static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){ FLOAT *buffer[DIVIDE_RATE]; BLASLONG k, lda, ldb, ldc; BLASLONG m_from, m_to, n_from, n_to, N_from, N_to; FLOAT *alpha, *beta; FLOAT *a, *b, *c; job_t *job = (job_t *)args -> common; BLASLONG xxx, bufferside; BLASLONG ls, min_l, jjs, min_jj; BLASLONG is, min_i, div_n; BLASLONG i, current; BLASLONG l1stride, l2size; #ifdef TIMING BLASULONG rpcc_counter; BLASULONG copy_A = 0; BLASULONG copy_B = 0; BLASULONG kernel = 0; BLASULONG waiting1 = 0; BLASULONG waiting2 = 0; BLASULONG waiting3 = 0; BLASULONG waiting6[MAX_CPU_NUMBER]; BLASULONG ops = 0; for (i = 0; i < args -> nthreads; i++) waiting6[i] = 0; #endif k = K; a = (FLOAT *)A; b = (FLOAT *)B; c = (FLOAT *)C; lda = LDA; ldb = LDB; ldc = LDC; alpha = (FLOAT *)args -> alpha; beta = (FLOAT *)args -> beta; m_from = 0; m_to = M; if (range_m) { m_from = range_m[0]; m_to = range_m[1]; } n_from = 0; n_to = N; N_from = 0; N_to = N; if (range_n) { n_from = range_n[mypos + 0]; n_to = range_n[mypos + 1]; N_from = range_n[0]; N_to = range_n[args -> nthreads]; } if (beta) { #ifndef COMPLEX if (beta[0] != ONE) #else if ((beta[0] != ONE) || (beta[1] != ZERO)) #endif BETA_OPERATION(m_from, m_to, N_from, N_to, beta, c, ldc); } if ((k == 0) || (alpha == NULL)) return 0; if ((alpha[0] == ZERO) #ifdef COMPLEX && (alpha[1] == ZERO) #endif ) return 0; l2size = GEMM_P * GEMM_Q; #if 0 fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld n_from : %ld n_to : %ld N_from : %ld N_to : %ld\n", mypos, m_from, m_to, n_from, n_to, N_from, N_to); fprintf(stderr, "GEMM: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM_P, (BLASLONG)GEMM_Q, (BLASLONG)GEMM_R); #endif div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE; buffer[0] = sb; for (i = 1; i < DIVIDE_RATE; i++) { buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1)) * COMPSIZE; } for(ls = 0; ls < k; ls += min_l){ min_l = k - ls; if (min_l >= GEMM_Q * 2) { min_l = GEMM_Q; } else { if (min_l > GEMM_Q) min_l = (min_l + 1) / 2; } l1stride = 1; min_i = m_to - m_from; if (min_i >= GEMM_P * 2) { min_i = GEMM_P; } else { if (min_i > GEMM_P) { min_i = (min_i / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1); } else { if (args -> nthreads == 1) l1stride = 0; } } START_RPCC(); ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); STOP_RPCC(copy_A); div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE; for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) { START_RPCC(); /* Make sure if no one is using buffer */ for (i = 0; i < args -> nthreads; i++) while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;}; STOP_RPCC(waiting1); #if defined(FUSED_GEMM) && !defined(TIMING) FUSED_KERNEL_OPERATION(min_i, MIN(n_to, xxx + div_n) - xxx, min_l, alpha, sa, buffer[bufferside], b, ldb, c, ldc, m_from, xxx, ls); #else for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){ min_jj = MIN(n_to, xxx + div_n) - jjs; if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N; START_RPCC(); OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride); STOP_RPCC(copy_B); START_RPCC(); KERNEL_OPERATION(min_i, min_jj, min_l, alpha, sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride, c, ldc, m_from, jjs); STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * min_jj * min_l; #endif } #endif for (i = 0; i < args -> nthreads; i++) job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside]; WMB; } current = mypos; do { current ++; if (current >= args -> nthreads) current = 0; div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE; for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { if (current != mypos) { START_RPCC(); /* thread has to wait */ while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;}; STOP_RPCC(waiting2); START_RPCC(); KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha, sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], c, ldc, m_from, xxx); STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l; #endif } if (m_to - m_from == min_i) { job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; } } } while (current != mypos); for(is = m_from + min_i; is < m_to; is += min_i){ min_i = m_to - is; if (min_i >= GEMM_P * 2) { min_i = GEMM_P; } else if (min_i > GEMM_P) { min_i = ((min_i + 1) / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1); } START_RPCC(); ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa); STOP_RPCC(copy_A); current = mypos; do { div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE; for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { START_RPCC(); KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha, sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], c, ldc, is, xxx); STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l; #endif if (is + min_i >= m_to) { /* Thread doesn't need this buffer any more */ job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; WMB; } } current ++; if (current >= args -> nthreads) current = 0; } while (current != mypos); } } START_RPCC(); for (i = 0; i < args -> nthreads; i++) { for (xxx = 0; xxx < DIVIDE_RATE; xxx++) { while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;}; } } STOP_RPCC(waiting3); #ifdef TIMING BLASLONG waiting = waiting1 + waiting2 + waiting3; BLASLONG total = copy_A + copy_B + kernel + waiting; fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2f Copy_B : %6.2f Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f", mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100., (double)waiting1 /(double)total * 100., (double)waiting2 /(double)total * 100., (double)waiting3 /(double)total * 100., (double)ops/(double)kernel / 4. * 100.); #if 0 fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2ld Copy_B : %6.2ld Wait : %6.2ld\n", mypos, copy_A, copy_B, waiting); fprintf(stderr, "Waiting[%2ld] %6.2f %6.2f %6.2f\n", mypos, (double)waiting1/(double)waiting * 100., (double)waiting2/(double)waiting * 100., (double)waiting3/(double)waiting * 100.); #endif fprintf(stderr, "\n"); #endif return 0; }
int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG dummy){ BLASLONG k, lda, ldb, ldc; FLOAT *alpha, *beta; FLOAT *a, *b, *c; BLASLONG m_from, m_to, n_from, n_to; BLASLONG ls, is, js, jjs; BLASLONG min_l, min_i, min_j, min_jj; #ifdef TIMING BLASULONG rpcc_counter; BLASULONG BLASLONG innercost = 0; BLASULONG BLASLONG outercost = 0; BLASULONG BLASLONG kernelcost = 0; double total; #endif k = K; a = (FLOAT *)A; b = (FLOAT *)B; c = (FLOAT *)C; lda = LDA; ldb = LDB; ldc = LDC; alpha = (FLOAT *)args -> alpha; beta = (FLOAT *)args -> beta; m_from = 0; m_to = M; if (range_m) { m_from = *(((BLASLONG *)range_m) + 0); m_to = *(((BLASLONG *)range_m) + 1); } n_from = 0; n_to = N; if (range_n) { n_from = *(((BLASLONG *)range_n) + 0); n_to = *(((BLASLONG *)range_n) + 1); } if (beta) { #ifndef COMPLEX if (beta[0] != ONE) #else if ((beta[0] != ONE) || (beta[1] != ZERO)) #endif BETA_OPERATION(m_from, m_to, n_from, n_to, beta, c, ldc); } if ((k == 0) || (alpha == NULL)) return 0; if ((alpha[0] == ZERO) #ifdef COMPLEX && (alpha[1] == ZERO) #endif ) return 0; #if 0 printf("GEMM: M_from : %ld M_to : %ld N_from : %ld N_to : %ld k : %ld\n", m_from, m_to, n_from, n_to, k); printf("GEMM: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM3M_P, (BLASLONG)GEMM3M_Q, (BLASLONG)GEMM3M_R); printf("GEMM: SA .. %p SB .. %p\n", sa, sb); #endif #ifdef DEBUG innercost = 0; outercost = 0; kernelcost = 0; #endif for(js = n_from; js < n_to; js += GEMM3M_R){ min_j = n_to - js; if (min_j > GEMM3M_R) min_j = GEMM3M_R; for(ls = 0; ls < k; ls += min_l){ min_l = k - ls; if (min_l >= GEMM3M_Q * 2) { min_l = GEMM3M_Q; } else { if (min_l > GEMM3M_Q) { min_l = (min_l + 1) / 2; #ifdef UNROLL_X min_l = (min_l + UNROLL_X - 1) & ~(UNROLL_X - 1); #endif } } min_i = m_to - m_from; if (min_i >= GEMM3M_P * 2) { min_i = GEMM3M_P; } else { if (min_i > GEMM3M_P) { min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1); } } START_RPCC(); ICOPYB_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); STOP_RPCC(innercost); for(jjs = js; jjs < js + min_j; jjs += min_jj){ min_jj = min_j + js - jjs; if (min_jj > GEMM3M_UNROLL_N) min_jj = GEMM3M_UNROLL_N; START_RPCC(); #if defined(NN) || defined(NT) || defined(TN) || defined(TT) || defined(RN) || defined(RT) || defined(CN) || defined(CT) OCOPYB_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js)); #else OCOPYB_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js)); #endif STOP_RPCC(outercost); START_RPCC(); KERNEL_OPERATION(min_i, min_jj, min_l, ALPHA5, ALPHA6, sa, sb + min_l * (jjs - js), c, ldc, m_from, jjs); STOP_RPCC(kernelcost); } for(is = m_from + min_i; is < m_to; is += min_i){ min_i = m_to - is; if (min_i >= GEMM3M_P * 2) { min_i = GEMM3M_P; } else if (min_i > GEMM3M_P) { min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1); } START_RPCC(); ICOPYB_OPERATION(min_l, min_i, a, lda, ls, is, sa); STOP_RPCC(innercost); START_RPCC(); KERNEL_OPERATION(min_i, min_j, min_l, ALPHA5, ALPHA6, sa, sb, c, ldc, is, js); STOP_RPCC(kernelcost); } min_i = m_to - m_from; if (min_i >= GEMM3M_P * 2) { min_i = GEMM3M_P; } else { if (min_i > GEMM3M_P) { min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1); } } START_RPCC(); ICOPYR_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); STOP_RPCC(innercost); for(jjs = js; jjs < js + min_j; jjs += min_jj){ min_jj = min_j + js - jjs; if (min_jj > GEMM3M_UNROLL_N) min_jj = GEMM3M_UNROLL_N; START_RPCC(); #if defined(NN) || defined(NT) || defined(TN) || defined(TT) OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js)); #elif defined(RR) || defined(RC) || defined(CR) || defined(CC) OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js)); #elif defined(RN) || defined(RT) || defined(CN) || defined(CT) OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js)); #else OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js)); #endif STOP_RPCC(outercost); START_RPCC(); KERNEL_OPERATION(min_i, min_jj, min_l, ALPHA11, ALPHA12, sa, sb + min_l * (jjs - js), c, ldc, m_from, jjs); STOP_RPCC(kernelcost); } for(is = m_from + min_i; is < m_to; is += min_i){ min_i = m_to - is; if (min_i >= GEMM3M_P * 2) { min_i = GEMM3M_P; } else if (min_i > GEMM3M_P) { min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1); } START_RPCC(); ICOPYR_OPERATION(min_l, min_i, a, lda, ls, is, sa); STOP_RPCC(innercost); START_RPCC(); KERNEL_OPERATION(min_i, min_j, min_l, ALPHA11, ALPHA12, sa, sb, c, ldc, is, js); STOP_RPCC(kernelcost); } min_i = m_to - m_from; if (min_i >= GEMM3M_P * 2) { min_i = GEMM3M_P; } else { if (min_i > GEMM3M_P) { min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1); } } START_RPCC(); ICOPYI_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); STOP_RPCC(innercost); for(jjs = js; jjs < js + min_j; jjs += min_jj){ min_jj = min_j + js - jjs; if (min_jj > GEMM3M_UNROLL_N) min_jj = GEMM3M_UNROLL_N; START_RPCC(); #if defined(NN) || defined(NT) || defined(TN) || defined(TT) OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js)); #elif defined(RR) || defined(RC) || defined(CR) || defined(CC) OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js)); #elif defined(RN) || defined(RT) || defined(CN) || defined(CT) OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js)); #else OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js)); #endif STOP_RPCC(outercost); START_RPCC(); KERNEL_OPERATION(min_i, min_jj, min_l, ALPHA17, ALPHA18, sa, sb + min_l * (jjs - js), c, ldc, m_from, jjs); STOP_RPCC(kernelcost); } for(is = m_from + min_i; is < m_to; is += min_i){ min_i = m_to - is; if (min_i >= GEMM3M_P * 2) { min_i = GEMM3M_P; } else if (min_i > GEMM3M_P) { min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1); } START_RPCC(); ICOPYI_OPERATION(min_l, min_i, a, lda, ls, is, sa); STOP_RPCC(innercost); START_RPCC(); KERNEL_OPERATION(min_i, min_j, min_l, ALPHA17, ALPHA18, sa, sb, c, ldc, is, js); STOP_RPCC(kernelcost); } } /* end of js */ } /* end of ls */ #ifdef TIMING total = (double)outercost + (double)innercost + (double)kernelcost; printf( "Copy A : %5.2f Copy B: %5.2f Kernel : %5.2f\n", innercost / total * 100., outercost / total * 100., kernelcost / total * 100.); printf( " Total %10.3f%% %10.3f MFlops\n", ((double)(m_to - m_from) * (double)(n_to - n_from) * (double)k) / (double)kernelcost / 2 * 100, 2400. * (2. * (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k) / (double)kernelcost); #endif return 0; }
