示例#1
0
文件: SkGr.cpp 项目: tiftof/skia
void GrMakeKeyFromImageID(GrUniqueKey* key, uint32_t imageID,
                          U16CPU width, U16CPU height, SkIPoint origin,
                          const GrCaps& caps, SkImageUsageType usage) {
    const Stretch::Type stretches[] = {
        Stretch::kNone_Type,        // kUntiled_SkImageUsageType
        Stretch::kNearest_Type,     // kTiled_Unfiltered_SkImageUsageType
        Stretch::kBilerp_Type,      // kTiled_Filtered_SkImageUsageType
    };

    const bool isPow2 = SkIsPow2(width) && SkIsPow2(height);
    const bool needToStretch = !isPow2 &&
                               usage != kUntiled_SkImageUsageType &&
                               !caps.npotTextureTileSupport();

    if (needToStretch) {
        GrUniqueKey tmpKey;
        make_unstretched_key(&tmpKey, imageID, width, height, origin);

        Stretch stretch;
        stretch.fType = stretches[usage];
        stretch.fWidth = SkNextPow2(width);
        stretch.fHeight = SkNextPow2(height);
        if (!make_stretched_key(tmpKey, stretch, key)) {
            goto UNSTRETCHED;
        }
    } else {
        UNSTRETCHED:
        make_unstretched_key(key, imageID, width, height, origin);
    }
}
示例#2
0
文件: SkGr.cpp 项目: picmonkey/skia
bool GrTextureUsageSupported(const GrCaps& caps, int width, int height, SkImageUsageType usage) {
    if (caps.npotTextureTileSupport()) {
        return true;
    }
    const bool is_pow2 = SkIsPow2(width) && SkIsPow2(height);
    return is_pow2 || kUntiled_SkImageUsageType == usage;
}
示例#3
0
    void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
        const GrBitmapTextGeoProc& cte = args.fGP.cast<GrBitmapTextGeoProc>();

        GrGLSLGPBuilder* pb = args.fPB;
        GrGLSLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder();

        // emit attributes
        vsBuilder->emitAttributes(cte);

        // compute numbers to be hardcoded to convert texture coordinates from int to float
        SkASSERT(cte.numTextures() == 1);
        GrTexture* atlas = cte.textureAccess(0).getTexture();
        SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height()));
        SkScalar recipWidth = 1.0f / atlas->width();
        SkScalar recipHeight = 1.0f / atlas->height();

        GrGLSLVertToFrag v(kVec2f_GrSLType);
        pb->addVarying("TextureCoords", &v);
        vsBuilder->codeAppendf("%s = vec2(%.*f, %.*f) * %s;", v.vsOut(),
                               GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipWidth,
                               GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipHeight,
                               cte.inTextureCoords()->fName);

        // Setup pass through color
        if (!cte.colorIgnored()) {
            if (cte.hasVertexColor()) {
                pb->addPassThroughAttribute(cte.inColor(), args.fOutputColor);
            } else {
                this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
            }
        }

        // Setup position
        this->setupPosition(pb, gpArgs, cte.inPosition()->fName);

        // emit transforms
        this->emitTransforms(args.fPB, gpArgs->fPositionVar, cte.inPosition()->fName,
                             cte.localMatrix(), args.fTransformsIn, args.fTransformsOut);

        GrGLSLFragmentBuilder* fsBuilder = pb->getFragmentShaderBuilder();
        if (cte.maskFormat() == kARGB_GrMaskFormat) {
            fsBuilder->codeAppendf("%s = ", args.fOutputColor);
            fsBuilder->appendTextureLookupAndModulate(args.fOutputColor,
                                                      args.fSamplers[0],
                                                      v.fsIn(),
                                                      kVec2f_GrSLType);
            fsBuilder->codeAppend(";");
            fsBuilder->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
        } else {
            fsBuilder->codeAppendf("%s = ", args.fOutputCoverage);
            fsBuilder->appendTextureLookup(args.fSamplers[0], v.fsIn(), kVec2f_GrSLType);
            fsBuilder->codeAppend(";");
            if (cte.maskFormat() == kA565_GrMaskFormat) {
                // set alpha to be max of rgb coverage
                fsBuilder->codeAppendf("%s.a = max(max(%s.r, %s.g), %s.b);",
                                       args.fOutputCoverage, args.fOutputCoverage,
                                       args.fOutputCoverage, args.fOutputCoverage);
            }
        }
    }
    void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& proc,
                 FPCoordTransformIter&& transformIter) override {

        const GrDistanceFieldPathGeoProc& dfpgp = proc.cast<GrDistanceFieldPathGeoProc>();

        if (dfpgp.matrix().hasPerspective() && !fMatrix.cheapEqualTo(dfpgp.matrix())) {
            fMatrix = dfpgp.matrix();
            float matrix[3 * 3];
            GrGLSLGetMatrix<3>(matrix, fMatrix);
            pdman.setMatrix3f(fMatrixUniform, matrix);
        }

