示例#1
0
文件: spi_api.c 项目: pan-/mbed
/** Release a SPI object
 *
 * TODO: spi_free is currently unimplemented
 * This will require reference counting at the C++ level to be safe
 *
 * Return the pins owned by the SPI object to their reset state
 * Disable the SPI peripheral
 * Disable the SPI clock
 * @param[in] obj The SPI object to deinitialize
 */
void spi_free(spi_t *obj)
{
    struct spi_s *spiobj = SPI_S(obj);
    spi_disable(spiobj->spi);

    /* Disable and deinit SPI */
    if (spiobj->spi == SPI0) {
        spi_i2s_deinit(SPI0);
        rcu_periph_clock_disable(RCU_SPI0);
    }
    if (spiobj->spi == SPI1) {
        spi_i2s_deinit(SPI1);
        rcu_periph_clock_disable(RCU_SPI1);
    }
    if (spiobj->spi == SPI2) {
        spi_i2s_deinit(SPI2);
        rcu_periph_clock_disable(RCU_SPI2);
    }
    /* Deinit GPIO mode of SPI pins */
    pin_function(spiobj->pin_miso, MODE_IN_FLOATING);
    pin_function(spiobj->pin_mosi, MODE_IN_FLOATING);
    pin_function(spiobj->pin_sclk, MODE_IN_FLOATING);
    if (spiobj->spi_struct.nss != SPI_NSS_SOFT) {
        pin_function(spiobj->pin_ssel, MODE_IN_FLOATING);
    }
}
示例#2
0
文件: spi_api.c 项目: pan-/mbed
/** Write a value to the SPI peripheral in slave mode
 *
 * Blocks until the SPI peripheral can be written to
 * @param[in] obj   The SPI peripheral to write
 * @param[in] value The value to write
 */
void spi_slave_write(spi_t *obj, int value)
{
    struct spi_s *spiobj = SPI_S(obj);
    /* wait the SPI transmit buffer is empty */
    while (RESET == spi_i2s_flag_get(spiobj->spi, SPI_FLAG_TBE));
    spi_i2s_data_transmit(spiobj->spi, value);
}
示例#3
0
文件: spi_api.c 项目: pan-/mbed
/** Configure the SPI format
 *
 * Set the number of bits per frame, configure clock polarity and phase, shift order and master/slave mode.
 * The default bit order is MSB.
 * @param[in,out] obj   The SPI object to configure
 * @param[in]     bits  The number of bits per frame
 * @param[in]     mode  The SPI mode (clock polarity, phase, and shift direction)
 * @param[in]     slave Zero for master mode or non-zero for slave mode
 */
void spi_format(spi_t *obj, int bits, int mode, int slave)
{
    struct spi_s *spiobj = SPI_S(obj);

    spiobj->spi_struct.frame_size = (bits == 16) ? SPI_FRAMESIZE_16BIT : SPI_FRAMESIZE_8BIT;
    /* Config polarity and phase of SPI */
    switch (mode) {
        case 0:
            spiobj->spi_struct.clock_polarity_phase =  SPI_CK_PL_LOW_PH_1EDGE;
            break;
        case 1:
            spiobj->spi_struct.clock_polarity_phase =  SPI_CK_PL_LOW_PH_2EDGE;
            break;
        case 2:
            spiobj->spi_struct.clock_polarity_phase =  SPI_CK_PL_HIGH_PH_1EDGE;
            break;
        default:
            spiobj->spi_struct.clock_polarity_phase =  SPI_CK_PL_HIGH_PH_2EDGE;

            break;
    }

    if (spiobj->spi_struct.nss != SPI_NSS_SOFT) {
        if (slave) {
            pin_function(spiobj->pin_mosi, MODE_IN_FLOATING);
            pin_function(spiobj->pin_sclk, MODE_IN_FLOATING);
            pin_function(spiobj->pin_ssel, MODE_IN_FLOATING);
            spi_nss_output_disable(spiobj->spi);
        }
    }
    /* Select SPI as master or slave */
    spiobj->spi_struct.device_mode = (slave) ? SPI_SLAVE : SPI_MASTER;

    dev_spi_struct_init(obj);
}
示例#4
0
/*
 * Only the frequency is managed in the family specific part
 * the rest of SPI management is common to all STM32 families
 */
int spi_get_clock_freq(spi_t *obj) {
    struct spi_s *spiobj = SPI_S(obj);
	int spi_hz = 0;

