE , 0x21C , 0x2);//MDP_ROTCO
        M4U_WriteReg32(LARB0_BASE , 0x220 , 0x2);//MDP_ROTVO

        M4U_WriteReg32(LARB1_BASE , 0x200 , 0x6);//MC
        M4U_WriteReg32(LARB1_BASE , 0x204 , 0x2);//PP
        M4U_WriteReg32(LARB1_BASE , 0x208 , 0x1);//AVC MV
        M4U_WriteReg32(LARB1_BASE , 0x20C , 0x3);//RD
        M4U_WriteReg32(LARB1_BASE , 0x210 , 0x3);//WR
        M4U_WriteReg32(LARB1_BASE , 0x214 , 0x1);//VLD
        M4U_WriteReg32(LARB1_BASE , 0x218 , 0x1);//PPWRAP

        M4U_WriteReg32(LARB2_BASE , 0x200 , 0x1);//IMGO
        M4U_WriteReg32(LARB2_BASE , 0x204 , 0x1);//IMG2O
        M4U_WriteReg32(LARB2_BASE , 0x208 , 0x1);//LSCI
        M4U_WriteReg32(LARB2_BASE , 0x20C , 0x1);//IMGI
        M4U_WriteReg32(LARB2_BASE , 0x210 , 0x1);//ESFKO
        M4U_WriteReg32(LARB2_BASE , 0x214 , 0x1);//AAO
        M4U_WriteReg32(LARB2_BASE , 0x218 , 0x1);//JPG_RDMA
        M4U_WriteReg32(LARB2_BASE , 0x21C , 0x1);//JPG_BSDMA
        M4U_WriteReg32(LARB2_BASE , 0x220 , 0x2);//VENC_RD_COMV
        M4U_WriteReg32(LARB2_BASE , 0x224 , 0x1);//VENC_SV_COMV
        M4U_WriteReg32(LARB2_BASE , 0x228 , 0x4);//VENC_RCPU
        M4U_WriteReg32(LARB2_BASE , 0x22C , 0x2);//VENC_REC_FRM
        M4U_WriteReg32(LARB2_BASE , 0x230 , 0x2);//VENC_REF_LUMA
        M4U_WriteReg32(LARB2_BASE , 0x234 , 0x1);//VENC_REF_CHROMA
        M4U_WriteReg32(LARB2_BASE , 0x238 , 0x1);//VENC_BSDMA
        M4U_WriteReg32(LARB2_BASE , 0x23C , 0x1);//VENC_CUR_LUMA
        M4U_WriteReg32(LARB2_BASE , 0x240 , 0x1);//VENC_CUR_CHROMA

#endif
        break;

    case SMI_BWC_SCEN_VR:
        SMIMSG( "[SMI_PROFILE] : %s\n", "SMI_BWC_VR");
#if 1
        M4U_WriteReg32(REG_SMI_M4U_TH , 0 , ((0x2 << 15) + (0x3 << 10) + (0x4 << 5) + 0x5));// 2 non-ultra write, 3 write command , 4 non-ultra read , 5 ultra read
        M4U_WriteReg32(REG_SMI_L1LEN , 0 , 0xB);//Level 1 LARB, apply new outstanding control method, 1/4 bandwidth limiter overshoot control , enable warb channel
        M4U_WriteReg32(REG_SMI_READ_FIFO_TH , 0 , 0xC8F);//total 8 commnads between smi common to M4U, 12 non ultra commands between smi common to M4U, 1 commnads can in write AXI slice for all LARBs

        M4U_WriteReg32(REG_SMI_L1ARB0 , 0 , 0xC57);//1111/4096 maximum grant counts, soft limiter
        M4U_WriteReg32(REG_SMI_L1ARB1 , 0 , 0x9F7);//503/4096 maximum grant counts, soft limiter
        M4U_WriteReg32(REG_SMI_L1ARB2 , 0 , 0xD4F);//1359/4096 maximum grant counts, soft limiter
        M4U_WriteReg32(REG_SMI_L1ARB3 , 0 , 0x884912);// 274/4096 maximum grant counts, soft limiter, 2 read 2 write outstanding limit

        M4U_WriteReg32(LARB0_BASE , 0x200 , 0x8);//OVL
        M4U_WriteReg32(LARB0_BASE , 0x204 , 0x8);//RDMA
        M4U_WriteReg32(LARB0_BASE , 0x208 , 0x1);//WDMA
        M4U_WriteReg32(LARB0_BASE , 0x20C , 0x1);//CMDQ
        M4U_WriteReg32(LARB0_BASE , 0x210 , 0x2);//MDP_RDMA
        M4U_WriteReg32(LARB0_BASE , 0x214 , 0x2);//MDP_WDMA
        M4U_WriteReg32(LARB0_BASE , 0x218 , 0x2);//MDP_ROTO
        M4U_WriteReg32(LARB0_BASE , 0x21C , 0x4);//MDP_ROTCO
        M4U_WriteReg32(LARB0_BASE , 0x220 , 0x1);//MDP_ROTVO