        SkASSERT(dfpgp.numTextureSamplers() >= 1);
        GrTexture* atlas = dfpgp.textureSampler(0).peekTexture();
        SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height()));

        if (fAtlasSize.fWidth != atlas->width() || fAtlasSize.fHeight != atlas->height()) {
            fAtlasSize.set(atlas->width(), atlas->height());
            pdman.set2f(fAtlasSizeInvUniform, 1.0f / atlas->width(), 1.0f / atlas->height());
        }

        if (dfpgp.matrix().hasPerspective()) {
            this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter);
        } else {
            this->setTransformDataHelper(dfpgp.matrix(), pdman, &transformIter);
        }
    }
示例#5
0
文件: SkGr.cpp 项目: merckhung/libui
static Stretch get_stretch_type(const GrContext* ctx, int width, int height,
                                const GrTextureParams* params) {
    if (params && params->isTiled()) {
        if (!ctx->npotTextureTileSupport() && (!SkIsPow2(width) || !SkIsPow2(height))) {
            switch(params->filterMode()) {
                case GrTextureParams::kNone_FilterMode:
                    return kNearest_Stretch;
                case GrTextureParams::kBilerp_FilterMode:
                case GrTextureParams::kMipMap_FilterMode:
                    return kBilerp_Stretch;
            }
        }
    }
    return kNo_Stretch;
}
示例#6
0
void test_sampleLocations(skiatest::Reporter* reporter, TestSampleLocationsInterface* testInterface,
                          GrContext* ctx) {
    SkRandom rand;
    SkAutoTUnref<GrRenderTarget> bottomUps[numTestPatterns];
    SkAutoTUnref<GrRenderTarget> topDowns[numTestPatterns];
    for (int i = 0; i < numTestPatterns; ++i) {
        int numSamples = (int)kTestPatterns[i].size();
        GrAlwaysAssert(numSamples > 1 && SkIsPow2(numSamples));
        bottomUps[i].reset(create_render_target(ctx, kBottomLeft_GrSurfaceOrigin,
                                                rand.nextRangeU(1 + numSamples / 2, numSamples)));
        topDowns[i].reset(create_render_target(ctx, kTopLeft_GrSurfaceOrigin,
                                               rand.nextRangeU(1 + numSamples / 2, numSamples)));
    }

    // Ensure all sample locations get queried and/or cached properly.
    GrStencilSettings dummyStencil;
    for (int repeat = 0; repeat < 2; ++repeat) {
        for (int i = 0; i < numTestPatterns; ++i) {
            testInterface->overrideSamplePattern(kTestPatterns[i]);
            assert_equal(reporter, kTestPatterns[i],
                         topDowns[i]->renderTargetPriv().getMultisampleSpecs(dummyStencil), false);
            assert_equal(reporter, kTestPatterns[i],
                         bottomUps[i]->renderTargetPriv().getMultisampleSpecs(dummyStencil), true);
        }
    }
}
void InstancedRendering::Batch::initBatchTracker(const GrXPOverridesForBatch& overrides) {
    Draw& draw = this->getSingleDraw(); // This will assert if we have > 1 command.
    SkASSERT(draw.fGeometry.isEmpty());
    SkASSERT(SkIsPow2(fInfo.fShapeTypes));
    SkASSERT(!fIsTracked);

    if (kRect_ShapeFlag == fInfo.fShapeTypes) {
        draw.fGeometry = InstanceProcessor::GetIndexRangeForRect(fInfo.fAntialiasMode);
    } else if (kOval_ShapeFlag == fInfo.fShapeTypes) {
        draw.fGeometry = InstanceProcessor::GetIndexRangeForOval(fInfo.fAntialiasMode,
                                                                 this->bounds());
    } else {
        draw.fGeometry = InstanceProcessor::GetIndexRangeForRRect(fInfo.fAntialiasMode);
    }

    if (!fParams.empty()) {
        SkASSERT(fInstancedRendering->fParams.count() < (int)kParamsIdx_InfoMask); // TODO: cleaner.
        this->getSingleInstance().fInfo |= fInstancedRendering->fParams.count();
        fInstancedRendering->fParams.push_back_n(fParams.count(), fParams.begin());
    }

    GrColor overrideColor;
    if (overrides.getOverrideColorIfSet(&overrideColor)) {
        SkASSERT(State::kRecordingDraws == fInstancedRendering->fState);
        this->getSingleInstance().fColor = overrideColor;
    }
    fInfo.fUsesLocalCoords = overrides.readsLocalCoords();
    fInfo.fCannotTweakAlphaForCoverage = !overrides.canTweakAlphaForCoverage();

    fInstancedRendering->fTrackedBatches.addToTail(this);
    fIsTracked = true;
}
示例#8
0
GrTexture* SkImage_Gpu::asTextureRef(GrContext* ctx, SkImageUsageType usage) const {
    const bool is_pow2 = SkIsPow2(this->width()) && SkIsPow2(this->height());
    const bool npot_tex_supported = ctx->caps()->npotTextureTileSupport();
    if (!is_pow2 && kUntiled_SkImageUsageType != usage && !npot_tex_supported) {
        // load as bitmap, since the GPU can support tiling a non-pow2 texture
        // related to skbug.com/4365
        SkBitmap bitmap;
        if (this->getROPixels(&bitmap)) {
            return GrRefCachedBitmapTexture(ctx, bitmap, usage);
        } else {
            return nullptr;
        }
    }

    fTexture->ref();
    return fTexture;
}
    void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& gp,
                 FPCoordTransformIter&& transformIter) override {
        const GrBitmapTextGeoProc& btgp = gp.cast<GrBitmapTextGeoProc>();
        if (btgp.color() != fColor && !btgp.hasVertexColor()) {
            float c[4];
            GrColorToRGBAFloat(btgp.color(), c);
            pdman.set4fv(fColorUniform, 1, c);
            fColor = btgp.color();
        }

        const SkISize& atlasSize = btgp.atlasSize();
        SkASSERT(SkIsPow2(atlasSize.fWidth) && SkIsPow2(atlasSize.fHeight));

        if (fAtlasSize != atlasSize) {
            pdman.set2f(fAtlasSizeInvUniform, 1.0f / atlasSize.fWidth, 1.0f / atlasSize.fHeight);
            fAtlasSize = atlasSize;
        }
        this->setTransformDataHelper(btgp.localMatrix(), pdman, &transformIter);
    }
示例#10
0
static SkBaseMutex* get_default_mutex() {
    static int32_t gPixelRefMutexRingIndex;