	/* Get source clock depending on SPI instance */
    switch ((int)spiobj->spi) {
        case SPI_1:
#if defined SPI4_BASE
        case SPI_4:
#endif
#if defined SPI5_BASE
        case SPI_5:
#endif
#if defined SPI6_BASE
        case SPI_6:
#endif
            /* SPI_1, SPI_4, SPI_5 and SPI_6. Source CLK is PCKL2 */
            spi_hz = HAL_RCC_GetPCLK2Freq();
            break;
        case SPI_2:
#if defined SPI3_BASE
        case SPI_3:
#endif
            /* SPI_2 and SPI_3. Source CLK is PCKL1 */
            spi_hz = HAL_RCC_GetPCLK1Freq();
            break;
        default:
            error("CLK: SPI instance not set");
            break;
    }
    return spi_hz;
}
示例#5
0
static inline int ssp_busy(spi_t *obj)
{
    int status;
    struct spi_s *spiobj = SPI_S(obj);
    SPI_HandleTypeDef *handle = &(spiobj->handle);
    status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_BSY) != RESET) ? 1 : 0);
    return status;
}
示例#6
0
文件: spi_api.c 项目: pan-/mbed
/** Checks if the specified SPI peripheral is in use
 *
 * @param[in] obj The SPI peripheral to check
 * @return non-zero if the peripheral is currently transmitting
 */
int spi_busy(spi_t *obj)
{
    int status;
    struct spi_s *spiobj = SPI_S(obj);
    /* check whether or not the SPI is busy */
    status = ((spi_i2s_flag_get(spiobj->spi, SPI_FLAG_TRANS) != RESET) ? 1 : 0);
    return status;
}
示例#7
0
文件: spi_api.c 项目: pan-/mbed
/** Initialize the SPI structure
 *
 * Configures the pins used by SPI, sets a default format and frequency, and enables the peripheral
 * @param[out] obj  The SPI object to initialize
 */
static void dev_spi_struct_init(spi_t *obj)
{
    struct spi_s *spiobj = SPI_S(obj);

    spi_disable(spiobj->spi);
    spi_para_init(spiobj->spi, &obj->spi_struct);
    spi_enable(spiobj->spi);
}
示例#8
0
文件: spi_api.c 项目: pan-/mbed
/** Check if a value is available to read
 *
 * @param[in] obj The SPI peripheral to check
 * @return non-zero if a value is available
 */
int spi_slave_receive(spi_t *obj)
{
    int status;
    struct spi_s *spiobj = SPI_S(obj);
    /* check whether or not the SPI receive buffer is empty  */
    status = ((spi_i2s_flag_get(spiobj->spi, SPI_FLAG_RBNE) != RESET) ? 1 : 0);
    return status;
}
示例#9
0
static inline int ssp_writeable(spi_t *obj)
{
    int status;
    struct spi_s *spiobj = SPI_S(obj);
    SPI_HandleTypeDef *handle = &(spiobj->handle);

    // Check if data is transmitted
    status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_TXE) != RESET) ? 1 : 0);
    return status;
}
示例#10
0
static inline int ssp_readable(spi_t *obj)
{
    int status;
    struct spi_s *spiobj = SPI_S(obj);
    SPI_HandleTypeDef *handle = &(spiobj->handle);

    // Check if data is received
    status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_RXNE) != RESET) ? 1 : 0);
    return status;
}
示例#11
0
文件: spi_api.c 项目: pan-/mbed
/** Initialize the SPI peripheral
 *
 * Configures the pins used by SPI, sets a default format and frequency, and enables the peripheral
 * @param[out] obj  The SPI object to initialize
 * @param[in]  mosi The pin to use for MOSI
 * @param[in]  miso The pin to use for MISO
 * @param[in]  sclk The pin to use for SCLK
 * @param[in]  ssel The pin to use for SSEL
 */
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
    struct spi_s *spiobj = SPI_S(obj);

    SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
    SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
    SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
    SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);

    /* return SPIName according to PinName */
    SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
    SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);

    spiobj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl);
    MBED_ASSERT(spiobj->spi != (SPIName)NC);

