示例#1
0
void pwmout_init(pwmout_t* obj, PinName pin)
{
    // Get the peripheral name from the pin and assign it to the object
    obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
    MBED_ASSERT(obj->pwm != (PWMName)NC);

    // Get the pin function and assign the used channel to the object
    uint32_t function = pinmap_function(pin, PinMap_PWM);
    MBED_ASSERT(function != (uint32_t)NC);
    obj->channel = STM_PIN_CHANNEL(function);
    obj->inverted = STM_PIN_INVERTED(function);

    // Enable TIM clock
    if (obj->pwm == PWM_2) __TIM2_CLK_ENABLE();
#if defined(TIM3_BASE)
    if (obj->pwm == PWM_3) __TIM3_CLK_ENABLE();
#endif
    if (obj->pwm == PWM_21) __TIM21_CLK_ENABLE();
#if defined(TIM22_BASE)
    if (obj->pwm == PWM_22) __TIM22_CLK_ENABLE();
#endif

    // Configure GPIO
    pinmap_pinout(pin, PinMap_PWM);

    obj->pin = pin;
    obj->period = 0;
    obj->pulse = 0;

    pwmout_period_us(obj, 20000); // 20 ms per default
}
示例#2
0
void pwmout_init(pwmout_t* obj, PinName pin)
{
    // Get the peripheral name from the pin and assign it to the object
    obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
    MBED_ASSERT(obj->pwm != (PWMName)NC);

    // Get the functions (timer channel, (non)inverted) from the pin and assign it to the object
    uint32_t function = pinmap_function(pin, PinMap_PWM);
    MBED_ASSERT(function != (uint32_t)NC);
    obj->channel = STM_PIN_CHANNEL(function);
    obj->inverted = STM_PIN_INVERTED(function);

    // Enable TIM clock
#if defined(TIM1_BASE)
    if (obj->pwm == PWM_1) __HAL_RCC_TIM1_CLK_ENABLE();
#endif
#if defined(TIM2_BASE)
    if (obj->pwm == PWM_2) __HAL_RCC_TIM2_CLK_ENABLE();
#endif
#if defined(TIM3_BASE)
    if (obj->pwm == PWM_3) __HAL_RCC_TIM3_CLK_ENABLE();
#endif
#if defined(TIM4_BASE)
    if (obj->pwm == PWM_4) __HAL_RCC_TIM4_CLK_ENABLE();
#endif
#if defined(TIM5_BASE)
    if (obj->pwm == PWM_5) __HAL_RCC_TIM5_CLK_ENABLE();
#endif
#if defined(TIM8_BASE)
    if (obj->pwm == PWM_8) __HAL_RCC_TIM8_CLK_ENABLE();
#endif
#if defined(TIM9_BASE)
    if (obj->pwm == PWM_9) __HAL_RCC_TIM9_CLK_ENABLE();
#endif
#if defined(TIM10_BASE)
    if (obj->pwm == PWM_10) __HAL_RCC_TIM10_CLK_ENABLE();
#endif
#if defined(TIM11_BASE)
    if (obj->pwm == PWM_11) __HAL_RCC_TIM11_CLK_ENABLE();
#endif
#if defined(TIM12_BASE)
    if (obj->pwm == PWM_12) __HAL_RCC_TIM12_CLK_ENABLE();
#endif
#if defined(TIM13_BASE)
    if (obj->pwm == PWM_13) __HAL_RCC_TIM13_CLK_ENABLE();
#endif
#if defined(TIM14_BASE)
    if (obj->pwm == PWM_14) __HAL_RCC_TIM14_CLK_ENABLE();
#endif

    // Configure GPIO
    pinmap_pinout(pin, PinMap_PWM);

    obj->pin = pin;
    obj->period = 0;
    obj->pulse = 0;
    obj->prescaler = 1;

    pwmout_period_us(obj, 20000); // 20 ms per default
}
示例#3
0
void pwmout_init(pwmout_t* obj, PinName pin)
{
    // Get the peripheral name from the pin and assign it to the object
    obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
    MBED_ASSERT(obj->pwm != (PWMName)NC);

