void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
				u_register_t arg2, u_register_t arg3)
{
	/* Initialize the debug console as soon as possible */
	console_16550_register(SUNXI_UART0_BASE, SUNXI_UART0_CLK_IN_HZ,
			       SUNXI_UART0_BAUDRATE, &console);

#ifdef BL32_BASE
	/* Populate entry point information for BL32 */
	SET_PARAM_HEAD(&bl32_image_ep_info, PARAM_EP, VERSION_1, 0);
	SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE);
	bl32_image_ep_info.pc = BL32_BASE;
#endif

	/* Populate entry point information for BL33 */
	SET_PARAM_HEAD(&bl33_image_ep_info, PARAM_EP, VERSION_1, 0);
	/*
	 * Tell BL31 where the non-trusted software image
	 * is located and the entry state information
	 */
	bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
	bl33_image_ep_info.spsr = SPSR_64(MODE_EL2, MODE_SP_ELX,
					  DISABLE_ALL_EXCEPTIONS);
	SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);

	/* Turn off all secondary CPUs */
	sunxi_disable_secondary_cpus(plat_my_core_pos());
}
void bl1_plat_set_ep_info(unsigned int image_id,
		entry_point_info_t *ep_info)
{
	unsigned int data = 0;
	uintptr_t tmp = HIKEY960_NS_TMP_OFFSET;

	if (image_id != NS_BL1U_IMAGE_ID)
		panic();
	/* Copy NS BL1U from 0x1AC1_8000 to 0x1AC9_8000 */
	memcpy((void *)tmp, (void *)HIKEY960_NS_IMAGE_OFFSET,
		NS_BL1U_SIZE);
	memcpy((void *)NS_BL1U_BASE, (void *)tmp, NS_BL1U_SIZE);
	inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE);
	/* Initialize the GIC driver, cpu and distributor interfaces */
	gicv2_driver_init(&hikey960_gic_data);
	gicv2_distif_init();
	gicv2_pcpu_distif_init();
	gicv2_cpuif_enable();
	/* CNTFRQ is read-only in EL1 */
	write_cntfrq_el0(plat_get_syscnt_freq2());
	data = read_cpacr_el1();
	do {
		data |= 3 << 20;
		write_cpacr_el1(data);
		data = read_cpacr_el1();
	} while ((data & (3 << 20)) != (3 << 20));
	INFO("cpacr_el1:0x%x\n", data);

	ep_info->args.arg0 = 0xffff & read_mpidr();
	ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
				DISABLE_ALL_EXCEPTIONS);
}
/*******************************************************************************
 * Given a secure payload entrypoint, register width, cpu id & pointer to a
 * context data structure, this function will create a secure context ready for
 * programming an entry into the secure payload.
 ******************************************************************************/
void tlkd_init_tlk_ep_state(struct entry_point_info *tlk_entry_point,
			    uint32_t rw,
			    uint64_t pc,
			    tlk_context_t *tlk_ctx)
{
	uint32_t ep_attr, spsr;

	/* Passing a NULL context is a critical programming error */
	assert(tlk_ctx);
	assert(tlk_entry_point);
	assert(pc);

	/* Associate this context with the cpu specified */
	tlk_ctx->mpidr = read_mpidr_el1();
	clr_std_smc_active_flag(tlk_ctx->state);
	cm_set_context(&tlk_ctx->cpu_ctx, SECURE);

	if (rw == SP_AARCH64)
		spsr = SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
	else
		spsr = SPSR_MODE32(MODE32_svc,
				   SPSR_T_ARM,
				   read_sctlr_el3() & SCTLR_EE_BIT,
				   DISABLE_ALL_EXCEPTIONS);

	/* initialise an entrypoint to set up the CPU context */
	ep_attr = SECURE | EP_ST_ENABLE;
	if (read_sctlr_el3() & SCTLR_EE_BIT)
		ep_attr |= EP_EE_BIG;
	SET_PARAM_HEAD(tlk_entry_point, PARAM_EP, VERSION_1, ep_attr);