static int gemm_single(int mypos, struct sgemmargs *args) { long m_from, m_to, n_from, n_to; long ls, is, js; long min_l, min_i, min_j; long jjs, min_jj; float *sa = saa[mypos]; float *sb = sba[mypos]; long l1stride, gemm_p, l2size; char transa = args->transa; long m = args->m; long n = args->n; long k = args->k; float alpha = args->alpha; float beta = args->beta; float *a = args->a; float *b = args->b; float *c = args->c; long lda = args->lda; long ldb = args->ldb; long ldc = args->ldc; #ifdef TIMING unsigned long long rpcc_counter; unsigned long long innercost = 0; unsigned long long outercost = 0; unsigned long long kernelcost = 0; double total; #endif m_from = 0; m_to = m; n_from = 0; n_to = n; if (beta != 1) BETA_OPERATION(m_from, m_to, n_from, n_to, beta, c, ldc); if((k == 0) || (alpha == 0)) return 0; l2size = GEMM_P * GEMM_Q; #if 0 fprintf(stderr, "GEMM(Single): M_from : %ld M_to : %ld N_from : %ld N_to : %ld k : %ld\n", m_from, m_to, n_from, n_to, k); fprintf(stderr, "GEMM(Single):: P = %4ld Q = %4ld R = %4ld\n", (long)GEMM_P, (long)GEMM_Q, (long)GEMM_R); // fprintf(stderr, "GEMM: SA .. %p SB .. %p\n", sa, sb); // fprintf(stderr, "A = %p B = %p C = %p\n\tlda = %ld ldb = %ld ldc = %ld\n", a, b, c, lda, ldb, ldc); #endif #ifdef TIMING innercost = 0; outercost = 0; kernelcost = 0; #endif for(js = n_from; js < n_to; js += GEMM_R) { min_j = n_to - js; if (min_j > GEMM_R) min_j = GEMM_R; for(ls = 0; ls < k; ls += min_l) { min_l = k - ls; if(min_l >= GEMM_Q * 2) { gemm_p = GEMM_P; min_l = GEMM_Q; } else { if(min_l > GEMM_Q) min_l = (min_l / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1); gemm_p = ((l2size / min_l + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1)); while (gemm_p * min_l > l2size) gemm_p -= GEMM_UNROLL_M; } /* First, we have to move data A to L2 cache */ min_i = m_to - m_from; l1stride = 1; if(min_i >= GEMM_P * 2) min_i = GEMM_P; else if(min_i > GEMM_P) min_i = (min_i / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1); else l1stride = 0; START_RPCC(); if(transa) ICOPYT_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); else if(args->ks0) icopy_operation(min_l, min_i, args, ls, m_from, sa); else ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); STOP_RPCC(innercost); for(jjs = js; jjs < js + min_j; jjs += min_jj) { min_jj = min_j + js - jjs; if(min_jj >= 3*GEMM_UNROLL_N) min_jj = 3*GEMM_UNROLL_N; else if(min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N; START_RPCC(); OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs, sb + min_l * (jjs - js) * l1stride); STOP_RPCC(outercost); START_RPCC(); KERNEL_OPERATION(min_i, min_jj, min_l, alpha, sa, sb + min_l * (jjs - js) * l1stride, c, ldc, m_from, jjs); STOP_RPCC(kernelcost); } for(is = m_from + min_i; is < m_to; is += min_i) { min_i = m_to - is; if(min_i >= GEMM_P * 2) min_i = GEMM_P; else if(min_i > GEMM_P) min_i = (min_i / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1); START_RPCC(); if(transa) ICOPYT_OPERATION(min_l, min_i, a, lda, ls, is, sa); else if(args->ks0) icopy_operation(min_l, min_i, args, ls, is, sa); else ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa); STOP_RPCC(innercost); START_RPCC(); KERNEL_OPERATION(min_i, min_j, min_l, alpha, sa, sb, c, ldc, is, js); STOP_RPCC(kernelcost); } /* end of is */ } /* end of js */ } /* end of ls */ #ifdef TIMING total = (double)outercost + (double)innercost + (double)kernelcost; printf( "Copy A : %5.2f Copy B: %5.2f Kernel : %5.2f kernel Effi. : %5.2f Total Effi. : %5.2f\n", innercost / total * 100., outercost / total * 100., kernelcost / total * 100., (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k / (double)kernelcost * 100. / 2., (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k / total * 100. / 2.); #endif return 0; }