    // Get the functions (timer channel, (non)inverted) from the pin and assign it to the object
    uint32_t function = pinmap_function(pin, PinMap_PWM);
    MBED_ASSERT(function != (uint32_t)NC);
    obj->channel = STM_PIN_CHANNEL(function);
    obj->inverted = STM_PIN_INVERTED(function);

    // Enable TIM clock
    if (obj->pwm == PWM_1) __TIM1_CLK_ENABLE();
    if (obj->pwm == PWM_2) __TIM2_CLK_ENABLE();
    if (obj->pwm == PWM_3) __TIM3_CLK_ENABLE();

    // Configure GPIO
    pinmap_pinout(pin, PinMap_PWM);

    obj->pin = pin;
    obj->period = 0;
    obj->pulse = 0;
    obj->prescaler = 1;

    pwmout_period_us(obj, 20000); // 20 ms per default
}
示例#4
0
void analogin_init(analogin_t *obj, PinName pin)
{
    uint32_t function = (uint32_t)NC;

    // ADC Internal Channels "pins"  (Temperature, Vref, Vbat, ...)
    //   are described in PinNames.h and PeripheralPins.c
    //   Pin value must be between 0xF0 and 0xFF
    if ((pin < 0xF0) || (pin >= 0x100)) {
        // Normal channels
        // Get the peripheral name from the pin and assign it to the object
        obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC);
        // Get the functions (adc channel) from the pin and assign it to the object
        function = pinmap_function(pin, PinMap_ADC);
        // Configure GPIO
        pinmap_pinout(pin, PinMap_ADC);
    } else {
        // Internal channels
        obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC_Internal);
        function = pinmap_function(pin, PinMap_ADC_Internal);
        // No GPIO configuration for internal channels
    }
    MBED_ASSERT(obj->handle.Instance != (ADC_TypeDef *)NC);
    MBED_ASSERT(function != (uint32_t)NC);

    obj->channel = STM_PIN_CHANNEL(function);

    // Save pin number for the read function
    obj->pin = pin;

    // Configure ADC object structures
    obj->handle.State = HAL_ADC_STATE_RESET;
    obj->handle.Init.OversamplingMode      = DISABLE;
    obj->handle.Init.ClockPrescaler        = ADC_CLOCK_SYNC_PCLK_DIV1;
    obj->handle.Init.Resolution            = ADC_RESOLUTION_12B;
    obj->handle.Init.SamplingTime          = ADC_SAMPLETIME_160CYCLES_5;
    obj->handle.Init.ScanConvMode          = ADC_SCAN_DIRECTION_FORWARD;
    obj->handle.Init.DataAlign             = ADC_DATAALIGN_RIGHT;
    obj->handle.Init.ContinuousConvMode    = DISABLE;
    obj->handle.Init.DiscontinuousConvMode = DISABLE;
    obj->handle.Init.ExternalTrigConvEdge  = ADC_EXTERNALTRIG_EDGE_NONE;
    obj->handle.Init.ExternalTrigConv      = ADC_EXTERNALTRIG0_T6_TRGO; // Not used here
    obj->handle.Init.DMAContinuousRequests = DISABLE;
    obj->handle.Init.EOCSelection          = EOC_SINGLE_CONV;
    obj->handle.Init.Overrun               = OVR_DATA_OVERWRITTEN;
    obj->handle.Init.LowPowerAutoWait      = ENABLE;
    obj->handle.Init.LowPowerFrequencyMode = DISABLE; // To be enabled only if ADC clock < 2.8 MHz
    obj->handle.Init.LowPowerAutoPowerOff  = DISABLE;

    __HAL_RCC_ADC1_CLK_ENABLE();

    if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
        error("Cannot initialize ADC");
    }

    if (!HAL_ADCEx_Calibration_GetValue(&obj->handle, ADC_SINGLE_ENDED)) {
        HAL_ADCEx_Calibration_Start(&obj->handle, ADC_SINGLE_ENDED);
    }