	tlk_entry_point->pc = pc;
	tlk_entry_point->spsr = spsr;
}
/*******************************************************************************
 * Before calling this function BL31 is loaded in memory and its entrypoint
 * is set by load_image. This is a placeholder for the platform to change
 * the entrypoint of BL31 and set SPSR and security state.
 * On ARM standard platforms we only set the security state of the entrypoint
 ******************************************************************************/
void bl2_plat_set_bl31_ep_info(image_info_t *bl31_image_info,
					entry_point_info_t *bl31_ep_info)
{
	SET_SECURITY_STATE(bl31_ep_info->h.attr, SECURE);
	bl31_ep_info->spsr = SPSR_64(MODE_EL3, MODE_SP_ELX,
					DISABLE_ALL_EXCEPTIONS);
}
示例#5
0
/*******************************************************************************
 * This function is the handler registered for S-EL1 interrupts by the TSPD. It
 * validates the interrupt and upon success arranges entry into the TSP at
 * 'tsp_sel1_intr_entry()' for handling the interrupt.
 ******************************************************************************/
static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
					    uint32_t flags,
					    void *handle,
					    void *cookie)
{
	uint32_t linear_id;
	tsp_context_t *tsp_ctx;

	/* Check the security state when the exception was generated */
	assert(get_interrupt_src_ss(flags) == NON_SECURE);

	/* Sanity check the pointer to this cpu's context */
	assert(handle == cm_get_context(NON_SECURE));

	/* Save the non-secure context before entering the TSP */
	cm_el1_sysregs_context_save(NON_SECURE);

	/* Get a reference to this cpu's TSP context */
	linear_id = plat_my_core_pos();
	tsp_ctx = &tspd_sp_context[linear_id];
	assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));

	/*
	 * Determine if the TSP was previously preempted. Its last known
	 * context has to be preserved in this case.
	 * The TSP should return control to the TSPD after handling this
	 * S-EL1 interrupt. Preserve essential EL3 context to allow entry into
	 * the TSP at the S-EL1 interrupt entry point using the 'cpu_context'
	 * structure. There is no need to save the secure system register
	 * context since the TSP is supposed to preserve it during S-EL1
	 * interrupt handling.
	 */
	if (get_std_smc_active_flag(tsp_ctx->state)) {
		tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
						      CTX_SPSR_EL3);
		tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
						     CTX_ELR_EL3);
#if TSP_NS_INTR_ASYNC_PREEMPT
		/*Need to save the previously interrupted secure context */
		memcpy(&tsp_ctx->sp_ctx, &tsp_ctx->cpu_ctx, TSPD_SP_CTX_SIZE);
#endif
	}

	cm_el1_sysregs_context_restore(SECURE);
	cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->sel1_intr_entry,
		    SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));

	cm_set_next_eret_context(SECURE);

	/*
	 * Tell the TSP that it has to handle a S-EL1 interrupt synchronously.
	 * Also the instruction in normal world where the interrupt was
	 * generated is passed for debugging purposes. It is safe to retrieve
	 * this address from ELR_EL3 as the secure context will not take effect
	 * until el3_exit().
	 */
	SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_SEL1_INTR_AND_RETURN, read_elr_el3());
}
/*******************************************************************************
 * This function determines the full entrypoint information for the requested
 * PSCI entrypoint on power on/resume and returns it.
 ******************************************************************************/
static int psci_get_ns_ep_info(entry_point_info_t *ep,
			       uintptr_t entrypoint,
			       u_register_t context_id)
{
	unsigned long ep_attr, sctlr;
	unsigned int daif, ee, mode;
	unsigned long ns_scr_el3 = read_scr_el3();
	unsigned long ns_sctlr_el1 = read_sctlr_el1();

	sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1;
	ee = 0;

	ep_attr = NON_SECURE | EP_ST_DISABLE;
	if (sctlr & SCTLR_EE_BIT) {
		ep_attr |= EP_EE_BIG;
		ee = 1;
	}
	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);

	ep->pc = entrypoint;
	memset(&ep->args, 0, sizeof(ep->args));
	ep->args.arg0 = context_id;

	/*
	 * Figure out whether the cpu enters the non-secure address space
	 * in aarch32 or aarch64
	 */
	if (ns_scr_el3 & SCR_RW_BIT) {

		/*
		 * Check whether a Thumb entry point has been provided for an
		 * aarch64 EL
		 */
		if (entrypoint & 0x1)
			return PSCI_E_INVALID_ADDRESS;

		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1;

		ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
	} else {

		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;

		/*
		 * TODO: Choose async. exception bits if HYP mode is not
		 * implemented according to the values of SCR.{AW, FW} bits
		 */
		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;

		ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
	}

	return PSCI_E_SUCCESS;
}
/*******************************************************************************
 * This function changes the spsr for BL32 image to bypass
 * the check in BL1 AArch64 exception handler. This is needed in the aarch32
 * boot flow as the core comes up in aarch64 and to enter the BL32 image a warm
 * reset in aarch32 state is required.
 ******************************************************************************/
int bl2_plat_handle_post_image_load(unsigned int image_id)
{
	int err = arm_bl2_handle_post_image_load(image_id);

	if (!err && (image_id == BL32_IMAGE_ID)) {
		bl_mem_params_node_t *bl_mem_params = get_bl_mem_params_node(image_id);
		assert(bl_mem_params);
		bl_mem_params->ep_info.spsr = SPSR_64(MODE_EL3, MODE_SP_ELX,
			DISABLE_ALL_EXCEPTIONS);
	}

	return err;
}
示例#8
0
uint32_t tee_svc_sys_return_helper(uint32_t ret, bool panic,
			uint32_t panic_code, struct thread_svc_regs *regs)
{
	if (panic) {
		TAMSG("TA panicked with code 0x%x usr_sp 0x%" PRIx64 " usr_lr 0x%" PRIx64,
			panic_code, regs->x13, regs->x14);
	}
	regs->x1 = panic;
	regs->x2 = panic_code;
	regs->elr = (uintptr_t)thread_unwind_user_mode;
	regs->spsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 0);
	regs->spsr |= read_daif();
	return ret;
}
/* get SPSR for BL33 entry */
static uint32_t get_spsr_for_bl33_entry(void)
{
	unsigned long el_status;
	unsigned long mode;
	uint32_t spsr;

	/* figure out what mode we enter the non-secure world */
	el_status = read_id_aa64pfr0_el1() >> ID_AA64PFR0_EL2_SHIFT;
	el_status &= ID_AA64PFR0_ELX_MASK;

	mode = (el_status) ? MODE_EL2 : MODE_EL1;

	spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
	return spsr;
}
uint32_t hikey_get_spsr_for_bl33_entry(void)
{
	unsigned int mode;
	uint32_t spsr;

	/* Figure out what mode we enter the non-secure world in */
	mode = EL_IMPLEMENTED(2) ? MODE_EL2 : MODE_EL1;

	/*
	 * TODO: Consider the possibility of specifying the SPSR in
	 * the FIP ToC and allowing the platform to have a say as
	 * well.
	 */
	spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
	return spsr;
}
/*******************************************************************************
 * This function prepare boot argument for 64 bit kernel entry
 ******************************************************************************/
static entry_point_info_t *bl31_plat_get_next_kernel64_ep_info(void)
{
	entry_point_info_t *next_image_info;
	unsigned long el_status;
	unsigned int mode;

	el_status = 0;
	mode = 0;

	/* Kernel image is always non-secured */
	next_image_info = &bl33_image_ep_info;

	/* Figure out what mode we enter the non-secure world in */
	el_status = read_id_aa64pfr0_el1() >> ID_AA64PFR0_EL2_SHIFT;
	el_status &= ID_AA64PFR0_ELX_MASK;

	if (el_status) {
		INFO("Kernel_EL2\n");
		mode = MODE_EL2;
	} else{
		INFO("Kernel_EL1\n");
		mode = MODE_EL1;
	}

	INFO("Kernel is 64Bit\n");
	next_image_info->spsr =
		SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
	next_image_info->pc = get_kernel_info_pc();
	next_image_info->args.arg0 = get_kernel_info_r0();
	next_image_info->args.arg1 = get_kernel_info_r1();

	INFO("pc=0x%lx, r0=0x%lx, r1=0x%lx\n",
				 next_image_info->pc,
				 next_image_info->args.arg0,
				 next_image_info->args.arg1);


	SET_SECURITY_STATE(next_image_info->h.attr, NON_SECURE);