    SkASSERT(SkIsPow2(PIXELREF_MUTEX_RING_COUNT));

    // atomic_inc might be overkill here. It may be fine if once in a while
    // we hit a race-condition and two subsequent calls get the same index...
    int index = sk_atomic_inc(&gPixelRefMutexRingIndex);
    return &gPixelRefMutexRing[index & (PIXELREF_MUTEX_RING_COUNT - 1)];
}
示例#11
0
文件: GrGpu.cpp 项目: molikto/Skia
bool GrGpu::IsACopyNeededForTextureParams(const GrCaps* caps, GrTextureProxy* texProxy,
                                          int width, int height,
                                          const GrSamplerState& textureParams,
                                          GrTextureProducer::CopyParams* copyParams,
                                          SkScalar scaleAdjust[2]) {

    if (texProxy) {
        // If the texture format itself doesn't support repeat wrap mode or mipmapping (and
        // those capabilities are required) force a copy.
        if ((textureParams.isRepeated() && texProxy->texPriv().isClampOnly()) ||
            (GrSamplerState::Filter::kMipMap == textureParams.filter() &&
                                                    texProxy->texPriv().doesNotSupportMipMaps())) {
            copyParams->fFilter = GrSamplerState::Filter::kNearest;
            copyParams->fWidth = texProxy->width();
            copyParams->fHeight = texProxy->height();
            return true;
        }
    }

    if (textureParams.isRepeated() && !caps->npotTextureTileSupport() &&
        (!SkIsPow2(width) || !SkIsPow2(height))) {
        SkASSERT(scaleAdjust);
        copyParams->fWidth = GrNextPow2(width);
        copyParams->fHeight = GrNextPow2(height);
        SkASSERT(scaleAdjust);
        scaleAdjust[0] = ((SkScalar) copyParams->fWidth) / width;
        scaleAdjust[1] = ((SkScalar) copyParams->fHeight) / height;
        switch (textureParams.filter()) {
            case GrSamplerState::Filter::kNearest:
                copyParams->fFilter = GrSamplerState::Filter::kNearest;
                break;
            case GrSamplerState::Filter::kBilerp:
            case GrSamplerState::Filter::kMipMap:
                // We are only ever scaling up so no reason to ever indicate kMipMap.
                copyParams->fFilter = GrSamplerState::Filter::kBilerp;
                break;
        }
        return true;
    }
    return false;
}
示例#12
0
文件: GrGpu.cpp 项目: crabfang/skia
bool GrGpu::makeCopyForTextureParams(int width, int height, const GrTextureParams& textureParams,
                                     GrTextureProducer::CopyParams* copyParams) const {
    const GrCaps& caps = *this->caps();
    if (textureParams.isTiled() && !caps.npotTextureTileSupport() &&
        (!SkIsPow2(width) || !SkIsPow2(height))) {
        copyParams->fWidth = GrNextPow2(width);
        copyParams->fHeight = GrNextPow2(height);
        switch (textureParams.filterMode()) {
            case GrTextureParams::kNone_FilterMode:
                copyParams->fFilter = GrTextureParams::kNone_FilterMode;
                break;
            case GrTextureParams::kBilerp_FilterMode:
            case GrTextureParams::kMipMap_FilterMode:
                // We are only ever scaling up so no reason to ever indicate kMipMap.
                copyParams->fFilter = GrTextureParams::kBilerp_FilterMode;
                break;
        }
        return true;
    }
    return false;
}
示例#13
0
文件: GrGpu.cpp 项目: 435420057/soui
GrTexture* GrGpu::createTexture(const GrTextureDesc& desc,
                                const void* srcData, size_t rowBytes) {
    if (!this->caps()->isConfigTexturable(desc.fConfig)) {
        return NULL;
    }

    if ((desc.fFlags & kRenderTarget_GrTextureFlagBit) &&
        !this->caps()->isConfigRenderable(desc.fConfig, desc.fSampleCnt > 0)) {
        return NULL;
    }

    GrTexture *tex = NULL;
    if (GrPixelConfigIsCompressed(desc.fConfig)) {
        // We shouldn't be rendering into this
        SkASSERT((desc.fFlags & kRenderTarget_GrTextureFlagBit) == 0);

        if (!this->caps()->npotTextureTileSupport() &&
            (!SkIsPow2(desc.fWidth) || !SkIsPow2(desc.fHeight))) {
            return NULL;
        }

        this->handleDirtyContext();
        tex = this->onCreateCompressedTexture(desc, srcData);
    } else {
        this->handleDirtyContext();
        tex = this->onCreateTexture(desc, srcData, rowBytes);
        if (tex &&
            (kRenderTarget_GrTextureFlagBit & desc.fFlags) &&
            !(kNoStencil_GrTextureFlagBit & desc.fFlags)) {
            SkASSERT(tex->asRenderTarget());
            // TODO: defer this and attach dynamically
            if (!this->attachStencilBufferToRenderTarget(tex->asRenderTarget())) {
                tex->unref();
                return NULL;
            }
        }
    }
    return tex;
}
示例#14
0
GrTexture* GrGpu::createTexture(const GrSurfaceDesc& desc, bool budgeted,
                                const void* srcData, size_t rowBytes) {
    if (!this->caps()->isConfigTexturable(desc.fConfig)) {
        return NULL;
    }

    bool isRT = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag);
    if (isRT && !this->caps()->isConfigRenderable(desc.fConfig, desc.fSampleCnt > 0)) {
        return NULL;
    }