    /* Set iqr type */
    if (spiobj->spi == SPI0) {
        rcu_periph_clock_enable(RCU_SPI0);
        spiobj->spi_irq = SPI0_IRQn;
    }
    if (spiobj->spi == SPI1) {
        rcu_periph_clock_enable(RCU_SPI1);
        spiobj->spi_irq = SPI1_IRQn;
    }
    if (spiobj->spi == SPI2) {
        rcu_periph_clock_enable(RCU_SPI2);
        spiobj->spi_irq = SPI2_IRQn;
    }

    /* config GPIO mode of SPI pins */
    pinmap_pinout(mosi, PinMap_SPI_MOSI);
    pinmap_pinout(miso, PinMap_SPI_MISO);
    pinmap_pinout(sclk, PinMap_SPI_SCLK);
    spiobj->pin_miso = miso;
    spiobj->pin_mosi = mosi;
    spiobj->pin_sclk = sclk;
    spiobj->pin_ssel = ssel;
    if (ssel != NC) {
        pinmap_pinout(ssel, PinMap_SPI_SSEL);
        spiobj->spi_struct.nss = SPI_NSS_HARD;
        spi_nss_output_enable(spiobj->spi);
    } else {
        spiobj->spi_struct.nss = SPI_NSS_SOFT;
    }

    spiobj->spi_struct.device_mode          = SPI_MASTER;
    spiobj->spi_struct.prescale             = SPI_PSC_256;
    spiobj->spi_struct.trans_mode           = SPI_TRANSMODE_FULLDUPLEX;
    spiobj->spi_struct.clock_polarity_phase = SPI_CK_PL_LOW_PH_1EDGE;
    spiobj->spi_struct.frame_size           = SPI_FRAMESIZE_8BIT;
    spiobj->spi_struct.endian               = SPI_ENDIAN_MSB;

    dev_spi_struct_init(obj);
}
示例#12
0
文件: spi_api.c 项目: pan-/mbed
/** Get a received value out of the SPI receive buffer in slave mode
 *
 * Blocks until a value is available
 * @param[in] obj The SPI peripheral to read
 * @return The value received
 */
int spi_slave_read(spi_t *obj)
{
    int count = 0;
    struct spi_s *spiobj = SPI_S(obj);
    /* wait the SPI receive buffer is not empty */
    while ((RESET == spi_i2s_flag_get(spiobj->spi, SPI_FLAG_RBNE)) && (count++ < 1000));
    if (count >= 1000) {
        return -1;
    } else {
        return spi_i2s_data_receive(spiobj->spi);
    }
}
示例#13
0
// asynchronous API
void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
{
    struct spi_s *spiobj = SPI_S(obj);
    SPI_HandleTypeDef *handle = &(spiobj->handle);

    // TODO: DMA usage is currently ignored
    (void) hint;

    // check which use-case we have
    bool use_tx = (tx != NULL && tx_length > 0);
    bool use_rx = (rx != NULL && rx_length > 0);
    bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT);

    // don't do anything, if the buffers aren't valid
    if (!use_tx && !use_rx)
        return;

    // copy the buffers to the SPI object
    obj->tx_buff.buffer = (void *) tx;
    obj->tx_buff.length = tx_length;
    obj->tx_buff.pos = 0;
    obj->tx_buff.width = is16bit ? 16 : 8;

    obj->rx_buff.buffer = rx;
    obj->rx_buff.length = rx_length;
    obj->rx_buff.pos = 0;
    obj->rx_buff.width = obj->tx_buff.width;

    obj->spi.event = event;

    DEBUG_PRINTF("SPI: Transfer: %u, %u\n", tx_length, rx_length);

    // register the thunking handler
    IRQn_Type irq_n = spiobj->spiIRQ;
    NVIC_SetVector(irq_n, (uint32_t)handler);

    // enable the right hal transfer
    if (use_tx && use_rx) {
        // we cannot manage different rx / tx sizes, let's use smaller one
        size_t size = (tx_length < rx_length)? tx_length : rx_length;
        if(tx_length != rx_length) {
            DEBUG_PRINTF("SPI: Full duplex transfer only 1 size: %d\n", size);
            obj->tx_buff.length = size;
            obj->rx_buff.length = size;
        }
        spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TXRX, tx, rx, size);
    } else if (use_tx) {
        spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TX, tx, NULL, tx_length);
    } else if (use_rx) {
        spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_RX, NULL, rx, rx_length);
    }
}
示例#14
0
/// @returns the number of bytes transferred, or `0` if nothing transferred
static int spi_master_start_asynch_transfer(spi_t *obj, transfer_type_t transfer_type, const void *tx, void *rx, size_t length)
{
    struct spi_s *spiobj = SPI_S(obj);
    SPI_HandleTypeDef *handle = &(spiobj->handle);
    bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT);
    // the HAL expects number of transfers instead of number of bytes
    // so for 16 bit transfer width the count needs to be halved
    size_t words;