    __HAL_ADC_ENABLE(&obj->handle);
}
示例#5
0
void analogout_init(dac_t *obj, PinName pin)
{
    DAC_ChannelConfTypeDef sConfig;

    // Get the peripheral name from the pin and assign it to the object
    obj->dac = (DACName)pinmap_peripheral(pin, PinMap_DAC);
    MBED_ASSERT(obj->dac != (DACName)NC);

    // Get the pin function and assign the used channel to the object
    uint32_t function = pinmap_function(pin, PinMap_DAC);
    MBED_ASSERT(function != (uint32_t)NC);
    obj->channel = STM_PIN_CHANNEL(function);

    // Configure GPIO
    pinmap_pinout(pin, PinMap_DAC);

    // Save the pin for future use
    obj->pin = pin;

    // Enable DAC clock
    if (obj->dac == DAC_1) {
        __DAC1_CLK_ENABLE();
    }
#if defined(DAC2)
    if (obj->dac == DAC_2) {
        __DAC2_CLK_ENABLE();
    }
#endif

    // Configure DAC
    DacHandle.Instance = (DAC_TypeDef *)(obj->dac);

    sConfig.DAC_Trigger      = DAC_TRIGGER_NONE;
    sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE;

    if (pin == PA_4) {
        HAL_DAC_ConfigChannel(&DacHandle, &sConfig, DAC_CHANNEL_1);
        pa4_used = 1;
    }

#if defined(DAC_CHANNEL_2)
    if (pin == PA_5) {
        HAL_DAC_ConfigChannel(&DacHandle, &sConfig, DAC_CHANNEL_2);
        pa5_used = 1;
    }
#endif

    if (pin == PA_6) {
        HAL_DAC_ConfigChannel(&DacHandle, &sConfig, DAC_CHANNEL_1);
    }

    analogout_write_u16(obj, 0);
}
示例#6
0
void analogout_init(dac_t *obj, PinName pin)
{
    uint32_t channel ;
    HAL_StatusTypeDef status;

    // Get the peripheral name (DAC_1, ...) from the pin and assign it to the object
    obj->dac = (DACName)pinmap_peripheral(pin, PinMap_DAC);
    // Get the functions (dac channel) from the pin and assign it to the object
    uint32_t function = pinmap_function(pin, PinMap_DAC);
    MBED_ASSERT(function != (uint32_t)NC);
    // Save the channel for the write and read functions
    obj->channel = STM_PIN_CHANNEL(function);

    if (obj->dac == (DACName)NC) {
        error("DAC pin mapping failed");
    }

    // Configure GPIO
    pinmap_pinout(pin, PinMap_DAC);

    __GPIOA_CLK_ENABLE();

    __DAC_CLK_ENABLE();

    DacHandle.Instance = DAC;

    status = HAL_DAC_Init(&DacHandle);
    if (status != HAL_OK) {
        error("HAL_DAC_Init failed");
    }

    sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
    sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;

    if (obj->channel == 1) {
        channel = DAC_CHANNEL_1;
    } else {
        channel = DAC_CHANNEL_2;
    }

    if (HAL_DAC_ConfigChannel(&DacHandle, &sConfig, channel) != HAL_OK) {
        error("HAL_DAC_ConfigChannel failed");
    }

    if (HAL_DAC_Start(&DacHandle, channel) != HAL_OK) {
        error("HAL_DAC_Start failed");
    }

    if (HAL_DAC_SetValue(&DacHandle, channel, DAC_ALIGN_12B_R, 0x000) != HAL_OK) {
        error("HAL_DAC_SetValue failed");
    }

}
示例#7
0
void analogout_init(dac_t *obj, PinName pin) {
    DAC_ChannelConfTypeDef sConfig = {0};