static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){ FLOAT *buffer[DIVIDE_RATE]; BLASLONG k, lda, ldc; BLASLONG m_from, m_to, n_from, n_to; FLOAT *alpha, *beta; FLOAT *a, *c; job_t *job = (job_t *)args -> common; BLASLONG xxx, bufferside; BLASLONG ls, min_l, jjs, min_jj; BLASLONG is, min_i, div_n; BLASLONG i, current; #ifdef LOWER BLASLONG start_i; #endif #ifdef TIMING BLASLONG rpcc_counter; BLASLONG copy_A = 0; BLASLONG copy_B = 0; BLASLONG kernel = 0; BLASLONG waiting1 = 0; BLASLONG waiting2 = 0; BLASLONG waiting3 = 0; BLASLONG waiting6[MAX_CPU_NUMBER]; BLASLONG ops = 0; for (i = 0; i < args -> nthreads; i++) waiting6[i] = 0; #endif k = K; a = (FLOAT *)A; c = (FLOAT *)C; lda = LDA; ldc = LDC; alpha = (FLOAT *)args -> alpha; beta = (FLOAT *)args -> beta; m_from = 0; m_to = N; /* Global Range */ n_from = 0; n_to = N; if (range_n) { m_from = range_n[mypos + 0]; m_to = range_n[mypos + 1]; n_from = range_n[0]; n_to = range_n[args -> nthreads]; } if (beta) { #if !defined(COMPLEX) || defined(HERK) if (beta[0] != ONE) #else if ((beta[0] != ONE) || (beta[1] != ZERO)) #endif syrk_beta(m_from, m_to, n_from, n_to, beta, c, ldc); } if ((k == 0) || (alpha == NULL)) return 0; if ((alpha[0] == ZERO) #if defined(COMPLEX) && !defined(HERK) && (alpha[1] == ZERO) #endif ) return 0; #if 0 fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld n_from : %ld n_to : %ld\n", mypos, m_from, m_to, n_from, n_to); #endif div_n = ((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); buffer[0] = sb; for (i = 1; i < DIVIDE_RATE; i++) { buffer[i] = buffer[i - 1] + GEMM_Q * div_n * COMPSIZE; } for(ls = 0; ls < k; ls += min_l){ min_l = k - ls; if (min_l >= GEMM_Q * 2) { min_l = GEMM_Q; } else { if (min_l > GEMM_Q) min_l = (min_l + 1) / 2; } min_i = m_to - m_from; if (min_i >= GEMM_P * 2) { min_i = GEMM_P; } else { if (min_i > GEMM_P) { min_i = (min_i / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); } } #ifdef LOWER xxx = (m_to - m_from - min_i) % GEMM_P; if (xxx) min_i -= GEMM_P - xxx; #endif START_RPCC(); #ifndef LOWER ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); #else ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_to - min_i, sa); #endif STOP_RPCC(copy_A); div_n = ((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); for (xxx = m_from, bufferside = 0; xxx < m_to; xxx += div_n, bufferside ++) { START_RPCC(); /* Make sure if no one is using buffer */ #ifndef LOWER for (i = 0; i < mypos; i++) #else for (i = mypos + 1; i < args -> nthreads; i++) #endif while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;}; STOP_RPCC(waiting1); #ifndef LOWER for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){ min_jj = MIN(m_to, xxx + div_n) - jjs; if (xxx == m_from) { if (min_jj > min_i) min_jj = min_i; } else { if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN; } START_RPCC(); OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE); STOP_RPCC(copy_B); START_RPCC(); KERNEL_OPERATION(min_i, min_jj, min_l, alpha, sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE, c, ldc, m_from, jjs); STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * min_jj * min_l; #endif } #else for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){ min_jj = MIN(m_to, xxx + div_n) - jjs; if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN; START_RPCC(); OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE); STOP_RPCC(copy_B); START_RPCC(); KERNEL_OPERATION(min_i, min_jj, min_l, alpha, sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE, c, ldc, m_to - min_i, jjs); STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * min_jj * min_l; #endif } #endif #ifndef LOWER for (i = 0; i <= mypos; i++) #else for (i = mypos; i < args -> nthreads; i++) #endif job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside]; WMB; } #ifndef LOWER current = mypos + 1; while (current < args -> nthreads) { #else current = mypos - 1; while (current >= 0) { #endif div_n = ((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { START_RPCC(); /* thread has to wait */ while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;}; STOP_RPCC(waiting2); START_RPCC(); #ifndef