示例#1
0
VariantObject* ObjectMemory::resize(PointersOTE* ote, MWORD newPointers, bool bRefCount)
{
	ASSERT(!ObjectMemoryIsIntegerObject(ote) && ote->isPointers());

	VariantObject* pObj = ote->m_location;
	const MWORD oldPointers = ote->pointersSize();

	// If resizing the active process, then we don't do any ref. counting as refs from
	// the current stack are not counted (we used deferred ref. counting)
	if (bRefCount)
	{
		for (MWORD i=newPointers;i<oldPointers;i++)
			countDown(pObj->m_fields[i]);
	}

	// Reallocate the object to the new size (bigger or smaller)
	pObj = reinterpret_cast<VariantObject*>(basicResize(reinterpret_cast<POTE>(ote), SizeOfPointers(newPointers), 0));

	if (pObj)
	{
		ASSERT(newPointers == ote->pointersSize());
		newPointers = ote->pointersSize();

		// Initialize any new pointers to Nil (indices must fit in a SmallInteger)
		const Oop nil = Oop(Pointers.Nil);
		for (MWORD i=oldPointers; i<newPointers; i++)
			pObj->m_fields[i] = nil;
	}

	return pObj;
}
示例#2
0
VariantByteObject* ObjectMemory::resize(BytesOTE* ote, MWORD newByteSize)
{
	ASSERT(!ObjectMemoryIsIntegerObject(ote) && ote->isBytes());

	MWORD totalByteSize = newByteSize + SizeOfPointers(0);	// Add header size

	VariantByteObject* pByteObj = ote->m_location;
	MWORD oldByteSize = ote->getSize();

	if (ote->isNullTerminated())
	{
		pByteObj = reinterpret_cast<VariantByteObject*>(ObjectMemory::basicResize(reinterpret_cast<POTE>(ote), totalByteSize, 1));
		ASSERT(pByteObj);	// Null-terminated objects should always be resizeable
		// Ensure we have a null-terminator
		reinterpret_cast<BYTE*>(pByteObj)[totalByteSize] = 0;
	}
	else
		pByteObj = reinterpret_cast<VariantByteObject*>(ObjectMemory::basicResize(reinterpret_cast<POTE>(ote), totalByteSize, 0));

	if (pByteObj && totalByteSize > oldByteSize)
	{
		// The object grew, so ensure it is properly initialized
		memset(reinterpret_cast<BYTE*>(pByteObj)+oldByteSize, 0, totalByteSize-oldByteSize);
	}

	return pByteObj;
}
示例#3
0
PointersOTE* __fastcall ObjectMemory::newUninitializedPointerObject(BehaviorOTE* classPointer, MWORD oops)
{
	// Total size must fit in a DWORD bits
	ASSERT(oops < ((DWORD(1) << 30) - ObjectHeaderSize));

	// Don't worry, compiler will not really use multiply instruction here
	MWORD objectSize = SizeOfPointers(oops);
	OTE* ote;
	allocObject(objectSize, ote);
	ASSERT((objectSize > MaxSizeOfPoolObject && ote->heapSpace() == OTEFlags::NormalSpace)
			|| ote->heapSpace() == OTEFlags::PoolSpace);

	// These are stored in the object itself
	ASSERT(ote->getSize() == objectSize);
	classPointer->countUp();
	ote->m_oteClass = classPointer;

	// DO NOT Initialise the fields to nils

	ASSERT(ote->isPointers());
	
	return reinterpret_cast<PointersOTE*>(ote);
}
示例#4
0
OTE* ObjectMemory::CopyElements(OTE* oteObj, MWORD startingAt, MWORD count)
{
	// Note that startingAt is expected to be a zero-based index
	ASSERT(startingAt >= 0);
	OTE* oteSlice;

	if (oteObj->isBytes())
	{
		BytesOTE* oteBytes = reinterpret_cast<BytesOTE*>(oteObj);
		size_t elementSize = ObjectMemory::GetBytesElementSize(oteBytes);

		if (count == 0 || ((startingAt + count) * elementSize <= oteBytes->bytesSize()))
		{
			MWORD objectSize = elementSize * count;