    GrTexture *tex = NULL;
    if (GrPixelConfigIsCompressed(desc.fConfig)) {
        // We shouldn't be rendering into this
        SkASSERT((desc.fFlags & kRenderTarget_GrSurfaceFlag) == 0);

        if (!this->caps()->npotTextureTileSupport() &&
            (!SkIsPow2(desc.fWidth) || !SkIsPow2(desc.fHeight))) {
            return NULL;
        }

        this->handleDirtyContext();
        tex = this->onCreateCompressedTexture(desc, budgeted, srcData);
    } else {
        this->handleDirtyContext();
        tex = this->onCreateTexture(desc, budgeted, srcData, rowBytes);
    }
    if (!this->caps()->reuseScratchTextures() && !isRT) {
        tex->resourcePriv().removeScratchKey();
    }
    if (tex) {
        fStats.incTextureCreates();
        if (srcData) {
            fStats.incTextureUploads();
        }
    }
    return tex;
}
    void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& proc,
                 FPCoordTransformIter&& transformIter) override {
        const GrDistanceFieldA8TextGeoProc& dfa8gp = proc.cast<GrDistanceFieldA8TextGeoProc>();

#ifdef SK_GAMMA_APPLY_TO_A8
        float distanceAdjust = dfa8gp.getDistanceAdjust();
        if (distanceAdjust != fDistanceAdjust) {
            fDistanceAdjust = distanceAdjust;
            pdman.set1f(fDistanceAdjustUni, distanceAdjust);
        }
#endif

        SkASSERT(dfa8gp.numTextureSamplers() >= 1);
        GrTexture* atlas = dfa8gp.textureSampler(0).peekTexture();
        SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height()));

        if (fAtlasSize.fWidth != atlas->width() || fAtlasSize.fHeight != atlas->height()) {
            fAtlasSize.set(atlas->width(), atlas->height());
            pdman.set2f(fAtlasSizeInvUniform, 1.0f / atlas->width(), 1.0f / atlas->height());
        }

        this->setTransformDataHelper(dfa8gp.localMatrix(), pdman, &transformIter);
    }
示例#16
0
文件: SkGr.cpp 项目: picmonkey/skia
static void get_stretch(const GrContext* ctx, int width, int height,
                        const GrTextureParams* params, SkGrStretch* stretch) {
    stretch->fType = SkGrStretch::kNone_Type;
    bool doStretch = false;
    if (params && params->isTiled() && !ctx->caps()->npotTextureTileSupport() &&
        (!SkIsPow2(width) || !SkIsPow2(height))) {
        doStretch = true;
        stretch->fWidth  = GrNextPow2(SkTMax(width, ctx->caps()->minTextureSize()));
        stretch->fHeight = GrNextPow2(SkTMax(height, ctx->caps()->minTextureSize()));
    } else if (width < ctx->caps()->minTextureSize() || height < ctx->caps()->minTextureSize()) {
        // The small texture issues appear to be with tiling. Hence it seems ok to scale them
        // up using the GPU. If issues persist we may need to CPU-stretch.
        doStretch = true;
        stretch->fWidth = SkTMax(width, ctx->caps()->minTextureSize());
        stretch->fHeight = SkTMax(height, ctx->caps()->minTextureSize());
    }
    if (doStretch) {
        if (params) {
            switch(params->filterMode()) {
                case GrTextureParams::kNone_FilterMode:
                    stretch->fType = SkGrStretch::kNearest_Type;
                    break;
                case GrTextureParams::kBilerp_FilterMode:
                case GrTextureParams::kMipMap_FilterMode:
                    stretch->fType = SkGrStretch::kBilerp_Type;
                    break;
            }
        } else {
            stretch->fType = SkGrStretch::kBilerp_Type;
        }
    } else {
        stretch->fWidth  = -1;
        stretch->fHeight = -1;
        stretch->fType = SkGrStretch::kNone_Type;
    }
}
    void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& processor,
                 FPCoordTransformIter&& transformIter) override {
        SkASSERT(fDistanceAdjustUni.isValid());

        const GrDistanceFieldLCDTextGeoProc& dflcd = processor.cast<GrDistanceFieldLCDTextGeoProc>();
        GrDistanceFieldLCDTextGeoProc::DistanceAdjust wa = dflcd.getDistanceAdjust();
        if (wa != fDistanceAdjust) {
            pdman.set3f(fDistanceAdjustUni,
                        wa.fR,
                        wa.fG,
                        wa.fB);
            fDistanceAdjust = wa;
        }

        SkASSERT(dflcd.numTextureSamplers() >= 1);
        GrTexture* atlas = dflcd.textureSampler(0).peekTexture();
        SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height()));

        if (fAtlasSize.fWidth != atlas->width() || fAtlasSize.fHeight != atlas->height()) {
            fAtlasSize.set(atlas->width(), atlas->height());
            pdman.set2f(fAtlasSizeInvUniform, 1.0f / atlas->width(), 1.0f / atlas->height());
        }
        this->setTransformDataHelper(dflcd.localMatrix(), pdman, &transformIter);
    }
示例#18
0
    void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
        const GrDistanceFieldLCDTextGeoProc& dfTexEffect =
                args.fGP.cast<GrDistanceFieldLCDTextGeoProc>();

        GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
        GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
        GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;

        // emit attributes
        varyingHandler->emitAttributes(dfTexEffect);

        GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;

        // setup pass through color
        if (!dfTexEffect.colorIgnored()) {
            varyingHandler->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor);
        }

        // Setup position
        this->setupPosition(vertBuilder,
                            uniformHandler,
                            gpArgs,
                            dfTexEffect.inPosition()->fName,
                            dfTexEffect.viewMatrix(),
                            &fViewMatrixUniform);