	/* None of the images on this platform can have 0x0 as the entrypoint */
	if (next_image_info->pc)
		return next_image_info;
	else
		return NULL;
}
/*******************************************************************************
 * Perform any BL31 specific platform actions. Here is an opportunity to copy
 * parameters passed by the calling EL (S-EL1 in BL2 & S-EL3 in BL1) before they
 * are lost (potentially). This needs to be done before the MMU is initialized
 * so that the memory layout can be used while creating page tables. On the ZYNQMP
 * we know that BL2 has populated the parameters in secure DRAM. So we just use
 * the reference passed in 'from_bl2' instead of copying. The 'data' parameter
 * is not used since all the information is contained in 'from_bl2'. Also, BL2
 * has flushed this information to memory, so we are guaranteed to pick up good
 * data
 ******************************************************************************/
void bl31_early_platform_setup(bl31_params_t *from_bl2,
			       void *plat_params_from_bl2)
{
	/* Initialize the console to provide early debug support */
	console_init(RDO_UART0_BASE, zynqmp_get_uart_clk(), CADENCE_UART_BAUDRATE);

	/* Initialize the platform config for future decision making */
	zynqmp_config_setup();

	/* There are no parameters from BL2 if BL31 is a reset vector */
	assert(from_bl2 == NULL);
	assert(plat_params_from_bl2 == NULL);

	/*
	 * Do initial security configuration to allow DRAM/device access. On
	 * Base ZYNQMP only DRAM security is programmable (via TrustZone), but
	 * other platforms might have more programmable security devices
	 * present.
	 */

	/* Populate entry point information for BL32 and BL33 */
	SET_PARAM_HEAD(&bl32_image_ep_info,
				PARAM_EP,
				VERSION_1,
				0);
	SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE);
	bl32_image_ep_info.pc = BL32_BASE;
	bl32_image_ep_info.spsr = arm_get_spsr_for_bl32_entry();

	NOTICE("BL31: Secure code at 0x%lx\n", bl32_image_ep_info.pc);

	SET_PARAM_HEAD(&bl33_image_ep_info,
				PARAM_EP,
				VERSION_1,
				0);
	/*
	 * Tell BL31 where the non-trusted software image
	 * is located and the entry state information
	 */
	bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
	bl33_image_ep_info.spsr = SPSR_64(MODE_EL2, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
	SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);

	NOTICE("BL31: Non secure code at 0x%lx\n", bl33_image_ep_info.pc);
}
示例#13
0
/*
 * Perform any BL31 specific platform actions. Here is an opportunity to copy
 * parameters passed by the calling EL (S-EL1 in BL2 & S-EL3 in BL1) before they
 * are lost (potentially). This needs to be done before the MMU is initialized
 * so that the memory layout can be used while creating page tables.
 */
void bl31_early_platform_setup(bl31_params_t *from_bl2,
			       void *plat_params_from_bl2)
{
	/* Initialize the console to provide early debug support */
	console_init(ZYNQMP_UART_BASE, zynqmp_get_uart_clk(),
		     ZYNQMP_UART_BAUDRATE);

	/* Initialize the platform config for future decision making */
	zynqmp_config_setup();

	/* There are no parameters from BL2 if BL31 is a reset vector */
	assert(from_bl2 == NULL);
	assert(plat_params_from_bl2 == NULL);

	/*
	 * Do initial security configuration to allow DRAM/device access. On
	 * Base ZYNQMP only DRAM security is programmable (via TrustZone), but
	 * other platforms might have more programmable security devices
	 * present.
	 */

	/* Populate common information for BL32 and BL33 */
	SET_PARAM_HEAD(&bl32_image_ep_info, PARAM_EP, VERSION_1, 0);
	SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE);
	SET_PARAM_HEAD(&bl33_image_ep_info, PARAM_EP, VERSION_1, 0);
	SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);

	if (zynqmp_get_bootmode() == ZYNQMP_BOOTMODE_JTAG) {
		/* use build time defaults in JTAG boot mode */
		bl32_image_ep_info.pc = BL32_BASE;
		bl32_image_ep_info.spsr = arm_get_spsr_for_bl32_entry();
		bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
		bl33_image_ep_info.spsr = SPSR_64(MODE_EL2, MODE_SP_ELX,
						  DISABLE_ALL_EXCEPTIONS);
	} else {
		/* use parameters from FSBL */
		fsbl_atf_handover(&bl32_image_ep_info, &bl33_image_ep_info);
	}

	NOTICE("BL31: Secure code at 0x%lx\n", bl32_image_ep_info.pc);
	NOTICE("BL31: Non secure code at 0x%lx\n", bl33_image_ep_info.pc);
}
示例#14
0
/*******************************************************************************
 * Gets SPSR for BL33 entry
 ******************************************************************************/
uint32_t arm_get_spsr_for_bl33_entry(void)
{
	unsigned long el_status;
	unsigned int mode;
	uint32_t spsr;

