示例#1
0
/******************************************************************************
 * ME_CharFromPointContext
 *
 * Returns a character position inside the run given a run-relative
 * pixel horizontal position.
 *
 * If closest is FALSE return the actual character
 * If closest is TRUE will round to the closest leading edge.
 * ie. if the second character is at pixel position 8 and third at 16 then for:
 * closest = FALSE cx = 0..7 return 0, cx = 8..15 return 1
 * closest = TRUE  cx = 0..3 return 0, cx = 4..11 return 1.
 */
int ME_CharFromPointContext(ME_Context *c, int cx, ME_Run *run, BOOL closest, BOOL visual_order)
{
  ME_String *mask_text = NULL;
  WCHAR *str;
  int fit = 0;
  HGDIOBJ hOldFont;
  SIZE sz, sz2, sz3;
  if (!run->len || cx <= 0)
    return 0;

  if (run->nFlags & (MERF_TAB | MERF_ENDCELL))
  {
    if (!closest || cx < run->nWidth / 2) return 0;
    return 1;
  }

  if (run->nFlags & MERF_GRAPHICS)
  {
    SIZE sz;
    ME_GetOLEObjectSize(c, run, &sz);
    if (!closest || cx < sz.cx / 2) return 0;
    return 1;
  }

  if (run->para->nFlags & MEPF_COMPLEX)
  {
      int cp, trailing;
      if (visual_order && run->script_analysis.fRTL) cx = run->nWidth - cx - 1;

      ScriptXtoCP( cx, run->len, run->num_glyphs, run->clusters, run->vis_attrs, run->advances, &run->script_analysis,
                   &cp, &trailing );
      TRACE("x %d cp %d trailing %d (run width %d) rtl %d log order %d\n", cx, cp, trailing, run->nWidth,
            run->script_analysis.fRTL, run->script_analysis.fLogicalOrder);
      return closest ? cp + trailing : cp;
  }

  if (c->editor->cPasswordMask)
  {
    mask_text = ME_MakeStringR( c->editor->cPasswordMask, run->len );
    str = mask_text->szData;
  }
  else
    str = get_text( run, 0 );

  hOldFont = ME_SelectStyleFont(c, run->style);
  GetTextExtentExPointW(c->hDC, str, run->len,
                        cx, &fit, NULL, &sz);
  if (closest && fit != run->len)
  {
    GetTextExtentPoint32W(c->hDC, str, fit, &sz2);
    GetTextExtentPoint32W(c->hDC, str, fit + 1, &sz3);
    if (cx >= (sz2.cx+sz3.cx)/2)
      fit = fit + 1;
  }

  ME_DestroyString( mask_text );

  ME_UnselectStyleFont(c, run->style, hOldFont);
  return fit;
}
int UniscribeHelper::xToCharacter(int x) const
{
    // We iterate in screen order until we find the item with the given pixel
    // position in it. When we find that guy, we ask Uniscribe for the
    // character index.
    HRESULT hr;
    for (size_t screenIndex = 0; screenIndex < m_runs.size(); screenIndex++) {
        int itemIndex = m_screenOrder[screenIndex];
        int itemAdvance = advanceForItem(itemIndex);

        // Note that the run may be empty if shaping failed, so we want to skip
        // over it.
        const Shaping& shaping = m_shapes[itemIndex];
        int itemLength = shaping.charLength();
        if (x <= itemAdvance && itemLength > 0) {
            // The requested offset is within this item.
            const SCRIPT_ITEM& item = m_runs[itemIndex];

            // Account for the leading space we've added to this run that
            // Uniscribe doesn't know about.
            x -= shaping.m_prePadding;

            int charX = 0;
            int trailing;
            hr = ScriptXtoCP(x, itemLength, shaping.glyphLength(),
                             &shaping.m_logs[0], &shaping.m_visualAttributes[0],
                             shaping.effectiveAdvances(), &item.a, &charX,
                             &trailing);

            // The character offset is within the item. We need to add the
            // item's offset to transform it into the space of the TextRun
            return charX + item.iCharPos;
        }

        // The offset is beyond this item, account for its length and move on.
        x -= itemAdvance;
    }