        M4U_WriteReg32(LARB1_BASE , 0x200 , 0x1);//MC
        M4U_WriteReg32(LARB1_BASE , 0x204 , 0x1);//PP
        M4U_WriteReg32(LARB1_BASE , 0x208 , 0x1);//AVC MV
        M4U_WriteReg32(LARB1_BASE , 0x20C , 0x1);//RD
        M4U_WriteReg32(LARB1_BASE , 0x210 , 0x1);//WR
        M4U_WriteReg32(LARB1_BASE , 0x214 , 0x1);//VLD
        M4U_WriteReg32(LARB1_BASE , 0x218 , 0x1);//PPWRAP

        M4U_WriteReg32(LARB2_BASE , 0x200 , 0x6);//IMGO
        M4U_WriteReg32(LARB2_BASE , 0x204 , 0x1);//IMG2O
        M4U_WriteReg32(LARB2_BASE , 0x208 , 0x1);//LSCI
        M4U_WriteReg32(LARB2_BASE , 0x20C , 0x4);//IMGI
        M4U_WriteReg32(LARB2_BASE , 0x210 , 0x1);//ESFKO
        M4U_WriteReg32(LARB2_BASE , 0x214 , 0x1);//AAO
        M4U_WriteReg32(LARB2_BASE , 0x218 , 0x1);//JPG_RDMA
        M4U_WriteReg32(LARB2_BASE , 0x21C , 0x1);//JPG_BSDMA
        M4U_WriteReg32(LARB2_BASE , 0x220 , 0x1);//VENC_RD_COMV
        M4U_WriteReg32(LARB2_BASE , 0x224 , 0x1);//VENC_SV_COMV
        M4U_WriteReg32(LARB2_BASE , 0x228 , 0x1);//VENC_RCPU
        M4U_WriteReg32(LARB2_BASE , 0x22C , 0x2);//VENC_REC_FRM
        M4U_WriteReg32(LARB2_BASE , 0x230 , 0x4);//VENC_REF_LUMA
        M4U_WriteReg32(LARB2_BASE , 0x234 , 0x2);//VENC_REF_CHROMA
        M4U_WriteReg32(LARB2_BASE , 0x238 , 0x1);//VENC_BSDMA
        M4U_WriteReg32(LARB2_BASE , 0x23C , 0x2);//VENC_CUR_LUMA
        M4U_WriteReg32(LARB2_BASE , 0x240 , 0x1);//VENC_CUR_CHROMA

#endif
        break;
        
    case SMI_BWC_SCEN_NORMAL:
        SMIMSG( "[SMI_PROFILE] : %s\n", "SMI_BWC_SCEN_NORMAL");

        initSetting();

    default:
        break;
    }

    /*turn off larb clock*/    
    for(i = 0 ; i < SMI_LARB_NR ; i++){
        larb_clock_off(i);
    }

    spin_unlock(&g_SMIInfo.SMI_lock);

    SMIMSG("ScenTo:%d,turn %s,Curr Scen:%d,%d,%d,%d\n" , p_conf->scenario , (p_conf->b_on_off ? "on" : "off") , eFinalScen , 
        g_SMIInfo.pu4ConcurrencyTable[SMI_BWC_SCEN_NORMAL] , g_SMIInfo.pu4ConcurrencyTable[SMI_BWC_SCEN_VR] , g_SMIInfo.pu4ConcurrencyTable[SMI_BWC_SCEN_VP]);

//Debug usage - S
//smi_dumpDebugMsg();
//SMIMSG("Config:%d,%d,%d\n" , eFinalScen , g_SMIInfo.pu4ConcurrencyTable[SMI_BWC_SCEN_NORMAL] , (NULL == pu4LocalCnt ? (-1) : pu4LocalCnt[p_conf->scenario]));
//Debug usage - E

    return 0;
    
}
示例#13
0
static long smi_ioctl( struct file * pFile,
						 unsigned int cmd,
						 unsigned long param)
{
    int ret = 0;

//    unsigned long * pu4Cnt = (unsigned long *)pFile->private_data;

    switch (cmd)
    {
#ifdef __MAU_SPC_ENABLE__ 
        case MTK_CONFIG_MM_MAU:
        {
        	MTK_MAU_CONFIG b;
       		if(copy_from_user(&b, (void __user *)param, sizeof(b)))
        	{
            	SMIERR("copy_from_user failed!");
            	ret = -EFAULT;
        	} else {
                mau_config(&b);
			}
        	return ret;
    	}
        case MTK_IOC_SPC_CONFIG :
        {
            MTK_SPC_CONFIG cfg;
            ret = copy_from_user(&cfg, (void*)param , sizeof(MTK_SPC_CONFIG));
            if(ret)
            {
            	SMIMSG(" SPC_CONFIG, copy_from_user failed: %d\n", ret);
            	return -EFAULT;
            }  

            spc_config(&cfg);