    // Get the peripheral name (DAC_1, ...) from the pin and assign it to the object
    obj->dac = (DACName)pinmap_peripheral(pin, PinMap_DAC);
    // Get the functions (dac channel) from the pin and assign it to the object
    uint32_t function = pinmap_function(pin, PinMap_DAC);
    MBED_ASSERT(function != (uint32_t)NC);

    // Save the channel for the write and read functions
    switch (STM_PIN_CHANNEL(function)) {
        case 1:
            obj->channel = DAC_CHANNEL_1;
            break;
#if defined(DAC_CHANNEL_2)
        case 2:
            obj->channel = DAC_CHANNEL_2;
            break;
#endif
        default:
            error("Unknown DAC channel");
            break;
    }

    if (obj->dac == (DACName)NC) {
        error("DAC pin mapping failed");
    }

    // Configure GPIO
    pinmap_pinout(pin, PinMap_DAC);

    __HAL_RCC_GPIOA_CLK_ENABLE();

    __HAL_RCC_DAC_CLK_ENABLE();

    obj->handle.Instance = DAC;
    obj->handle.State = HAL_DAC_STATE_RESET;

    if (HAL_DAC_Init(&obj->handle) != HAL_OK ) {
        error("HAL_DAC_Init failed");
    }

    sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
    sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;

    if (HAL_DAC_ConfigChannel(&obj->handle, &sConfig, obj->channel) != HAL_OK) {
        error("HAL_DAC_ConfigChannel failed");
    }

    analogout_write_u16(obj, 0);
}
示例#8
0
void analogout_init(dac_t *obj, PinName pin)
{
    DAC_ChannelConfTypeDef sConfig = {0};

    // Get the peripheral name from the pin and assign it to the object
    obj->dac = (DACName)pinmap_peripheral(pin, PinMap_DAC);
    MBED_ASSERT(obj->dac != (DACName)NC);

    // Get the pin function and assign the used channel to the object
    uint32_t function = pinmap_function(pin, PinMap_DAC);
    MBED_ASSERT(function != (uint32_t)NC);
    obj->channel = STM_PIN_CHANNEL(function);

    // Configure GPIO
    pinmap_pinout(pin, PinMap_DAC);

    // Save the pin for future use
    obj->pin = pin;

    // Enable DAC clock
    __HAL_RCC_DAC1_CLK_ENABLE();

    // Configure DAC
    DacHandle.Instance = DAC;

    if (HAL_DAC_Init(&DacHandle) != HAL_OK) {
        error("Cannot initialize DAC\n");
    }

    sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE;
    sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
    sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
    sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE;
    sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY;

    if (obj->channel == 2) {
        if (HAL_DAC_ConfigChannel(&DacHandle, &sConfig, DAC_CHANNEL_2) != HAL_OK) {
            error("Cannot configure DAC channel 2\n");
        }
        channel2_used = 1;
    } else { // channel 1 per default
        if (HAL_DAC_ConfigChannel(&DacHandle, &sConfig, DAC_CHANNEL_1) != HAL_OK) {
            error("Cannot configure DAC channel 1\n");
        }
        obj->channel = 1;
        channel1_used = 1;
    }

    analogout_write_u16(obj, 0);
}
示例#9
0
static uint32_t get_pwm_channel(PinName pin)
{
  uint32_t function = pinmap_function(pin, PinMap_PWM);
  uint32_t channel = 0;
  switch(STM_PIN_CHANNEL(function)) {
    case 1:
      channel = TIM_CHANNEL_1;
      break;
    case 2:
      channel = TIM_CHANNEL_2;
      break;
    case 3:
      channel = TIM_CHANNEL_3;
      break;
    case 4:
      channel = TIM_CHANNEL_4;
      break;
    default:
      channel = 0;
    break;
   }
  return channel;
}
示例#10
0
static uint32_t get_dac_channel(PinName pin)
{
  uint32_t function = pinmap_function(pin, PinMap_DAC);
  uint32_t channel = 0;
  switch(STM_PIN_CHANNEL(function)) {
#ifdef DAC_CHANNEL_0
    case 0:
      channel = DAC_CHANNEL_0;
      break;
#endif
    case 1:
      channel = DAC_CHANNEL_1;
    break;
#ifdef DAC_CHANNEL_2
    case 2:
      channel = DAC_CHANNEL_2;
    break;
#endif
    default:
      channel = 0;
    break;
   }
  return channel;
}
示例#11
0
void analogin_init(analogin_t *obj, PinName pin)
{
    uint32_t function = (uint32_t)NC;