        // emit transforms
        this->emitTransforms(vertBuilder,
                             varyingHandler,
                             uniformHandler,
                             gpArgs->fPositionVar,
                             dfTexEffect.inPosition()->fName,
                             args.fTransformsIn,
                             args.fTransformsOut);

        // set up varyings
        bool isUniformScale = (dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask) ==
                              kUniformScale_DistanceFieldEffectMask;
        bool isSimilarity = SkToBool(dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag);
        GrGLSLVertToFrag recipScale(kFloat_GrSLType);
        GrGLSLVertToFrag uv(kVec2f_GrSLType);
        varyingHandler->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision);
        vertBuilder->codeAppendf("%s = %s;", uv.vsOut(), dfTexEffect.inTextureCoords()->fName);

        // compute numbers to be hardcoded to convert texture coordinates from float to int
        SkASSERT(dfTexEffect.numTextures() == 1);
        GrTexture* atlas = dfTexEffect.textureAccess(0).getTexture();
        SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height()));

        GrGLSLVertToFrag st(kVec2f_GrSLType);
        varyingHandler->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision);
        vertBuilder->codeAppendf("%s = vec2(%d, %d) * %s;", st.vsOut(),
                                 atlas->width(), atlas->height(),
                                 dfTexEffect.inTextureCoords()->fName);

        // add frag shader code

        SkAssertResult(fragBuilder->enableFeature(
                GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));

        // create LCD offset adjusted by inverse of transform
        // Use highp to work around aliasing issues
        fragBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(args.fGLSLCaps,
                                                                 kHigh_GrSLPrecision));
        fragBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn());
        fragBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(args.fGLSLCaps,
                                                                 kHigh_GrSLPrecision));

        SkScalar lcdDelta = 1.0f / (3.0f * atlas->width());
        if (dfTexEffect.getFlags() & kBGR_DistanceFieldEffectFlag) {
            fragBuilder->codeAppendf("float delta = -%.*f;\n", SK_FLT_DECIMAL_DIG, lcdDelta);
        } else {
            fragBuilder->codeAppendf("float delta = %.*f;\n", SK_FLT_DECIMAL_DIG, lcdDelta);
        }
        if (isUniformScale) {
            fragBuilder->codeAppendf("float st_grad_len = abs(dFdy(%s.y));", st.fsIn());
            fragBuilder->codeAppend("vec2 offset = vec2(st_grad_len*delta, 0.0);");
        } else if (isSimilarity) {
            // For a similarity matrix with rotation, the gradient will not be aligned
            // with the texel coordinate axes, so we need to calculate it.
            // We use dFdy because of a Mali 400 bug, and rotate -90 degrees to
            // get the gradient in the x direction.
            fragBuilder->codeAppendf("vec2 st_grad = dFdy(%s);", st.fsIn());
            fragBuilder->codeAppend("float st_grad_len = length(st_grad);");
            fragBuilder->codeAppend("vec2 offset = delta*vec2(st_grad.y, -st_grad.x);");
        } else {
            fragBuilder->codeAppendf("vec2 st = %s;\n", st.fsIn());

            fragBuilder->codeAppend("vec2 Jdx = dFdx(st);");
            fragBuilder->codeAppend("vec2 Jdy = dFdy(st);");
            fragBuilder->codeAppend("vec2 offset = delta*Jdx;");
        }

        // green is distance to uv center
        fragBuilder->codeAppend("\tvec4 texColor = ");
        fragBuilder->appendTextureLookup(args.fSamplers[0], "uv", kVec2f_GrSLType);
        fragBuilder->codeAppend(";\n");
        fragBuilder->codeAppend("\tvec3 distance;\n");
        fragBuilder->codeAppend("\tdistance.y = texColor.r;\n");
        // red is distance to left offset
        fragBuilder->codeAppend("\tvec2 uv_adjusted = uv - offset;\n");
        fragBuilder->codeAppend("\ttexColor = ");
        fragBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType);
        fragBuilder->codeAppend(";\n");
        fragBuilder->codeAppend("\tdistance.x = texColor.r;\n");
        // blue is distance to right offset
        fragBuilder->codeAppend("\tuv_adjusted = uv + offset;\n");
        fragBuilder->codeAppend("\ttexColor = ");
        fragBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType);
        fragBuilder->codeAppend(";\n");
        fragBuilder->codeAppend("\tdistance.z = texColor.r;\n");

        fragBuilder->codeAppend("\tdistance = "
           "vec3(" SK_DistanceFieldMultiplier ")*(distance - vec3(" SK_DistanceFieldThreshold"));");

        // adjust width based on gamma
        const char* distanceAdjustUniName = nullptr;
        fDistanceAdjustUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
                                                        kVec3f_GrSLType, kDefault_GrSLPrecision,
                                                        "DistanceAdjust", &distanceAdjustUniName);
        fragBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName);

        // To be strictly correct, we should compute the anti-aliasing factor separately
        // for each color component. However, this is only important when using perspective
        // transformations, and even then using a single factor seems like a reasonable
        // trade-off between quality and speed.
        fragBuilder->codeAppend("float afwidth;");
        if (isSimilarity) {
            // For similarity transform (uniform scale-only is a subset of this), we adjust for the 
            // effect of the transformation on the distance by using the length of the gradient of 
            // the texture coordinates. We use st coordinates to ensure we're mapping 1:1 from texel
            // space to pixel space.