    // Error condition, we don't know what to do if we don't have that X
    // position in any of our items.
    return 0;
}
示例#3
0
bool UniscribeController::shapeAndPlaceItem(const UChar* cp, unsigned i, const SimpleFontData* fontData, GlyphBuffer* glyphBuffer)
{
    // Determine the string for this item.
    const UChar* str = cp + m_items[i].iCharPos;
    int len = m_items[i+1].iCharPos - m_items[i].iCharPos;
    SCRIPT_ITEM item = m_items[i];

    // Set up buffers to hold the results of shaping the item.
    Vector<WORD> glyphs;
    Vector<WORD> clusters;
    Vector<SCRIPT_VISATTR> visualAttributes;
    clusters.resize(len);
     
    // Shape the item.
    // The recommended size for the glyph buffer is 1.5 * the character length + 16 in the uniscribe docs.
    // Apparently this is a good size to avoid having to make repeated calls to ScriptShape.
    glyphs.resize(1.5 * len + 16);
    visualAttributes.resize(glyphs.size());

    if (!shape(str, len, item, fontData, glyphs, clusters, visualAttributes))
        return true;

    // We now have a collection of glyphs.
    Vector<GOFFSET> offsets;
    Vector<int> advances;
    offsets.resize(glyphs.size());
    advances.resize(glyphs.size());
    int glyphCount = 0;
    HRESULT placeResult = ScriptPlace(0, fontData->scriptCache(), glyphs.data(), glyphs.size(), visualAttributes.data(),
                                      &item.a, advances.data(), offsets.data(), 0);
    if (placeResult == E_PENDING) {
        // The script cache isn't primed with enough info yet.  We need to select our HFONT into
        // a DC and pass the DC in to ScriptPlace.
        HDC hdc = GetDC(0);
        HFONT hfont = fontData->platformData().hfont();
        HFONT oldFont = (HFONT)SelectObject(hdc, hfont);
        placeResult = ScriptPlace(hdc, fontData->scriptCache(), glyphs.data(), glyphs.size(), visualAttributes.data(),
                                  &item.a, advances.data(), offsets.data(), 0);
        SelectObject(hdc, oldFont);
        ReleaseDC(0, hdc);
    }
    
    if (FAILED(placeResult) || glyphs.isEmpty())
        return true;

    // Convert all chars that should be treated as spaces to use the space glyph.
    // We also create a map that allows us to quickly go from space glyphs back to their corresponding characters.
    Vector<int> spaceCharacters(glyphs.size());
    spaceCharacters.fill(-1);

    const float cLogicalScale = fontData->platformData().useGDI() ? 1.0f : 32.0f;
    unsigned logicalSpaceWidth = fontData->spaceWidth() * cLogicalScale;
    float spaceWidth = fontData->spaceWidth();

    for (int k = 0; k < len; k++) {
        UChar ch = *(str + k);
        bool treatAsSpace = Font::treatAsSpace(ch);
        bool treatAsZeroWidthSpace = ch == zeroWidthSpace || Font::treatAsZeroWidthSpace(ch);
        if (treatAsSpace || treatAsZeroWidthSpace) {
            // Substitute in the space glyph at the appropriate place in the glyphs
            // array.
            glyphs[clusters[k]] = fontData->spaceGlyph();
            advances[clusters[k]] = treatAsSpace ? logicalSpaceWidth : 0;
            if (treatAsSpace)
                spaceCharacters[clusters[k]] = m_currentCharacter + k + item.iCharPos;
        }
    }

    // Populate our glyph buffer with this information.
    bool hasExtraSpacing = m_font.letterSpacing() || m_font.wordSpacing() || m_padding;
    
    float leftEdge = m_runWidthSoFar;

    for (unsigned k = 0; k < glyphs.size(); k++) {
        Glyph glyph = glyphs[k];
        float advance = advances[k] / cLogicalScale;
        float offsetX = offsets[k].du / cLogicalScale;
        float offsetY = offsets[k].dv / cLogicalScale;