    // ADC Internal Channels "pins"  (Temperature, Vref, Vbat, ...)
    //   are described in PinNames.h and PeripheralPins.c
    //   Pin value must be between 0xF0 and 0xFF
    if ((pin < 0xF0) || (pin >= 0x100)) {
        // Normal channels
        // Get the peripheral name from the pin and assign it to the object
        obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC);
        // Get the functions (adc channel) from the pin and assign it to the object
        function = pinmap_function(pin, PinMap_ADC);
        // Configure GPIO
        pinmap_pinout(pin, PinMap_ADC);
    } else {
        // Internal channels
        obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC_Internal);
        function = pinmap_function(pin, PinMap_ADC_Internal);
        // No GPIO configuration for internal channels
    }
    MBED_ASSERT(obj->handle.Instance != (ADC_TypeDef *)NC);
    MBED_ASSERT(function != (uint32_t)NC);

    obj->channel = STM_PIN_CHANNEL(function);

    // Save pin number for the read function
    obj->pin = pin;

    // Configure ADC object structures
    obj->handle.State = HAL_ADC_STATE_RESET;
    obj->handle.Init.ClockPrescaler        = ADC_CLOCK_SYNC_PCLK_DIV2;
    obj->handle.Init.Resolution            = ADC_RESOLUTION_12B;
    obj->handle.Init.DataAlign             = ADC_DATAALIGN_RIGHT;
    obj->handle.Init.ScanConvMode          = DISABLE;
    obj->handle.Init.EOCSelection          = ADC_EOC_SINGLE_CONV;
    obj->handle.Init.LowPowerAutoWait      = DISABLE;
    obj->handle.Init.ContinuousConvMode    = DISABLE;
    obj->handle.Init.NbrOfConversion       = 1;
    obj->handle.Init.DiscontinuousConvMode = DISABLE;
    obj->handle.Init.NbrOfDiscConversion   = 0;
    obj->handle.Init.ExternalTrigConv      = ADC_EXTERNALTRIGCONV_T1_CC1;
    obj->handle.Init.ExternalTrigConvEdge  = ADC_EXTERNALTRIGCONVEDGE_NONE;
    obj->handle.Init.DMAContinuousRequests = DISABLE;
    obj->handle.Init.Overrun               = ADC_OVR_DATA_OVERWRITTEN;

#if defined(ADC1)
    if ((ADCName)obj->handle.Instance == ADC_1) {
        __HAL_RCC_ADC1_CLK_ENABLE();
    }
#endif
#if defined(ADC2)
    if ((ADCName)obj->handle.Instance == ADC_2) {
        __HAL_RCC_ADC2_CLK_ENABLE();
    }
#endif
#if defined(ADC3)
    if ((ADCName)obj->handle.Instance == ADC_3) {
        __HAL_RCC_ADC34_CLK_ENABLE();
    }
#endif
#if defined(ADC4)
    if ((ADCName)obj->handle.Instance == ADC_4) {
        __HAL_RCC_ADC34_CLK_ENABLE();
    }
#endif

    if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
        error("Cannot initialize ADC\n");
    }

    if (!HAL_ADCEx_Calibration_GetValue(&obj->handle, ADC_SINGLE_ENDED)) {
        HAL_ADCEx_Calibration_Start(&obj->handle, ADC_SINGLE_ENDED);
    }
}
示例#12
0
void analogout_init(dac_t *obj, PinName pin)
{
    DAC_ChannelConfTypeDef sConfig = {0};

    // Get the peripheral name from the pin and assign it to the object
    obj->dac = (DACName)pinmap_peripheral(pin, PinMap_DAC);
    MBED_ASSERT(obj->dac != (DACName)NC);