            // this gives us a smooth step across approximately one fragment
            fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*st_grad_len;");
        } else {
            // For general transforms, to determine the amount of correction we multiply a unit
            // vector pointing along the SDF gradient direction by the Jacobian of the st coords
            // (which is the inverse transform for this fragment) and take the length of the result.
            fragBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance.r), dFdy(distance.r));");
            // the length of the gradient may be 0, so we need to check for this
            // this also compensates for the Adreno, which likes to drop tiles on division by 0
            fragBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);");
            fragBuilder->codeAppend("if (dg_len2 < 0.0001) {");
            fragBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);");
            fragBuilder->codeAppend("} else {");
            fragBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);");
            fragBuilder->codeAppend("}");
            fragBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,");
            fragBuilder->codeAppend("                 dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);");

            // this gives us a smooth step across approximately one fragment
            fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);");
        }

        fragBuilder->codeAppend(
                      "vec4 val = vec4(smoothstep(vec3(-afwidth), vec3(afwidth), distance), 1.0);");
        // set alpha to be max of rgb coverage
        fragBuilder->codeAppend("val.a = max(max(val.r, val.g), val.b);");

        fragBuilder->codeAppendf("%s = val;", args.fOutputCoverage);
    }
示例#19
0
    void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
        const GrDistanceFieldA8TextGeoProc& dfTexEffect =
                args.fGP.cast<GrDistanceFieldA8TextGeoProc>();
        GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;
        SkAssertResult(fragBuilder->enableFeature(
                GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));

        GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
        GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
        GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;

        // emit attributes
        varyingHandler->emitAttributes(dfTexEffect);

#ifdef SK_GAMMA_APPLY_TO_A8
        // adjust based on gamma
        const char* distanceAdjustUniName = nullptr;
        // width, height, 1/(3*width)
        fDistanceAdjustUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
                                                        kFloat_GrSLType, kDefault_GrSLPrecision,
                                                        "DistanceAdjust", &distanceAdjustUniName);
#endif

        // Setup pass through color
        if (!dfTexEffect.colorIgnored()) {
            varyingHandler->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor);
        }

        // Setup position
        this->setupPosition(vertBuilder,
                            uniformHandler,
                            gpArgs,
                            dfTexEffect.inPosition()->fName,
                            dfTexEffect.viewMatrix(),
                            &fViewMatrixUniform);

        // emit transforms
        this->emitTransforms(vertBuilder,
                             varyingHandler,
                             uniformHandler,
                             gpArgs->fPositionVar,
                             dfTexEffect.inPosition()->fName,
                             args.fTransformsIn,
                             args.fTransformsOut);

        // add varyings
        GrGLSLVertToFrag recipScale(kFloat_GrSLType);
        GrGLSLVertToFrag uv(kVec2f_GrSLType);
        bool isUniformScale = (dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask) ==
                              kUniformScale_DistanceFieldEffectMask;
        bool isSimilarity = SkToBool(dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag);
        varyingHandler->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision);
        vertBuilder->codeAppendf("%s = %s;", uv.vsOut(), dfTexEffect.inTextureCoords()->fName);

        // compute numbers to be hardcoded to convert texture coordinates from float to int
        SkASSERT(dfTexEffect.numTextures() == 1);
        GrTexture* atlas = dfTexEffect.textureAccess(0).getTexture();
        SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height()));

        GrGLSLVertToFrag st(kVec2f_GrSLType);
        varyingHandler->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision);
        vertBuilder->codeAppendf("%s = vec2(%d, %d) * %s;", st.vsOut(),
                                 atlas->width(), atlas->height(),
                                 dfTexEffect.inTextureCoords()->fName);
        
        // Use highp to work around aliasing issues
        fragBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(args.fGLSLCaps,
                                                                 kHigh_GrSLPrecision));
        fragBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn());

        fragBuilder->codeAppend("\tfloat texColor = ");
        fragBuilder->appendTextureLookup(args.fSamplers[0],
                                         "uv",
                                         kVec2f_GrSLType);
        fragBuilder->codeAppend(".r;\n");
        fragBuilder->codeAppend("\tfloat distance = "
                       SK_DistanceFieldMultiplier "*(texColor - " SK_DistanceFieldThreshold ");");
#ifdef SK_GAMMA_APPLY_TO_A8
        // adjust width based on gamma
        fragBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName);
#endif

        fragBuilder->codeAppend("float afwidth;");
        if (isUniformScale) {
            // For uniform scale, we adjust for the effect of the transformation on the distance
            // by using the length of the gradient of the t coordinate in the y direction. 
            // We use st coordinates to ensure we're mapping 1:1 from texel space to pixel space.
            // We use the y gradient because there is a bug in the Mali 400 in the x direction.

            // this gives us a smooth step across approximately one fragment
            fragBuilder->codeAppendf("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdy(%s.y));",
                                     st.fsIn());
        } else if (isSimilarity) {
            // For similarity transform, we adjust the effect of the transformation on the distance
            // by using the length of the gradient of the texture coordinates. We use st coordinates
            // to ensure we're mapping 1:1 from texel space to pixel space.
            // We use the y gradient because there is a bug in the Mali 400 in the x direction.