LOWER KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha, sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], c, ldc, m_from, xxx); #else KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha, sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], c, ldc, m_to - min_i, xxx); #endif STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l; #endif if (m_to - m_from == min_i) { job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; } } #ifndef LOWER current ++; #else current --; #endif } #ifndef LOWER for(is = m_from + min_i; is < m_to; is += min_i){ min_i = m_to - is; #else start_i = min_i; for(is = m_from; is < m_to - start_i; is += min_i){ min_i = m_to - start_i - is; #endif if (min_i >= GEMM_P * 2) { min_i = GEMM_P; } else if (min_i > GEMM_P) { min_i = ((min_i + 1) / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); } START_RPCC(); ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa); STOP_RPCC(copy_A); current = mypos; do { div_n = ((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { START_RPCC(); KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha, sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], c, ldc, is, xxx); STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l; #endif #ifndef LOWER if (is + min_i >= m_to) { #else if (is + min_i >= m_to - start_i) { #endif /* Thread doesn't need this buffer any more */ job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; WMB; } } #ifndef LOWER current ++; } while (current != args -> nthreads); #else current --; } while (current >= 0); #endif } } START_RPCC(); for (i = 0; i < args -> nthreads; i++) { if (i != mypos) { for (xxx = 0; xxx < DIVIDE_RATE; xxx++) { while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;}; } } } STOP_RPCC(waiting3); #ifdef TIMING BLASLONG waiting = waiting1 + waiting2 + waiting3; BLASLONG total = copy_A + copy_B + kernel + waiting; fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2f Copy_B : %6.2f Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f", mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100., (double)waiting1 /(double)total * 100., (double)waiting2 /(double)total * 100., (double)waiting3 /(double)total * 100., (double)ops/(double)kernel / 4. * 100.); #if 0 fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2ld Copy_B : %6.2ld Wait : %6.2ld\n", mypos, copy_A, copy_B, waiting); fprintf(stderr, "Waiting[%2ld] %6.2f %6.2f %6.2f\n", mypos, (double)waiting1/(double)waiting * 100., (double)waiting2/(double)waiting * 100., (double)waiting3/(double)waiting * 100.); #endif fprintf(stderr, "\n"); #endif return 0; } int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){ blas_arg_t newarg; #ifndef USE_ALLOC_HEAP job_t job[MAX_CPU_NUMBER]; #else job_t * job = NULL; #endif blas_queue_t queue[MAX_CPU_NUMBER]; BLASLONG range[MAX_CPU_NUMBER + 100]; BLASLONG num_cpu; BLASLONG nthreads = args -> nthreads; BLASLONG width, i, j, k; BLASLONG n, n_from, n_to; int mode, mask; double dnum; if ((nthreads == 1) || (args -> n < nthreads * SWITCH_RATIO)) { SYRK_LOCAL(args, range_m, range_n, sa, sb, 0); return 0; } #ifndef COMPLEX #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_REAL; mask = MAX(QGEMM_UNROLL_M, QGEMM_UNROLL_N) - 1; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_REAL; mask = MAX(DGEMM_UNROLL_M, DGEMM_UNROLL_N) - 1; #else mode = BLAS_SINGLE | BLAS_REAL; mask = MAX(SGEMM_UNROLL_M, SGEMM_UNROLL_N) - 1; #endif #else #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_COMPLEX; mask = MAX(XGEMM_UNROLL_M, XGEMM_UNROLL_N) - 1; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_COMPLEX; mask = MAX(ZGEMM_UNROLL_M, ZGEMM_UNROLL_N) - 1; #else mode = BLAS_SINGLE | BLAS_COMPLEX; mask = MAX(CGEMM_UNROLL_M, CGEMM_UNROLL_N) - 1; #endif #endif newarg.m = args -> m; newarg.n = args -> n; newarg.k = args -> k; newarg.a = args -> a; newarg.b = args -> b; newarg.c = args -> c; newarg.lda = args -> lda; newarg.ldb = args -> ldb; newarg.ldc = args -> ldc; newarg.alpha = args -> alpha; newarg.beta = args -> beta; #ifdef USE_ALLOC_HEAP job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t)); if(job==NULL){ fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__); exit(1); } #endif newarg.common = (void *)job; if (!range_n) { n_from = 0; n_to = args -> n; } else { n_from = range_n[0]; n_to = range_n[1] - range_n[0]; } #ifndef LOWER range[MAX_CPU_NUMBER] = n_to - n_from; range[0] = 0; num_cpu = 0; i = 0; n = n_to - n_from; dnum = (double)n * (double)n /(double)nthreads; while (i < n){ if (nthreads - num_cpu > 1) { double di = (double)i; width = (((BLASLONG)(sqrt(di * di + dnum) - di) + mask) & ~mask); if (num_cpu == 0) width = n - ((n - width) & ~mask); if ((width > n - i) || (width < mask)) width = n - i; } else { width = n - i; } range[MAX_CPU_NUMBER - num_cpu - 1] = range[MAX_CPU_NUMBER - num_cpu] - width; queue[num_cpu].mode = mode; queue[num_cpu].routine = inner_thread; queue[num_cpu].args = &newarg; queue[num_cpu].range_m = range_m; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i += width; } for (i = 0; i < num_cpu; i ++) queue[i].range_n = &range[MAX_CPU_NUMBER - num_cpu]; #else range[0] = 0; num_cpu = 0; i = 0; n = n_to - n_from; dnum = (double)n * (double)n /(double)nthreads; while (i < n){ if (nthreads - num_cpu > 1) { double di = (double)i; width = (((BLASLONG)(sqrt(di * di + dnum) - di) + mask) & ~mask); if ((width > n - i) || (width < mask)) width = n - i; } else { width = n - i; } range[num_cpu + 1] = range[num_cpu] + width; queue[num_cpu].mode = mode; queue[num_cpu].routine = inner_thread; queue[num_cpu].args = &newarg; queue[num_cpu].range_m = range_m; queue[num_cpu].range_n = range; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i += width; } #endif newarg.nthreads = num_cpu; if (num_cpu) { for (j = 0; j < num_cpu; j++) { for (i = 0; i < num_cpu; i++) { for (k = 0; k < DIVIDE_RATE; k++) { job[j].working[i][CACHE_LINE_SIZE * k] = 0; } } } queue[0].sa = sa; queue[0].sb = sb; queue[num_cpu - 1].next = NULL; exec_blas(num_cpu, queue); } #ifdef USE_ALLOC_HEAP free(job); #endif return 0; }
static int gemm_thread(long mypos, long nthreads, struct sgemmargs *args, long *range_m, long *range_n) { float *buffer[DIVIDE_RATE]; float *sa, *sb; long m_from, m_to, n_from, n_to; long xxx, bufferside; long ls, min_l, jjs, min_jj; long is, min_i, div_n; long i, current; long l1stride; char transa = args->transa; long m = args->m; long n = args->n; long k = args->k; float alpha = args->alpha; float beta = args->beta; float *a = args->a; float *b = args->b; float *c = args->c; long lda = args->lda; long ldb = args->ldb; long ldc = args->ldc; #ifdef TIMING unsigned long rpcc_counter; unsigned long copy_A = 0; unsigned long copy_B = 0; unsigned long kernel = 0; unsigned long waiting1 = 0; unsigned long waiting2 = 0; unsigned long waiting3 = 0; unsigned long waiting6[MAX_CPU_NUMBER]; unsigned long ops = 0; for (i = 0; i < num_threads; i++) waiting6[i] = 0; #endif sa = saa[mypos]; sb = sba[mypos]; m_from = 0; m_to = m; if(range_m) { m_from = range_m[mypos + 0]; m_to = range_m[mypos + 1]; } n_from = 0; n_to = n; if (range_n) { n_from = range_n[mypos + 0]; n_to = range_n[mypos + 1]; } if(beta != 1) BETA_OPERATION(m_from, m_to, 0, n, beta, c, ldc); if(k == 0 || alpha == 0) return 0; #if 0 fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld n_from : %ld n_to : %ld\n", mypos, m_from, m_to, n_from, n_to); fprintf(stderr, "GEMM: P = %4ld Q = %4ld R = %4ld\n", (long)GEMM_P, (long)GEMM_Q, (long)GEMM_R); #endif div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE; buffer[0] = sb; for (i = 1; i < DIVIDE_RATE; i++) buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1)); for(ls = 0; ls < k; ls += min_l) { min_l = k - ls; if (min_l >= GEMM_Q * 2) min_l = GEMM_Q; else if (min_l > GEMM_Q) min_l = (min_l + 1) / 2; l1stride = 1; min_i = m_to - m_from; if (min_i >= GEMM_P * 2) min_i = GEMM_P; else if(min_i > GEMM_P) min_i = (min_i / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1); else if (nthreads == 1) l1stride = 0; START_RPCC(); //printf("icopy%ld (%ld,%ld)%ld (%ld,%ld)\n", mypos, min_l, min_i, lda, ls, m_from); if(transa) ICOPYT_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); else if(args->ks0) icopy_operation(min_l, min_i, args, ls, m_from, sa); else ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); STOP_RPCC(copy_A); div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE; for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) { START_RPCC(); /* Make sure if no one is using buffer */ for (i = 0; i < nthreads; i++) while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;} STOP_RPCC(waiting1); for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj) { min_jj = MIN(n_to, xxx + div_n) - jjs; if(min_jj >= 3*GEMM_UNROLL_N) min_jj = 3*GEMM_UNROLL_N; else if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N; START_RPCC(); OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs, buffer[bufferside] + min_l * (jjs - xxx) * l1stride); STOP_RPCC(copy_B); START_RPCC(); KERNEL_OPERATION(min_i, min_jj, min_l, alpha, sa, buffer[bufferside] + min_l * (jjs - xxx) * l1stride, c, ldc, m_from, jjs); STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * min_jj * min_l; #endif } for (i = 0; i < nthreads; i++) job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (long)buffer[bufferside]; WMB; } current = mypos; do { current ++; if(current >= nthreads) current = 0; div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE; for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { if (current != mypos) { START_RPCC(); /* thread has to wait */ while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;} STOP_RPCC(waiting2); START_RPCC(); KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha, sa, (float *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], c, ldc, m_from, xxx); STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l; #endif } if (m_to - m_from == min_i) job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; } } while (current != mypos); for(is = m_from + min_i; is < m_to; is += min_i) { min_i = m_to - is; if (min_i >= GEMM_P * 2) min_i = GEMM_P; else if (min_i > GEMM_P) min_i = ((min_i + 1) / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1); START_RPCC(); //printf("icopya%ld (%ld,%ld)%ld (%ld,%ld)\n", mypos, min_l, min_i, lda, ls, is); if(transa) ICOPYT_OPERATION(min_l, min_i, a, lda, ls, is, sa); else if(args->ks0) icopy_operation(min_l, min_i, args, ls, is, sa); else ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa); STOP_RPCC(copy_A); current = mypos; do { div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE; for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { START_RPCC(); KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha, sa, (float *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], c, ldc, is, xxx); STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l; #endif if(is + min_i >= m_to) { /* Thread doesn't need this buffer any more */ job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; WMB; } } current ++; if(current >= nthreads) current = 0; } while (current != mypos); } } START_RPCC(); for (i = 0; i < nthreads; i++) for (xxx = 0; xxx < DIVIDE_RATE; xxx++) while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;} STOP_RPCC(waiting3); #ifdef TIMING long waiting = waiting1 + waiting2 + waiting3; long total = copy_A + copy_B + kernel + waiting; fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2f Copy_B : %6.2f Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f", mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100., (double)waiting1 /(double)total * 100., (double)waiting2 /(double)total * 100., (double)waiting3 /(double)total * 100., (double)ops/(double)kernel / 4. * 100.); #if 0 fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2ld Copy_B : %6.2ld Wait : %6.2ld\n", mypos, copy_A, copy_B, waiting); fprintf(stderr, "Waiting[%2ld] %6.2f %6.2f %6.2f\n", mypos, (double)waiting1/(double)waiting * 100., (double)waiting2/(double)waiting * 100., (double)waiting3/(double)waiting * 100.); #endif fprintf(stderr, "\n"); #endif return 0; }