	/* Figure out what mode we enter the non-secure world in */
	el_status = read_id_aa64pfr0_el1() >> ID_AA64PFR0_EL2_SHIFT;
	el_status &= ID_AA64PFR0_ELX_MASK;

	mode = (el_status) ? MODE_EL2 : MODE_EL1;

	/*
	 * TODO: Consider the possibility of specifying the SPSR in
	 * the FIP ToC and allowing the platform to have a say as
	 * well.
	 */
	spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
	return spsr;
}
示例#15
0
/*******************************************************************************
 * Given a secure payload entrypoint info pointer, entry point PC, register
 * width, cpu id & pointer to a context data structure, this function will
 * initialize tsp context and entry point info for the secure payload
 ******************************************************************************/
void tspd_init_tsp_ep_state(struct entry_point_info *tsp_entry_point,
				uint32_t rw,
				uint64_t pc,
				tsp_context_t *tsp_ctx)
{
	uint32_t ep_attr;

	/* Passing a NULL context is a critical programming error */
	assert(tsp_ctx);
	assert(tsp_entry_point);
	assert(pc);

	/*
	 * We support AArch64 TSP for now.
	 * TODO: Add support for AArch32 TSP
	 */
	assert(rw == TSP_AARCH64);

	/* Associate this context with the cpu specified */
	tsp_ctx->mpidr = read_mpidr_el1();
	tsp_ctx->state = 0;
	set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_OFF);
	clr_yield_smc_active_flag(tsp_ctx->state);

	cm_set_context(&tsp_ctx->cpu_ctx, SECURE);

	/* initialise an entrypoint to set up the CPU context */
	ep_attr = SECURE | EP_ST_ENABLE;
	if (read_sctlr_el3() & SCTLR_EE_BIT)
		ep_attr |= EP_EE_BIG;
	SET_PARAM_HEAD(tsp_entry_point, PARAM_EP, VERSION_1, ep_attr);

	tsp_entry_point->pc = pc;
	tsp_entry_point->spsr = SPSR_64(MODE_EL1,
					MODE_SP_ELX,
					DISABLE_ALL_EXCEPTIONS);
	zeromem(&tsp_entry_point->args, sizeof(tsp_entry_point->args));
}
/*******************************************************************************
 * Perform any BL3-1 early platform setup, such as console init and deciding on
 * memory layout.
 ******************************************************************************/
void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
				u_register_t arg2, u_register_t arg3)
{
	/* There are no parameters from BL2 if BL31 is a reset vector */
	assert(arg0 == 0U);
	assert(arg1 == 0U);

	bl31_console_setup();

#ifdef BL32_BASE
	/* Populate entry point information for BL32 */
	SET_PARAM_HEAD(&bl32_image_ep_info, PARAM_EP, VERSION_1, 0);
	bl32_image_ep_info.pc = BL32_BASE;
	bl32_image_ep_info.spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
					  DISABLE_ALL_EXCEPTIONS);
	SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE);
#endif

	/* Populate entry point information for BL33 */
	SET_PARAM_HEAD(&bl33_image_ep_info, PARAM_EP, VERSION_1, 0);
	bl33_image_ep_info.pc = PRELOADED_BL33_BASE;
	bl33_image_ep_info.spsr = k3_get_spsr_for_bl33_entry();
	SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);

#ifdef K3_HW_CONFIG_BASE
	/*
	 * According to the file ``Documentation/arm64/booting.txt`` of the
	 * Linux kernel tree, Linux expects the physical address of the device
	 * tree blob (DTB) in x0, while x1-x3 are reserved for future use and
	 * must be 0.
	 */
	bl33_image_ep_info.args.arg0 = (u_register_t)K3_HW_CONFIG_BASE;
	bl33_image_ep_info.args.arg1 = 0U;
	bl33_image_ep_info.args.arg2 = 0U;
	bl33_image_ep_info.args.arg3 = 0U;
#endif
}
void bl2_plat_set_bl33_ep_info(image_info_t *image,
			       entry_point_info_t *bl33_ep_info)
{
	unsigned long el_status;
	unsigned int mode;