            // this gives us a smooth step across approximately one fragment
            fragBuilder->codeAppendf("float st_grad_len = length(dFdy(%s));", st.fsIn());
            fragBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*st_grad_len);");
        } else {
            // For general transforms, to determine the amount of correction we multiply a unit
            // vector pointing along the SDF gradient direction by the Jacobian of the st coords
            // (which is the inverse transform for this fragment) and take the length of the result.
            fragBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance), dFdy(distance));");
            // the length of the gradient may be 0, so we need to check for this
            // this also compensates for the Adreno, which likes to drop tiles on division by 0
            fragBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);");
            fragBuilder->codeAppend("if (dg_len2 < 0.0001) {");
            fragBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);");
            fragBuilder->codeAppend("} else {");
            fragBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);");
            fragBuilder->codeAppend("}");

            fragBuilder->codeAppendf("vec2 Jdx = dFdx(%s);", st.fsIn());
            fragBuilder->codeAppendf("vec2 Jdy = dFdy(%s);", st.fsIn());
            fragBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,");
            fragBuilder->codeAppend("                 dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);");

            // this gives us a smooth step across approximately one fragment
            fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);");
        }
        fragBuilder->codeAppend("float val = smoothstep(-afwidth, afwidth, distance);");

        fragBuilder->codeAppendf("%s = vec4(val);", args.fOutputCoverage);
    }
示例#20
0
static void parse_commandline(int argc, char* const argv[], SkTArray<SkString>* inputs,
                              sk_tools::PictureBenchmark* benchmark) {
    const char* argv0 = argv[0];
    char* const* stop = argv + argc;

    int repeats = DEFAULT_REPEATS;
    sk_tools::PictureRenderer::SkDeviceTypes deviceType =
        sk_tools::PictureRenderer::kBitmap_DeviceType;

    SkAutoTUnref<sk_tools::PictureRenderer> renderer(NULL);

    // Create a string to show our current settings.
    // TODO: Make it prettier. Currently it just repeats the command line.
    SkString commandLine("bench_pictures:");
    for (int i = 1; i < argc; i++) {
        commandLine.appendf(" %s", *(argv+i));
    }
    commandLine.append("\n");

    bool usePipe = false;
    int numThreads = 1;
    bool useTiles = false;
    const char* widthString = NULL;
    const char* heightString = NULL;
    int gridWidth = 0;
    int gridHeight = 0;
    bool isPowerOf2Mode = false;
    bool isCopyMode = false;
    const char* xTilesString = NULL;
    const char* yTilesString = NULL;
    const char* mode = NULL;
    bool gridSupported = false;
    sk_tools::PictureRenderer::BBoxHierarchyType bbhType =
        sk_tools::PictureRenderer::kNone_BBoxHierarchyType;
    sk_tools::PictureRenderer::DrawFilterFlags drawFilters[SkDrawFilter::kTypeCount];
    sk_bzero(drawFilters, sizeof(drawFilters));
    SkISize viewport;
    viewport.setEmpty();
    for (++argv; argv < stop; ++argv) {
        if (0 == strcmp(*argv, "--repeat")) {
            ++argv;
            if (argv < stop) {
                repeats = atoi(*argv);
                if (repeats < 1) {
                    gLogger.logError("--repeat must be given a value > 0\n");
                    PRINT_USAGE_AND_EXIT;
                }
            } else {
                gLogger.logError("Missing arg for --repeat\n");
                PRINT_USAGE_AND_EXIT;
            }
        } else if (0 == strcmp(*argv, "--pipe")) {
            usePipe = true;
        } else if (0 == strcmp(*argv, "--logFile")) {
            argv++;
            if (argv < stop) {
                if (!gLogger.SetLogFile(*argv)) {
                    SkString str;
                    str.printf("Could not open %s for writing.", *argv);
                    gLogger.logError(str);
                    usage(argv0);
                    // TODO(borenet): We're disabling this for now, due to
                    // write-protected Android devices.  The very short-term
                    // solution is to ignore the fact that we have no log file.
                    //exit(-1);
                }
            } else {
                gLogger.logError("Missing arg for --logFile\n");
                PRINT_USAGE_AND_EXIT;
            }
        } else if (0 == strcmp(*argv, "--multi")) {
            ++argv;
            if (argv >= stop) {
                gLogger.logError("Missing arg for --multi\n");
                PRINT_USAGE_AND_EXIT;
            }
            numThreads = atoi(*argv);
            if (numThreads < 2) {
                gLogger.logError("Number of threads must be at least 2.\n");
                PRINT_USAGE_AND_EXIT;
            }
        } else if (0 == strcmp(*argv, "--bbh")) {
            ++argv;
            if (argv >= stop) {
                gLogger.logError("Missing value for --bbh\n");
                PRINT_USAGE_AND_EXIT;
            }
            if (0 == strcmp(*argv, "none")) {
                bbhType = sk_tools::PictureRenderer::kNone_BBoxHierarchyType;
            } else if (0 == strcmp(*argv, "rtree")) {
                bbhType = sk_tools::PictureRenderer::kRTree_BBoxHierarchyType;
            } else if (0 == strcmp(*argv, "grid")) {
                bbhType = sk_tools::PictureRenderer::kTileGrid_BBoxHierarchyType;
                ++argv;
                if (argv >= stop) {
                    gLogger.logError("Missing width for --bbh grid\n");
                    PRINT_USAGE_AND_EXIT;
                }
                gridWidth = atoi(*argv);
                ++argv;
                if (argv >= stop) {
                    gLogger.logError("Missing height for --bbh grid\n");
                    PRINT_USAGE_AND_EXIT;
                }
                gridHeight = atoi(*argv);
            } else {
                SkString err;
                err.printf("%s is not a valid value for --bbhType\n", *argv);
                gLogger.logError(err);
                PRINT_USAGE_AND_EXIT;
            }

        } else if (0 == strcmp(*argv, "--mode")) {
            if (renderer.get() != NULL) {
                SkDebugf("Cannot combine modes.\n");
                PRINT_USAGE_AND_EXIT;
            }