        // Match AppKit's rules for the integer vs. non-integer rendering modes.
        float roundedAdvance = roundf(advance);
        if (!m_font.isPrinterFont() && !fontData->isSystemFont()) {
            advance = roundedAdvance;
            offsetX = roundf(offsetX);
            offsetY = roundf(offsetY);
        }

        advance += fontData->syntheticBoldOffset();

        if (hasExtraSpacing) {
            // If we're a glyph with an advance, go ahead and add in letter-spacing.
            // That way we weed out zero width lurkers.  This behavior matches the fast text code path.
            if (advance && m_font.letterSpacing())
                advance += m_font.letterSpacing();

            // Handle justification and word-spacing.
            int characterIndex = spaceCharacters[k];
            // characterIndex is left at the initial value of -1 for glyphs that do not map back to treated-as-space characters.
            if (characterIndex != -1) {
                // Account for padding. WebCore uses space padding to justify text.
                // We distribute the specified padding over the available spaces in the run.
                if (m_padding) {
                    // Use leftover padding if not evenly divisible by number of spaces.
                    if (m_padding < m_padPerSpace) {
                        advance += m_padding;
                        m_padding = 0;
                    } else {
                        m_padding -= m_padPerSpace;
                        advance += m_padPerSpace;
                    }
                }

                // Account for word-spacing.
                if (characterIndex > 0 && !Font::treatAsSpace(*m_run.data(characterIndex - 1)) && m_font.wordSpacing())
                    advance += m_font.wordSpacing();
            }
        }

        m_runWidthSoFar += advance;

        // FIXME: We need to take the GOFFSETS for combining glyphs and store them in the glyph buffer
        // as well, so that when the time comes to draw those glyphs, we can apply the appropriate
        // translation.
        if (glyphBuffer) {
            FloatSize size(offsetX, -offsetY);
            glyphBuffer->add(glyph, fontData, advance, &size);
        }

        FloatRect glyphBounds = fontData->boundsForGlyph(glyph);
        glyphBounds.move(m_glyphOrigin.x(), m_glyphOrigin.y());
        m_minGlyphBoundingBoxX = min(m_minGlyphBoundingBoxX, glyphBounds.x());
        m_maxGlyphBoundingBoxX = max(m_maxGlyphBoundingBoxX, glyphBounds.maxX());
        m_minGlyphBoundingBoxY = min(m_minGlyphBoundingBoxY, glyphBounds.y());
        m_maxGlyphBoundingBoxY = max(m_maxGlyphBoundingBoxY, glyphBounds.maxY());
        m_glyphOrigin.move(advance + offsetX, -offsetY);

        // Mutate the glyph array to contain our altered advances.
        if (m_computingOffsetPosition)
            advances[k] = advance;
    }

    while (m_computingOffsetPosition && m_offsetX >= leftEdge && m_offsetX < m_runWidthSoFar) {
        // The position is somewhere inside this run.
        int trailing = 0;
        ScriptXtoCP(m_offsetX - leftEdge, clusters.size(), glyphs.size(), clusters.data(), visualAttributes.data(),
                    advances.data(), &item.a, &m_offsetPosition, &trailing);
        if (trailing && m_includePartialGlyphs && m_offsetPosition < len - 1) {
            m_offsetPosition += m_currentCharacter + m_items[i].iCharPos;
            m_offsetX += m_run.rtl() ? -trailing : trailing;
        } else {
            m_computingOffsetPosition = false;
            m_offsetPosition += m_currentCharacter + m_items[i].iCharPos;
            if (trailing && m_includePartialGlyphs)
               m_offsetPosition++;
            return false;
        }
    }

    return true;
}
bool UniscribeController::shapeAndPlaceItem(const UChar* cp, unsigned i, const SimpleFontData* fontData, GlyphBuffer* glyphBuffer)
{
    // Determine the string for this item.
    const UChar* str = cp + m_items[i].iCharPos;
    int len = m_items[i+1].iCharPos - m_items[i].iCharPos;
    SCRIPT_ITEM item = m_items[i];

    // Set up buffers to hold the results of shaping the item.
    Vector<WORD> glyphs;
    Vector<WORD> clusters;
    Vector<SCRIPT_VISATTR> visualAttributes;
    clusters.resize(len);
     