	/* Figure out what mode we enter the non-secure world in */
	el_status = read_id_aa64pfr0_el1() >> ID_AA64PFR0_EL2_SHIFT;
	el_status &= ID_AA64PFR0_ELX_MASK;

	if (el_status)
		mode = MODE_EL2;
	else
		mode = MODE_EL1;

	/*
	 * TODO: Consider the possibility of specifying the SPSR in
	 * the FIP ToC and allowing the platform to have a say as
	 * well.
	 */
	bl33_ep_info->spsr = SPSR_64(mode, MODE_SP_ELX,
				       DISABLE_ALL_EXCEPTIONS);
	SET_SECURITY_STATE(bl33_ep_info->h.attr, NON_SECURE);
}
/*
 * Handle SMC from a lower exception level to switch its execution state
 * (either from AArch64 to AArch32, or vice versa).
 *
 * smc_fid:
 *	SMC function ID - either ARM_SIP_SVC_STATE_SWITCH_64 or
 *	ARM_SIP_SVC_STATE_SWITCH_32.
 * pc_hi, pc_lo:
 *	PC upon re-entry to the calling exception level; width dependent on the
 *	calling exception level.
 * cookie_hi, cookie_lo:
 *	Opaque pointer pairs received from the caller to pass it back, upon
 *	re-entry.
 * handle:
 *	Handle to saved context.
 */
int arm_execution_state_switch(unsigned int smc_fid,
		uint32_t pc_hi,
		uint32_t pc_lo,
		uint32_t cookie_hi,
		uint32_t cookie_lo,
		void *handle)
{
	/* Execution state can be switched only if EL3 is AArch64 */
#ifdef AARCH64
	int caller_64, from_el2, el, endianness, thumb = 0;
	u_register_t spsr, pc, scr, sctlr;
	entry_point_info_t ep;
	cpu_context_t *ctx = (cpu_context_t *) handle;
	el3_state_t *el3_ctx = get_el3state_ctx(ctx);

	/* That the SMC originated from NS is already validated by the caller */

	/*
	 * Disallow state switch if any of the secondaries have been brought up.
	 */
	if (psci_secondaries_brought_up())
		goto exec_denied;

	spsr = read_ctx_reg(el3_ctx, CTX_SPSR_EL3);
	caller_64 = (GET_RW(spsr) == MODE_RW_64);

	if (caller_64) {
		/*
		 * If the call originated from AArch64, expect 32-bit pointers when
		 * switching to AArch32.
		 */
		if ((pc_hi != 0) || (cookie_hi != 0))
			goto invalid_param;

		pc = pc_lo;

		/* Instruction state when entering AArch32 */
		thumb = pc & 1;
	} else {
		/* Construct AArch64 PC */
		pc = (((u_register_t) pc_hi) << 32) | pc_lo;
	}

	/* Make sure PC is 4-byte aligned, except for Thumb */
	if ((pc & 0x3) && !thumb)
		goto invalid_param;

	/*
	 * EL3 controls register width of the immediate lower EL only. Expect
	 * this request from EL2/Hyp unless:
	 *
	 * - EL2 is not implemented;
	 * - EL2 is implemented, but was disabled. This can be inferred from
	 *   SCR_EL3.HCE.
	 */
	from_el2 = caller_64 ? (GET_EL(spsr) == MODE_EL2) :
		(GET_M32(spsr) == MODE32_hyp);
	scr = read_ctx_reg(el3_ctx, CTX_SCR_EL3);
	if (!from_el2) {
		/* The call is from NS privilege level other than HYP */

		/*
		 * Disallow switching state if there's a Hypervisor in place;
		 * this request must be taken up with the Hypervisor instead.
		 */
		if (scr & SCR_HCE_BIT)
			goto exec_denied;
	}

	/*
	 * Return to the caller using the same endianness. Extract
	 * endianness bit from the respective system control register
	 * directly.
	 */
	sctlr = from_el2 ? read_sctlr_el2() : read_sctlr_el1();
	endianness = !!(sctlr & SCTLR_EE_BIT);

	/* Construct SPSR for the exception state we're about to switch to */
	if (caller_64) {
		int impl;

		/*
		 * Switching from AArch64 to AArch32. Ensure this CPU implements
		 * the target EL in AArch32.
		 */
		impl = from_el2 ? EL_IMPLEMENTED(2) : EL_IMPLEMENTED(1);
		if (impl != EL_IMPL_A64_A32)
			goto exec_denied;