    // Get the pin function and assign the used channel to the object
    uint32_t function = pinmap_function(pin, PinMap_DAC);
    MBED_ASSERT(function != (uint32_t)NC);

    // Save the channel for the write and read functions
    switch (STM_PIN_CHANNEL(function)) {
        case 1:
            obj->channel = DAC_CHANNEL_1;
            break;
#if defined(DAC_CHANNEL_2)
        case 2:
            obj->channel = DAC_CHANNEL_2;
            break;
#endif
        default:
            error("Unknown DAC channel");
            break;
    }

    // Configure GPIO
    pinmap_pinout(pin, PinMap_DAC);

    // Save the pin for future use
    obj->pin = pin;

    // Enable DAC clock
    if (obj->dac == DAC_1) {
        __HAL_RCC_DAC1_CLK_ENABLE();
    }
#if defined(DAC2)
    if (obj->dac == DAC_2) {
        __HAL_RCC_DAC2_CLK_ENABLE();
    }
#endif

    // Configure DAC
    obj->handle.Instance = (DAC_TypeDef *)(obj->dac);
    obj->handle.State = HAL_DAC_STATE_RESET;

    if (HAL_DAC_Init(&obj->handle) != HAL_OK) {
        error("HAL_DAC_Init failed");
    }

    /* Enable both Buffer and Switch in the configuration,
     * letting HAL layer in charge of selecting either one
     * or the other depending on the actual DAC instance and
     * channel being configured.
     */
    sConfig.DAC_Trigger      = DAC_TRIGGER_NONE;
    sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
#if defined(DAC_OUTPUTSWITCH_ENABLE)
    sConfig.DAC_OutputSwitch = DAC_OUTPUTSWITCH_ENABLE;
#endif

    if (pin == PA_4) {
        pa4_used = 1;
    }

    if (pin == PA_5) {
        pa5_used = 1;
    }

    if (HAL_DAC_ConfigChannel(&obj->handle, &sConfig, obj->channel) != HAL_OK) {
        error("HAL_DAC_ConfigChannel failed");
    }

    analogout_write_u16(obj, 0);
}
示例#13
0
/** @addtogroup STM32F4xx_System_Private_FunctionPrototypes
  * @{
  */
static uint32_t get_adc_channel(PinName pin)
{
  uint32_t function = pinmap_function(pin, PinMap_ADC);
  uint32_t channel = 0;
  switch(STM_PIN_CHANNEL(function)) {
#ifdef ADC_CHANNEL_0
    case 0:
      channel = ADC_CHANNEL_0;
      break;
#endif
    case 1:
      channel = ADC_CHANNEL_1;
    break;
    case 2:
      channel = ADC_CHANNEL_2;
    break;
    case 3:
      channel = ADC_CHANNEL_3;
    break;
    case 4:
      channel = ADC_CHANNEL_4;
    break;
    case 5:
      channel = ADC_CHANNEL_5;
    break;
    case 6:
      channel = ADC_CHANNEL_6;
    break;
    case 7:
      channel = ADC_CHANNEL_7;
    break;
    case 8:
      channel = ADC_CHANNEL_8;
    break;
    case 9:
      channel = ADC_CHANNEL_9;
    break;
    case 10:
      channel = ADC_CHANNEL_10;
    break;
    case 11:
      channel = ADC_CHANNEL_11;
    break;
    case 12:
      channel = ADC_CHANNEL_12;
    break;
    case 13:
      channel = ADC_CHANNEL_13;
    break;
    case 14:
      channel = ADC_CHANNEL_14;
    break;
    case 15:
      channel = ADC_CHANNEL_15;
    break;
    case 16:
      channel = ADC_CHANNEL_TEMPSENSOR;
    break;
    case 17:
      channel = ADC_CHANNEL_VREFINT;
    break;
#ifdef ADC_CHANNEL_VBAT
	case 18:
      channel = ADC_CHANNEL_VBAT;
    break;
#endif
    default:
      channel = 0;
    break;
   }
  return channel;
}
示例#14
0
void analogin_init(analogin_t *obj, PinName pin)
{
    static bool adc_hsi_inited = false;
    RCC_OscInitTypeDef RCC_OscInitStruct;
    uint32_t function = (uint32_t)NC;