			if (oteBytes->m_flags.m_weakOrZ)
			{
				// TODO: Allocate the correct number of null term bytes based on the encoding
				auto newBytes = static_cast<VariantByteObject*>(allocObject(objectSize + NULLTERMSIZE, oteSlice));
				// When copying strings, the slices has the same string class
				(oteSlice->m_oteClass = oteBytes->m_oteClass)->countUp();
				memcpy(newBytes->m_fields, oteBytes->m_location->m_fields + (startingAt * elementSize), objectSize);
				*reinterpret_cast<NULLTERMTYPE*>(&newBytes->m_fields[objectSize]) = 0;
				oteSlice->beNullTerminated();
				return oteSlice;
			}
			else
			{
				VariantByteObject* newBytes = static_cast<VariantByteObject*>(allocObject(objectSize, oteSlice));
				// When copying bytes, the slice is always a ByteArray
				oteSlice->m_oteClass = Pointers.ClassByteArray;
				oteSlice->beBytes();
				memcpy(newBytes->m_fields, oteBytes->m_location->m_fields + (startingAt * elementSize), objectSize);
				return oteSlice;
			}
		}
	}
	else
	{
		// Pointers
		PointersOTE* otePointers = reinterpret_cast<PointersOTE*>(oteObj);
		BehaviorOTE* oteClass = otePointers->m_oteClass;
		InstanceSpecification instSpec = oteClass->m_location->m_instanceSpec;
		if (instSpec.m_indexable)
		{
			startingAt += instSpec.m_fixedFields;

			if (count == 0 || (startingAt + count) <= otePointers->pointersSize())
			{
				MWORD objectSize = SizeOfPointers(count);
				auto pSlice = static_cast<VariantObject*>(allocObject(objectSize, oteSlice));
				// When copying pointers, the slice is always an Array
				oteSlice->m_oteClass = Pointers.ClassArray;
				VariantObject* pSrc = otePointers->m_location;
				for (MWORD i = 0; i < count; i++)
				{
					countUp(pSlice->m_fields[i] = pSrc->m_fields[startingAt + i]);
				}
				return oteSlice;
			}
		}
	}

	return nullptr;
}
示例#5
0
template <bool MaybeZ, bool Initialized> BytesOTE* ObjectMemory::newByteObject(BehaviorOTE* classPointer, MWORD elementCount)
{
	Behavior& byteClass = *classPointer->m_location;
	OTE* ote;

	if (!MaybeZ || !byteClass.m_instanceSpec.m_nullTerminated)
	{
		ASSERT(!classPointer->m_location->m_instanceSpec.m_nullTerminated);

		VariantByteObject* newBytes = static_cast<VariantByteObject*>(allocObject(elementCount + SizeOfPointers(0), ote));
		ASSERT((elementCount > MaxSizeOfPoolObject && ote->heapSpace() == OTEFlags::NormalSpace)
			|| ote->heapSpace() == OTEFlags::PoolSpace);

		ASSERT(ote->getSize() == elementCount + SizeOfPointers(0));

		if (Initialized)
		{
			// Byte objects are initialized to zeros (but not the header)
			// Note that we round up to initialize to the next DWORD
			// This can be useful when working on a 32-bit word machine
			ZeroMemory(newBytes->m_fields, _ROUND2(elementCount, sizeof(DWORD)));
			classPointer->countUp();
		}

		ote->m_oteClass = classPointer;
		ote->beBytes();
	}
	else
	{
		ASSERT(classPointer->m_location->m_instanceSpec.m_nullTerminated);

		MWORD objectSize;

		switch (reinterpret_cast<const StringClass&>(byteClass).Encoding)
		{
		case StringEncoding::Ansi:
		case StringEncoding::Utf8:
			objectSize = elementCount * sizeof(AnsiString::CU);
			break;
		case StringEncoding::Utf16:
			objectSize = elementCount * sizeof(Utf16String::CU);
			break;
		case StringEncoding::Utf32:
			objectSize = elementCount * sizeof(Utf32String::CU);
			break;
		default:
			__assume(false);
			break;
		}

		// TODO: Allocate the correct number of null term bytes based on the encoding
		objectSize += NULLTERMSIZE;

		VariantByteObject* newBytes = static_cast<VariantByteObject*>(allocObject(objectSize + SizeOfPointers(0), ote));
		ASSERT((objectSize > MaxSizeOfPoolObject && ote->heapSpace() == OTEFlags::NormalSpace)
			|| ote->heapSpace() == OTEFlags::PoolSpace);

		ASSERT(ote->getSize() == objectSize + SizeOfPointers(0));

		if (Initialized)
		{
			// Byte objects are initialized to zeros (but not the header)
			// Note that we round up to initialize to the next DWORD
			// This can be useful when working on a 32-bit word machine
			ZeroMemory(newBytes->m_fields, _ROUND2(objectSize, sizeof(DWORD)));
			classPointer->countUp();
		}
		else
		{
			// We still want to ensure the null terminator is set, even if not initializing the rest of the object
			*reinterpret_cast<NULLTERMTYPE*>(&newBytes->m_fields[objectSize - NULLTERMSIZE]) = 0;
		}

		ote->m_oteClass = classPointer;
		ote->beNullTerminated();
		HARDASSERT(ote->isBytes());
	}

	return reinterpret_cast<BytesOTE*>(ote);
}