    DEBUG_PRINTF("SPI inst=0x%8X Start: %u, %u\r\n", (int)handle->Instance, transfer_type, length);

    obj->spi.transfer_type = transfer_type;

    if (is16bit) {
        words = length / 2;
    } else {
        words = length;
    }

    // enable the interrupt
    IRQn_Type irq_n = spiobj->spiIRQ;
    NVIC_DisableIRQ(irq_n);
    NVIC_ClearPendingIRQ(irq_n);
    NVIC_SetPriority(irq_n, 1);
    NVIC_EnableIRQ(irq_n);

    // enable the right hal transfer
    int rc = 0;
    switch(transfer_type) {
        case SPI_TRANSFER_TYPE_TXRX:
            rc = HAL_SPI_TransmitReceive_IT(handle, (uint8_t*)tx, (uint8_t*)rx, words);
            break;
        case SPI_TRANSFER_TYPE_TX:
            rc = HAL_SPI_Transmit_IT(handle, (uint8_t*)tx, words);
            break;
        case SPI_TRANSFER_TYPE_RX:
            // the receive function also "transmits" the receive buffer so in order
            // to guarantee that 0xff is on the line, we explicitly memset it here
            memset(rx, SPI_FILL_WORD, length);
            rc = HAL_SPI_Receive_IT(handle, (uint8_t*)rx, words);
            break;
        default:
            length = 0;
    }

    if (rc) {
        DEBUG_PRINTF("SPI: RC=%u\n", rc);
        length = 0;
    }

    return length;
}
示例#15
0
void init_spi(spi_t *obj)
{
    struct spi_s *spiobj = SPI_S(obj);
    SPI_HandleTypeDef *handle = &(spiobj->handle);

    __HAL_SPI_DISABLE(handle);

    DEBUG_PRINTF("init_spi: instance=0x%8X\r\n", (int)handle->Instance);
    if (HAL_SPI_Init(handle) != HAL_OK) {
        error("Cannot initialize SPI");
    }

    __HAL_SPI_ENABLE(handle);
}
示例#16
0
int spi_slave_read(spi_t *obj)
{
    SPI_TypeDef *spi = SPI_INST(obj);
    struct spi_s *spiobj = SPI_S(obj);
    SPI_HandleTypeDef *handle = &(spiobj->handle);
    while (!ssp_readable(obj));
    if (handle->Init.DataSize == SPI_DATASIZE_8BIT) {
        // Force 8-bit access to the data register
        uint8_t *p_spi_dr = 0;
        p_spi_dr = (uint8_t *) & (spi->DR);
        return (int)(*p_spi_dr);
    } else {
        return (int)spi->DR;
    }
}
示例#17
0
void spi_slave_write(spi_t *obj, int value)
{
    SPI_TypeDef *spi = SPI_INST(obj);
    struct spi_s *spiobj = SPI_S(obj);
    SPI_HandleTypeDef *handle = &(spiobj->handle);
    while (!ssp_writeable(obj));
    if (handle->Init.DataSize == SPI_DATASIZE_8BIT) {
        // Force 8-bit access to the data register
        uint8_t *p_spi_dr = 0;
        p_spi_dr = (uint8_t *) & (spi->DR);
        *p_spi_dr = (uint8_t)value;
    } else { // SPI_DATASIZE_16BIT
        spi->DR = (uint16_t)value;
    }
}
示例#18
0
uint8_t spi_active(spi_t *obj)
{
    struct spi_s *spiobj = SPI_S(obj);
    SPI_HandleTypeDef *handle = &(spiobj->handle);
    HAL_SPI_StateTypeDef state = HAL_SPI_GetState(handle);

    switch(state) {
        case HAL_SPI_STATE_RESET:
        case HAL_SPI_STATE_READY:
        case HAL_SPI_STATE_ERROR:
            return 0;
        default:
            return 1;
    }
}
示例#19
0
void spi_abort_asynch(spi_t *obj)
{
    struct spi_s *spiobj = SPI_S(obj);
    SPI_HandleTypeDef *handle = &(spiobj->handle);