    // ADC Internal Channels "pins"  (Temperature, Vref, Vbat, ...)
    //   are described in PinNames.h and PeripheralPins.c
    //   Pin value must be between 0xF0 and 0xFF
    if ((pin < 0xF0) || (pin >= 0x100)) {
        // Normal channels
        // Get the peripheral name from the pin and assign it to the object
        obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC);
        // Get the functions (adc channel) from the pin and assign it to the object
        function = pinmap_function(pin, PinMap_ADC);
        // Configure GPIO
        pinmap_pinout(pin, PinMap_ADC);
    } else {
        // Internal channels
        obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC_Internal);
        function = pinmap_function(pin, PinMap_ADC_Internal);
        // No GPIO configuration for internal channels
    }
    MBED_ASSERT(obj->handle.Instance != (ADC_TypeDef *)NC);
    MBED_ASSERT(function != (uint32_t)NC);

    obj->channel = STM_PIN_CHANNEL(function);

    // Save pin number for the read function
    obj->pin = pin;

    // Configure ADC object structures
    obj->handle.State = HAL_ADC_STATE_RESET;
    obj->handle.Init.ClockPrescaler        = ADC_CLOCK_ASYNC_DIV4;
    obj->handle.Init.Resolution            = ADC_RESOLUTION_12B;
    obj->handle.Init.DataAlign             = ADC_DATAALIGN_RIGHT;
    obj->handle.Init.ScanConvMode          = DISABLE;                       // Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1)
    obj->handle.Init.EOCSelection          = EOC_SINGLE_CONV;               // On STM32L1xx ADC, overrun detection is enabled only if EOC selection is set to each conversion (or transfer by DMA enabled, this is not the case in this example).
    obj->handle.Init.LowPowerAutoWait      = ADC_AUTOWAIT_UNTIL_DATA_READ;  // Enable the dynamic low power Auto Delay: new conversion start only when the previous conversion (for regular group) or previous sequence (for injected group) has been treated by user software.
    obj->handle.Init.LowPowerAutoPowerOff  = ADC_AUTOPOWEROFF_IDLE_PHASE;   // Enable the auto-off mode: the ADC automatically powers-off after a conversion and automatically wakes-up when a new conversion is triggered (with startup time between trigger and start of sampling).
    obj->handle.Init.ChannelsBank          = ADC_CHANNELS_BANK_A;
    obj->handle.Init.ContinuousConvMode    = DISABLE;                       // Continuous mode disabled to have only 1 conversion at each conversion trig
    obj->handle.Init.NbrOfConversion       = 1;                             // Parameter discarded because sequencer is disabled
    obj->handle.Init.DiscontinuousConvMode = DISABLE;                       // Parameter discarded because sequencer is disabled
    obj->handle.Init.NbrOfDiscConversion   = 1;                             // Parameter discarded because sequencer is disabled
    obj->handle.Init.ExternalTrigConv      = 0;                             // Not used
    obj->handle.Init.ExternalTrigConvEdge  = ADC_EXTERNALTRIGCONVEDGE_NONE;
    obj->handle.Init.DMAContinuousRequests = DISABLE;

    __HAL_RCC_ADC1_CLK_ENABLE();

    if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
        error("Cannot initialize ADC");
    }

    // This section is done only once
    if (!adc_hsi_inited) {
        adc_hsi_inited = true;
        // Enable the HSI (to clock the ADC)
        RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
        RCC_OscInitStruct.HSIState       = RCC_HSI_ON;
        RCC_OscInitStruct.PLL.PLLState   = RCC_PLL_NONE;
        RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
        HAL_RCC_OscConfig(&RCC_OscInitStruct);
    }
}