		/* Return to the equivalent AArch32 privilege level */
		el = from_el2 ? MODE32_hyp : MODE32_svc;
		spsr = SPSR_MODE32(el, thumb ? SPSR_T_THUMB : SPSR_T_ARM,
				endianness, DISABLE_ALL_EXCEPTIONS);
	} else {
		/*
		 * Switching from AArch32 to AArch64. Since it's not possible to
		 * implement an EL as AArch32-only (from which this call was
		 * raised), it's safe to assume AArch64 is also implemented.
		 */
		el = from_el2 ? MODE_EL2 : MODE_EL1;
		spsr = SPSR_64(el, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
	}

	/*
	 * Use the context management library to re-initialize the existing
	 * context with the execution state flipped. Since the library takes
	 * entry_point_info_t pointer as the argument, construct a dummy one
	 * with PC, state width, endianness, security etc. appropriately set.
	 * Other entries in the entry point structure are irrelevant for
	 * purpose.
	 */
	zeromem(&ep, sizeof(ep));
	ep.pc = pc;
	ep.spsr = spsr;
	SET_PARAM_HEAD(&ep, PARAM_EP, VERSION_1,
			((endianness ? EP_EE_BIG : EP_EE_LITTLE) | NON_SECURE |
			 EP_ST_DISABLE));

	/*
	 * Re-initialize the system register context, and exit EL3 as if for the
	 * first time. State switch is effectively a soft reset of the
	 * calling EL.
	 */
	cm_init_my_context(&ep);
	cm_prepare_el3_exit(NON_SECURE);

	/*
	 * State switch success. The caller of SMC wouldn't see the SMC
	 * returning. Instead, execution starts at the supplied entry point,
	 * with context pointers populated in registers 0 and 1.
	 */
	SMC_RET2(handle, cookie_hi, cookie_lo);

invalid_param:
	SMC_RET1(handle, STATE_SW_E_PARAM);

exec_denied:
#endif
	/* State switch denied */
	SMC_RET1(handle, STATE_SW_E_DENIED);
}
示例#19
0
/*******************************************************************************
 * This function is the handler registered for S-EL1 interrupts by the FIQD. It
 * validates the interrupt and upon success arranges entry into the TSP at
 * 'tsp_fiq_entry()' for handling the interrupt.
 ******************************************************************************/
static uint64_t fiqd_sel1_interrupt_handler(uint32_t id,
					    uint32_t flags,
					    void *handle,
					    void *cookie)
{	
	unsigned int iar;

	/* Check the security state when the exception was generated */
	assert(get_interrupt_src_ss(flags) == NON_SECURE);

#if IMF_READ_INTERRUPT_ID
	/* Check the security status of the interrupt */
	assert(plat_ic_get_interrupt_type(id) == INTR_TYPE_S_EL1);
#endif

	/* Sanity check the pointer to this cpu's context */
	assert(handle == cm_get_context(NON_SECURE));

	/* Save the non-secure context before entering the TSP */
	cm_el1_sysregs_context_save(NON_SECURE);

	iar = get_ack_info();
	ack_sgi(iar);

	if(id == WDT_IRQ_BIT_ID)
	{
		/* FIX-ME : change 0xFE to the kernel online CPU mask */
		fiq_smp_call_function(0xFE, aee_wdt_dump, 0, 0);
		aee_wdt_dump();
	}

	if(id == FIQ_SMP_CALL_SGI)
	{
		fiq_icc_isr();
	}

	SMC_RET0(handle);    
#if 0
	/* Get a reference to this cpu's TSP context */
	linear_id = platform_get_core_pos(mpidr);
	tsp_ctx = &fiqd_sp_context[linear_id];
	assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));

	/*
	 * Determine if the TSP was previously preempted. Its last known
	 * context has to be preserved in this case.
	 * The TSP should return control to the FIQD after handling this
	 * FIQ. Preserve essential EL3 context to allow entry into the
	 * TSP at the FIQ entry point using the 'cpu_context' structure.
	 * There is no need to save the secure system register context
	 * since the TSP is supposed to preserve it during S-EL1 interrupt
	 * handling.
	 */
	if (get_std_smc_active_flag(tsp_ctx->state)) {
		tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
						      CTX_SPSR_EL3);
		tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
						     CTX_ELR_EL3);
	}

	cm_el1_sysregs_context_restore(SECURE);
	cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->fiq_entry,
		    SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
	cm_set_next_eret_context(SECURE);