    // disable interrupt
    IRQn_Type irq_n = spiobj->spiIRQ;
    NVIC_ClearPendingIRQ(irq_n);
    NVIC_DisableIRQ(irq_n);

    // clean-up
    __HAL_SPI_DISABLE(handle);
    HAL_SPI_DeInit(handle);
    HAL_SPI_Init(handle);
    __HAL_SPI_ENABLE(handle);
}
示例#20
0
文件: spi_api.c 项目: pan-/mbed
/** Set the SPI baud rate
 *
 * Actual frequency may differ from the desired frequency due to available dividers and bus clock
 * Configures the SPI peripheral's baud rate
 * @param[in,out] obj The SPI object to configure
 * @param[in]     hz  The baud rate in Hz
 */
void spi_frequency(spi_t *obj, int hz)
{
    struct spi_s *spiobj = SPI_S(obj);
    int spi_hz = 0;
    uint8_t prescaler_rank = 0;
    uint8_t last_index = (sizeof(baudrate_prescaler_table) / sizeof(baudrate_prescaler_table[0])) - 1;

    spi_hz = dev_spi_clock_source_frequency_get(obj) / 2;

    /* Config SPI prescaler according to input frequency*/
    while ((spi_hz > hz) && (prescaler_rank < last_index)) {
        spi_hz = spi_hz / 2;
        prescaler_rank++;
    }

    spiobj->spi_struct.prescale = baudrate_prescaler_table[prescaler_rank];
    dev_spi_struct_init(obj);
}
示例#21
0
int spi_master_write(spi_t *obj, int value)
{
    uint16_t size, ret;
    int Rx = 0;
    struct spi_s *spiobj = SPI_S(obj);
    SPI_HandleTypeDef *handle = &(spiobj->handle);

    size = (handle->Init.DataSize == SPI_DATASIZE_16BIT) ? 2 : 1;

    /*  Use 10ms timeout */
    ret = HAL_SPI_TransmitReceive(handle,(uint8_t*)&value,(uint8_t*)&Rx,size,10);

    if(ret == HAL_OK) {
        return Rx;
    } else {
        DEBUG_PRINTF("SPI inst=0x%8X ERROR in write\r\n", (int)handle->Instance);
        return -1;
    }
}
示例#22
0
文件: spi_api.c 项目: pan-/mbed
/** Write a byte out in master mode and receive a value
 *
 * @param[in] obj   The SPI peripheral to use for sending
 * @param[in] value The value to send
 * @return Returns the value received during send
 */
int spi_master_write(spi_t *obj, int value)
{
    int count = 0;
    struct spi_s *spiobj = SPI_S(obj);

    /* wait the SPI transmit buffer is empty */
    while ((RESET == spi_i2s_flag_get(spiobj->spi, SPI_FLAG_TBE)) && (count++ < 1000));
    if (count >= 1000) {
        return -1;
    } else {
        spi_i2s_data_transmit(spiobj->spi, value);
    }

    count = 0;
    /* wait the SPI receive buffer is not empty */
    while ((RESET == spi_i2s_flag_get(spiobj->spi, SPI_FLAG_RBNE)) && (count++ < 1000));
    if (count >= 1000) {
        return -1;
    } else {
        return spi_i2s_data_receive(spiobj->spi);
    }
}
示例#23
0
/*
 * Only the frequency is managed in the family specific part
 * the rest of SPI management is common to all STM32 families
 */
int spi_get_clock_freq(spi_t *obj) {
    struct spi_s *spiobj = SPI_S(obj);
    int spi_hz = 0;

    /* Get source clock depending on SPI instance */
    switch ((int)spiobj->spi) {
    case SPI_1:
        /* SPI_1. Source CLK is PCKL2 */
        spi_hz = HAL_RCC_GetPCLK2Freq();
        break;
#if defined(SPI2_BASE)
    case SPI_2:
#endif
    case SPI_3:
        /* SPI_2, SPI_3. Source CLK is PCKL1 */
        spi_hz = HAL_RCC_GetPCLK1Freq();
        break;
    default:
        error("CLK: SPI instance not set");
        break;
    }
    return spi_hz;
}
示例#24
0
void spi_frequency(spi_t *obj, int hz) {
    struct spi_s *spiobj = SPI_S(obj);
    int spi_hz = 0;
    uint8_t prescaler_rank = 0;
    SPI_HandleTypeDef *handle = &(spiobj->handle);