    // Shape the item.
    // The recommended size for the glyph buffer is 1.5 * the character length + 16 in the uniscribe docs.
    // Apparently this is a good size to avoid having to make repeated calls to ScriptShape.
    glyphs.resize(1.5 * len + 16);
    visualAttributes.resize(glyphs.size());

    if (!shape(str, len, item, fontData, glyphs, clusters, visualAttributes))
        return true;

    // We now have a collection of glyphs.
    Vector<GOFFSET> offsets;
    Vector<int> advances;
    offsets.resize(glyphs.size());
    advances.resize(glyphs.size());
    int glyphCount = 0;
    HRESULT placeResult = ScriptPlace(0, fontData->scriptCache(), glyphs.data(), glyphs.size(), visualAttributes.data(),
                                      &item.a, advances.data(), offsets.data(), 0);
    if (placeResult == E_PENDING) {
        // The script cache isn't primed with enough info yet.  We need to select our HFONT into
        // a DC and pass the DC in to ScriptPlace.
        HDC hdc = GetDC(0);
        HFONT hfont = fontData->platformData().hfont();
        HFONT oldFont = (HFONT)SelectObject(hdc, hfont);
        placeResult = ScriptPlace(hdc, fontData->scriptCache(), glyphs.data(), glyphs.size(), visualAttributes.data(),
                                  &item.a, advances.data(), offsets.data(), 0);
        SelectObject(hdc, oldFont);
        ReleaseDC(0, hdc);
    }
    
    if (FAILED(placeResult) || glyphs.isEmpty())
        return true;

    // Convert all chars that should be treated as spaces to use the space glyph.
    // We also create a map that allows us to quickly go from space glyphs or rounding
    // hack glyphs back to their corresponding characters.
    Vector<int> spaceCharacters(glyphs.size());
    spaceCharacters.fill(-1);
    Vector<int> roundingHackCharacters(glyphs.size());
    roundingHackCharacters.fill(-1);
    Vector<int> roundingHackWordBoundaries(glyphs.size());
    roundingHackWordBoundaries.fill(-1);

    const float cLogicalScale = fontData->platformData().useGDI() ? 1.0f : 32.0f;
    unsigned logicalSpaceWidth = fontData->spaceWidth() * cLogicalScale;
    float roundedSpaceWidth = roundf(fontData->spaceWidth());

    for (int k = 0; k < len; k++) {
        UChar ch = *(str + k);
        if (Font::treatAsSpace(ch)) {
            // Substitute in the space glyph at the appropriate place in the glyphs
            // array.
            glyphs[clusters[k]] = fontData->spaceGlyph();
            advances[clusters[k]] = logicalSpaceWidth;
            spaceCharacters[clusters[k]] = m_currentCharacter + k + item.iCharPos;
        }

        if (Font::isRoundingHackCharacter(ch))
            roundingHackCharacters[clusters[k]] = m_currentCharacter + k + item.iCharPos;

        int boundary = k + m_currentCharacter + item.iCharPos;
        if (boundary < m_run.length() &&
            Font::isRoundingHackCharacter(*(str + k + 1)))
            roundingHackWordBoundaries[clusters[k]] = boundary;
    }

    // Populate our glyph buffer with this information.
    bool hasExtraSpacing = m_font.letterSpacing() || m_font.wordSpacing() || m_padding;
    
    float leftEdge = m_runWidthSoFar;

    for (unsigned k = 0; k < glyphs.size(); k++) {
        Glyph glyph = glyphs[k];
        float advance = advances[k] / cLogicalScale;
        float offsetX = offsets[k].du / cLogicalScale;
        float offsetY = offsets[k].dv / cLogicalScale;

        // Match AppKit's rules for the integer vs. non-integer rendering modes.
        float roundedAdvance = roundf(advance);
        if (!m_font.isPrinterFont() && !fontData->isSystemFont()) {
            advance = roundedAdvance;
            offsetX = roundf(offsetX);
            offsetY = roundf(offsetY);
        }

        advance += fontData->syntheticBoldOffset();