        }
            break;

        case MTK_IOC_SPC_DUMP_REG :
            spc_dump_reg();
            break;


        case MTK_IOC_SPC_DUMP_STA :
            spc_status_check();    	
            break;

        case MTK_IOC_SPC_CMD :
            spc_test(param);
            break;
#endif

        case MTK_IOC_SMI_BWC_CONFIG:
            {
                MTK_SMI_BWC_CONFIG cfg;
                ret = copy_from_user(&cfg, (void*)param , sizeof(MTK_SMI_BWC_CONFIG));
                if(ret)
                {
                    SMIMSG(" SMI_BWC_CONFIG, copy_from_user failed: %d\n", ret);
                    return -EFAULT;
                }  

//                ret = smi_bwc_config( &cfg , pu4Cnt);
                ret = smi_bwc_config( &cfg , NULL);
            
            }
            break;
        
        default:
            return -1;
    }

	return ret;
}
示例#14
0
int larb_reg_restore(int larb)
{
    unsigned int regval,regval1,regval2;
    unsigned int larb_base = gLarbBaseAddr[larb];

/*
    unsigned int* pReg = pLarbRegBackUp[larb];
    int i;
    
    //warning: larb_con is controlled by set/clr
    regval = *(pReg++);
    M4U_WriteReg32(larb_base, SMI_LARB_CON_CLR, ~(regval));
    M4U_WriteReg32(larb_base, SMI_LARB_CON_SET, (regval));
    
    M4U_WriteReg32(larb_base, SMI_SHARE_EN, *(pReg++) );
    M4U_WriteReg32(larb_base, SMI_ROUTE_SEL, *(pReg++) );

    for(i=0; i<3; i++)
    {
        M4U_WriteReg32(larb_base, SMI_MAU_ENTR_START(i), *(pReg++));
        M4U_WriteReg32(larb_base, SMI_MAU_ENTR_END(i), *(pReg++));
        M4U_WriteReg32(larb_base, SMI_MAU_ENTR_GID(i), *(pReg++));
    }
*/

    //Clock manager enable LARB clock before call back restore already, it will be disabled after restore call back returns
    //Got to enable OSTD before engine starts
    regval = M4U_ReadReg32(larb_base , SMI_LARB_STAT);
    regval1 = M4U_ReadReg32(larb_base , SMI_LARB_MON_BUS_REQ0);
    regval2 = M4U_ReadReg32(larb_base , SMI_LARB_MON_BUS_REQ1);
    if(0 == regval)
    {
        int retry_count = 0;
        
        SMIMSG("Init OSTD for larb_base: 0x%x\n" , larb_base);
        // Write 0x60 = 0xFFFF_FFFF, enable BW limiter
        M4U_WriteReg32(larb_base , 0x60 , 0xffffffff);
        // Polling 0x600 = 0xaaaa        
        for(retry_count= 0; retry_count<64; retry_count++)
        {
            if(M4U_ReadReg32(larb_base , 0x600) == 0xaaaa)
            {
                //Step3.   Once it is found 0x600 == 0xaaaa, we can start to enable outstanding limiter and set outstanding limit
                break;
            }
            SMIMSG("Larb: 0x%x busy : waiting for idle\n" , larb_base);
            udelay(500);
        }

        // Write 0x60 = 0x0, disable BW limiter
        M4U_WriteReg32(larb_base , 0x60 , 0x0);
        // enable ISTD
        M4U_WriteReg32(larb_base , SMI_LARB_OSTD_CTRL_EN , 0xffffffff);
    }
    else
    {
        SMIMSG("Larb%d is busy : 0x%x , port:0x%x,0x%x ,fail to set OSTD\n" , larb , regval , regval1 , regval2);
        smi_dumpDebugMsg();
        SMIERR("DISP_MDP LARB%d OSTD cannot be set:0x%x,port:0x%x,0x%x\n" , larb , regval , regval1 , regval2);
    }

    if(0 == g_bInited)
    {
        initSetting();
        g_bInited = 1;
        SMIMSG("SMI init\n");
    }

    // Show SMI always on register when larb 0 is enable
    if(larb == 0){
        SMIMSG("===SMI always on reg dump===\n");
        SMIMSG("[0x5C0,0x5C4,0x5C8]=[0x%x,0x%x,0x%x]\n" ,M4U_ReadReg32(SMI_COMMON_AO_BASE , 0x5C0),M4U_ReadReg32(SMI_COMMON_AO_BASE , 0x5C4),M4U_ReadReg32(SMI_COMMON_AO_BASE , 0x5C8));
        SMIMSG("[0x5CC,0x5D0]=[0x%x,0x%x]\n" ,M4U_ReadReg32(SMI_COMMON_AO_BASE , 0x5CC),M4U_ReadReg32(SMI_COMMON_AO_BASE , 0x5D0));
    }
    
    return 0;
}