    /* Get the clock of the peripheral */
    spi_hz = spi_get_clock_freq(obj);

    /* Define pre-scaler in order to get highest available frequency below requested frequency */
    while ((spi_hz > hz) && (prescaler_rank < sizeof(baudrate_prescaler_table)/sizeof(baudrate_prescaler_table[0]))){
        spi_hz = spi_hz / 2;
        prescaler_rank++;
    }

    if (prescaler_rank <= sizeof(baudrate_prescaler_table)/sizeof(baudrate_prescaler_table[0])) {
        handle->Init.BaudRatePrescaler = baudrate_prescaler_table[prescaler_rank-1];
    } else {
        error("Couldn't setup requested SPI frequency");
    }

    init_spi(obj);
}
示例#25
0
void spi_format(spi_t *obj, int bits, int mode, int slave)
{
    struct spi_s *spiobj = SPI_S(obj);
    SPI_HandleTypeDef *handle = &(spiobj->handle);

    DEBUG_PRINTF("spi_format, bits:%d, mode:%d, slave?:%d\r\n", bits, mode, slave);

    // Save new values
    handle->Init.DataSize          = (bits == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT;

    switch (mode) {
        case 0:
            handle->Init.CLKPolarity = SPI_POLARITY_LOW;
            handle->Init.CLKPhase = SPI_PHASE_1EDGE;
            break;
        case 1:
            handle->Init.CLKPolarity = SPI_POLARITY_LOW;
            handle->Init.CLKPhase = SPI_PHASE_2EDGE;
            break;
        case 2:
            handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
            handle->Init.CLKPhase = SPI_PHASE_1EDGE;
            break;
        default:
            handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
            handle->Init.CLKPhase = SPI_PHASE_2EDGE;
            break;
    }

    if (handle->Init.NSS != SPI_NSS_SOFT) {
        handle->Init.NSS = (slave) ? SPI_NSS_HARD_INPUT : SPI_NSS_HARD_OUTPUT;
    }

    handle->Init.Mode = (slave) ? SPI_MODE_SLAVE : SPI_MODE_MASTER;

    init_spi(obj);
}
示例#26
0
文件: spi_api.c 项目: pan-/mbed
/** Get the frequency of SPI clock source
 *
 * Configures the pins used by SPI, sets a default format and frequency, and enables the peripheral
 * @param[out] spi_freq  The SPI clock source freguency
 * @param[in] obj  The SPI object
 */
static int dev_spi_clock_source_frequency_get(spi_t *obj)
{
    int spi_freq = 0;
    struct spi_s *spiobj = SPI_S(obj);

    switch ((int)spiobj->spi) {
        case SPI0:
            /* clock source is APB2 */
            spi_freq = rcu_clock_freq_get(CK_APB2);
            break;
        case SPI1:
            /* clock source is APB1 */
            spi_freq = rcu_clock_freq_get(CK_APB1);
            break;
        case SPI2:
            /* clock source is APB1 */
            spi_freq = rcu_clock_freq_get(CK_APB1);
            break;
        default:
            error("SPI clock source frequency get error");
            break;
    }
    return spi_freq;
}
示例#27
0
void spi_free(spi_t *obj)
{
    struct spi_s *spiobj = SPI_S(obj);
    SPI_HandleTypeDef *handle = &(spiobj->handle);

    DEBUG_PRINTF("spi_free\r\n");

    __HAL_SPI_DISABLE(handle);
    HAL_SPI_DeInit(handle);

#if defined SPI1_BASE
    // Reset SPI and disable clock
    if (spiobj->spi == SPI_1) {
        __HAL_RCC_SPI1_FORCE_RESET();
        __HAL_RCC_SPI1_RELEASE_RESET();
        __HAL_RCC_SPI1_CLK_DISABLE();
    }
#endif
#if defined SPI2_BASE
    if (spiobj->spi == SPI_2) {
        __HAL_RCC_SPI2_FORCE_RESET();
        __HAL_RCC_SPI2_RELEASE_RESET();
        __HAL_RCC_SPI2_CLK_DISABLE();
    }
#endif

#if defined SPI3_BASE
    if (spiobj->spi == SPI_3) {
        __HAL_RCC_SPI3_FORCE_RESET();
        __HAL_RCC_SPI3_RELEASE_RESET();
        __HAL_RCC_SPI3_CLK_DISABLE();
    }
#endif