        // We special case spaces in two ways when applying word rounding.
        // First, we round spaces to an adjusted width in all fonts.
        // Second, in fixed-pitch fonts we ensure that all glyphs that
        // match the width of the space glyph have the same width as the space glyph.
        if (roundedAdvance == roundedSpaceWidth && (fontData->pitch() == FixedPitch || glyph == fontData->spaceGlyph()) &&
            m_run.applyWordRounding())
            advance = fontData->adjustedSpaceWidth();

        if (hasExtraSpacing) {
            // If we're a glyph with an advance, go ahead and add in letter-spacing.
            // That way we weed out zero width lurkers.  This behavior matches the fast text code path.
            if (advance && m_font.letterSpacing())
                advance += m_font.letterSpacing();

            // Handle justification and word-spacing.
            if (glyph == fontData->spaceGlyph()) {
                // Account for padding. WebCore uses space padding to justify text.
                // We distribute the specified padding over the available spaces in the run.
                if (m_padding) {
                    // Use leftover padding if not evenly divisible by number of spaces.
                    if (m_padding < m_padPerSpace) {
                        advance += m_padding;
                        m_padding = 0;
                    } else {
                        advance += m_padPerSpace;
                        m_padding -= m_padPerSpace;
                    }
                }

                // Account for word-spacing.
                int characterIndex = spaceCharacters[k];
                if (characterIndex > 0 && !Font::treatAsSpace(*m_run.data(characterIndex - 1)) && m_font.wordSpacing())
                    advance += m_font.wordSpacing();
            }
        }

        // Deal with the float/integer impedance mismatch between CG and WebCore. "Words" (characters 
        // followed by a character defined by isRoundingHackCharacter()) are always an integer width.
        // We adjust the width of the last character of a "word" to ensure an integer width.
        // Force characters that are used to determine word boundaries for the rounding hack
        // to be integer width, so the following words will start on an integer boundary.
        int roundingHackIndex = roundingHackCharacters[k];
        if (m_run.applyWordRounding() && roundingHackIndex != -1)
            advance = ceilf(advance);

        // Check to see if the next character is a "rounding hack character", if so, adjust the
        // width so that the total run width will be on an integer boundary.
        int position = m_currentCharacter + len;
        bool lastGlyph = (k == glyphs.size() - 1) && (m_run.rtl() ? i == 0 : i == m_items.size() - 2) && (position >= m_end);
        if ((m_run.applyWordRounding() && roundingHackWordBoundaries[k] != -1) ||
            (m_run.applyRunRounding() && lastGlyph)) { 
            float totalWidth = m_runWidthSoFar + advance;
            advance += ceilf(totalWidth) - totalWidth;
        }

        m_runWidthSoFar += advance;

        // FIXME: We need to take the GOFFSETS for combining glyphs and store them in the glyph buffer
        // as well, so that when the time comes to draw those glyphs, we can apply the appropriate
        // translation.
        if (glyphBuffer) {
            FloatSize size(offsetX, -offsetY);
            glyphBuffer->add(glyph, fontData, advance, &size);
        }

        // Mutate the glyph array to contain our altered advances.
        if (m_computingOffsetPosition)
            advances[k] = advance;
    }

    while (m_computingOffsetPosition && m_offsetX >= leftEdge && m_offsetX < m_runWidthSoFar) {
        // The position is somewhere inside this run.
        int trailing = 0;
        ScriptXtoCP(m_offsetX - leftEdge, clusters.size(), glyphs.size(), clusters.data(), visualAttributes.data(),
                    advances.data(), &item.a, &m_offsetPosition, &trailing);
        if (trailing && m_includePartialGlyphs && m_offsetPosition < len - 1) {
            m_offsetPosition += m_currentCharacter + m_items[i].iCharPos;
            m_offsetX += m_run.rtl() ? -trailing : trailing;
        } else {
            m_computingOffsetPosition = false;
            m_offsetPosition += m_currentCharacter + m_items[i].iCharPos;
            if (trailing && m_includePartialGlyphs)
               m_offsetPosition++;
            return false;
        }
    }

    return true;
}