	/*
	 * Tell the TSP that it has to handle an FIQ synchronously. Also the
	 * instruction in normal world where the interrupt was generated is
	 * passed for debugging purposes. It is safe to retrieve this address
	 * from ELR_EL3 as the secure context will not take effect until
	 * el3_exit().
	 */
	SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_FIQ_AND_RETURN, read_elr_el3());
#endif    
}
示例#20
0
entry_point_info_t *bl31_plat_get_next_kernel_ep_info(uint32_t type)
{
	entry_point_info_t *next_image_info;
    unsigned long el_status;
    unsigned int mode;

#if RESET_TO_BL31
    next_image_info = (type == NON_SECURE) ?
		&bl33_entrypoint_info :
		&bl32_entrypoint_info;

    mt_get_entry_point_info(type, next_image_info);

#else
	next_image_info = (type == NON_SECURE) ?
		bl2_to_bl31_params->bl33_ep_info :
		bl2_to_bl31_params->bl32_ep_info;
#endif


    /* Figure out what mode we enter the non-secure world in */
	el_status = read_id_aa64pfr0_el1() >> ID_AA64PFR0_EL2_SHIFT;
	el_status &= ID_AA64PFR0_ELX_MASK;

	if (el_status)
		mode = MODE_EL2;
	else
		mode = MODE_EL1;

#if 0
    if (0 == rw) {
	    printf("LK is AArch32\n");
	    printf("LK start_addr=x0x%x\n", bl33_ep_info->pc);
    	mode = MODE32_svc;
		ee = 0;
		/*
		 * TODO: Choose async. exception bits if HYP mode is not
		 * implemented according to the values of SCR.{AW, FW} bits
		 */
		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;

		bl33_ep_info->spsr = SPSR_MODE32(mode, 0, ee, daif);

		/*
		 * Pass boot argument to LK
		 * ldr     w4, =pl_boot_argument
		 * ldr     w5, =BOOT_ARGUMENT_SIZE
		 */
		bl33_ep_info->args.arg4=(unsigned long)(uintptr_t)&pl_boot_argument;
		bl33_ep_info->args.arg5=(unsigned long)(uintptr_t)BOOT_ARGUMENT_SIZE;
	} else
#endif
    {
        printf("Kernel is 64Bit\n");
		next_image_info->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
        next_image_info->pc = get_kernel_info_pc();
        next_image_info->args.arg0=get_kernel_info_r0();
        next_image_info->args.arg1=get_kernel_info_r1();

        printf("pc=0x%llx, r0=0x%llx, r1=0x%llx\n",
               next_image_info->pc,
               next_image_info->args.arg0,
               next_image_info->args.arg1);

    }
    SET_SECURITY_STATE(next_image_info->h.attr, NON_SECURE);


	/* None of the images on this platform can have 0x0 as the entrypoint */
	if (next_image_info->pc)
		return next_image_info;
	else
		return NULL;
}
		.next_handoff_image_id = INVALID_IMAGE_ID,
	},
	{
		.image_id = BL31_IMAGE_ID,

		SET_STATIC_PARAM_HEAD(image_info, PARAM_EP,
				      VERSION_2, image_info_t, 0),
		.image_info.image_base = BL31_BASE,
		.image_info.image_max_size = BL31_LIMIT - BL31_BASE,

		SET_STATIC_PARAM_HEAD(ep_info, PARAM_EP,
				      VERSION_2, entry_point_info_t,
				      SECURE | EXECUTABLE | EP_FIRST_EXE),
		.ep_info.pc = BL31_BASE,
		.ep_info.spsr = SPSR_64(MODE_EL3, MODE_SP_ELX,
					DISABLE_ALL_EXCEPTIONS),

#ifdef UNIPHIER_LOAD_BL32
		.next_handoff_image_id = BL32_IMAGE_ID,
#else
		.next_handoff_image_id = BL33_IMAGE_ID,
#endif
	},
#ifdef UNIPHIER_LOAD_BL32
	{
		.image_id = BL32_IMAGE_ID,

		SET_STATIC_PARAM_HEAD(image_info, PARAM_EP,
				      VERSION_2, image_info_t, 0),
		.image_info.image_base = BL32_BASE,
		.image_info.image_max_size = BL32_LIMIT - BL32_BASE,