#if defined SPI4_BASE
    if (spiobj->spi == SPI_4) {
        __HAL_RCC_SPI4_FORCE_RESET();
        __HAL_RCC_SPI4_RELEASE_RESET();
        __HAL_RCC_SPI4_CLK_DISABLE();
    }
#endif

#if defined SPI5_BASE
    if (spiobj->spi == SPI_5) {
        __HAL_RCC_SPI5_FORCE_RESET();
        __HAL_RCC_SPI5_RELEASE_RESET();
        __HAL_RCC_SPI5_CLK_DISABLE();
    }
#endif

#if defined SPI6_BASE
    if (spiobj->spi == SPI_6) {
        __HAL_RCC_SPI6_FORCE_RESET();
        __HAL_RCC_SPI6_RELEASE_RESET();
        __HAL_RCC_SPI6_CLK_DISABLE();
    }
#endif

    // Configure GPIOs
    pin_function(spiobj->pin_miso, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
    pin_function(spiobj->pin_mosi, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
    pin_function(spiobj->pin_sclk, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
    if (handle->Init.NSS != SPI_NSS_SOFT) {
        pin_function(spiobj->pin_ssel, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
    }
}
示例#28
0
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
    struct spi_s *spiobj = SPI_S(obj);
    SPI_HandleTypeDef *handle = &(spiobj->handle);

    // Determine the SPI to use
    SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
    SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
    SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
    SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);

    SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
    SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);

    spiobj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl);
    MBED_ASSERT(spiobj->spi != (SPIName)NC);

#if defined SPI1_BASE
    // Enable SPI clock
    if (spiobj->spi == SPI_1) {
        __HAL_RCC_SPI1_CLK_ENABLE();
        spiobj->spiIRQ = SPI1_IRQn;
    }
#endif

#if defined SPI2_BASE
    if (spiobj->spi == SPI_2) {
        __HAL_RCC_SPI2_CLK_ENABLE();
        spiobj->spiIRQ = SPI2_IRQn;
    }
#endif

#if defined SPI3_BASE
    if (spiobj->spi == SPI_3) {
        __HAL_RCC_SPI3_CLK_ENABLE();
        spiobj->spiIRQ = SPI3_IRQn;
    }
#endif

#if defined SPI4_BASE
    if (spiobj->spi == SPI_4) {
        __HAL_RCC_SPI4_CLK_ENABLE();
        spiobj->spiIRQ = SPI4_IRQn;
    }
#endif

#if defined SPI5_BASE
    if (spiobj->spi == SPI_5) {
        __HAL_RCC_SPI5_CLK_ENABLE();
        spiobj->spiIRQ = SPI5_IRQn;
    }
#endif

#if defined SPI6_BASE
    if (spiobj->spi == SPI_6) {
        __HAL_RCC_SPI6_CLK_ENABLE();
        spiobj->spiIRQ = SPI6_IRQn;
    }
#endif

    // Configure the SPI pins
    pinmap_pinout(mosi, PinMap_SPI_MOSI);
    pinmap_pinout(miso, PinMap_SPI_MISO);
    pinmap_pinout(sclk, PinMap_SPI_SCLK);
    spiobj->pin_miso = miso;
    spiobj->pin_mosi = mosi;
    spiobj->pin_sclk = sclk;
    spiobj->pin_ssel = ssel;
    if (ssel != NC) {
        pinmap_pinout(ssel, PinMap_SPI_SSEL);
    } else {
        handle->Init.NSS = SPI_NSS_SOFT;
    }

    /* Fill default value */
    handle->Instance = SPI_INST(obj);
    handle->Init.Mode              = SPI_MODE_MASTER;
    handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
    handle->Init.Direction         = SPI_DIRECTION_2LINES;
    handle->Init.CLKPhase          = SPI_PHASE_1EDGE;
    handle->Init.CLKPolarity       = SPI_POLARITY_LOW;
    handle->Init.CRCCalculation    = SPI_CRCCALCULATION_DISABLED;
    handle->Init.CRCPolynomial     = 7;
    handle->Init.DataSize          = SPI_DATASIZE_8BIT;
    handle->Init.FirstBit          = SPI_FIRSTBIT_MSB;
    handle->Init.TIMode            = SPI_TIMODE_DISABLED;

    init_spi(obj);
}