            ++argv;
            if (argv >= stop) {
                gLogger.logError("Missing mode for --mode\n");
                PRINT_USAGE_AND_EXIT;
            }

            if (0 == strcmp(*argv, "record")) {
                renderer.reset(SkNEW(sk_tools::RecordPictureRenderer));
                gridSupported = true;
            } else if (0 == strcmp(*argv, "clone")) {
                renderer.reset(sk_tools::CreatePictureCloneRenderer());
            } else if (0 == strcmp(*argv, "simple")) {
                renderer.reset(SkNEW(sk_tools::SimplePictureRenderer));
            } else if ((0 == strcmp(*argv, "tile")) || (0 == strcmp(*argv, "pow2tile"))
                       || 0 == strcmp(*argv, "copyTile")) {
                useTiles = true;
                mode = *argv;

                if (0 == strcmp(*argv, "pow2tile")) {
                    isPowerOf2Mode = true;
                } else if (0 == strcmp(*argv, "copyTile")) {
                    isCopyMode = true;
                } else {
                    gridSupported = true;
                }

                ++argv;
                if (argv >= stop) {
                    SkString err;
                    err.printf("Missing width for --mode %s\n", mode);
                    gLogger.logError(err);
                    PRINT_USAGE_AND_EXIT;
                }

                widthString = *argv;
                ++argv;
                if (argv >= stop) {
                    SkString err;
                    err.appendf("Missing height for --mode %s\n", mode);
                    gLogger.logError(err);
                    PRINT_USAGE_AND_EXIT;
                }
                heightString = *argv;
            } else if (0 == strcmp(*argv, "playbackCreation")) {
                renderer.reset(SkNEW(sk_tools::PlaybackCreationRenderer));
                gridSupported = true;
            } else if (0 == strcmp(*argv, "gatherPixelRefs")) {
                renderer.reset(sk_tools::CreateGatherPixelRefsRenderer());
            } else {
                SkString err;
                err.printf("%s is not a valid mode for --mode\n", *argv);
                gLogger.logError(err);
                PRINT_USAGE_AND_EXIT;
            }
        } else if (0 == strcmp(*argv, "--viewport")) {
            ++argv;
            if (argv >= stop) {
                gLogger.logError("Missing width for --viewport\n");
                PRINT_USAGE_AND_EXIT;
            }
            viewport.fWidth = atoi(*argv);
            ++argv;
            if (argv >= stop) {
                gLogger.logError("Missing height for --viewport\n");
                PRINT_USAGE_AND_EXIT;
            }
            viewport.fHeight = atoi(*argv);
        } else if (0 == strcmp(*argv, "--tiles")) {
            ++argv;
            if (argv >= stop) {
                gLogger.logError("Missing x for --tiles\n");
                PRINT_USAGE_AND_EXIT;
            }
            xTilesString = *argv;
            ++argv;
            if (argv >= stop) {
                gLogger.logError("Missing y for --tiles\n");
                PRINT_USAGE_AND_EXIT;
            }
            yTilesString = *argv;
        }  else if (0 == strcmp(*argv, "--device")) {
            ++argv;
            if (argv >= stop) {
                gLogger.logError("Missing mode for --device\n");
                PRINT_USAGE_AND_EXIT;
            }

            if (0 == strcmp(*argv, "bitmap")) {
                deviceType = sk_tools::PictureRenderer::kBitmap_DeviceType;
            }
#if SK_SUPPORT_GPU
            else if (0 == strcmp(*argv, "gpu")) {
                deviceType = sk_tools::PictureRenderer::kGPU_DeviceType;
            }
#endif
            else {
                SkString err;
                err.printf("%s is not a valid mode for --device\n", *argv);
                gLogger.logError(err);
                PRINT_USAGE_AND_EXIT;
            }
        } else if (0 == strcmp(*argv, "--timers")) {
            ++argv;
            if (argv < stop) {
                bool timerWall = false;
                bool truncatedTimerWall = false;
                bool timerCpu = false;
                bool truncatedTimerCpu = false;
                bool timerGpu = false;
                for (char* t = *argv; *t; ++t) {
                    switch (*t) {
                        case 'w':
                            timerWall = true;
                            break;
                        case 'c':
                            timerCpu = true;
                            break;
                        case 'W':
                            truncatedTimerWall = true;
                            break;
                        case 'C':
                            truncatedTimerCpu = true;
                            break;
                        case 'g':
                            timerGpu = true;
                            break;
                        default: {
                            break;
                        }
                    }
                }
                benchmark->setTimersToShow(timerWall, truncatedTimerWall, timerCpu,
                                           truncatedTimerCpu, timerGpu);
            } else {
                gLogger.logError("Missing arg for --timers\n");
                PRINT_USAGE_AND_EXIT;
            }
        } else if (0 == strcmp(*argv, "--timeIndividualTiles")) {
            benchmark->setTimeIndividualTiles(true);
        } else if (0 == strcmp(*argv, "--min")) {
            benchmark->setPrintMin(true);
        } else if (0 == strcmp(*argv, "--logPerIter")) {
            ++argv;
            if (argv < stop) {
                bool log = atoi(*argv) != 0;
                benchmark->setLogPerIter(log);
            } else {
                gLogger.logError("Missing arg for --logPerIter\n");
                PRINT_USAGE_AND_EXIT;
            }
        } else if (0 == strcmp(*argv, "--filter")) {
            ++argv;
            if (argv < stop) {
                const char* colon = strchr(*argv, ':');
                if (colon) {
                    int type = -1;
                    size_t typeLen = colon - *argv;
                    for (size_t tIndex = 0; tIndex < kFilterTypesCount; ++tIndex) {
                        if (typeLen == strlen(gFilterTypes[tIndex])
                                && !strncmp(*argv, gFilterTypes[tIndex], typeLen)) {
                            type = tIndex;
                            break;
                        }
                    }
                    if (type < 0) {
                        SkString err;
                        err.printf("Unknown type for --filter %s\n", *argv);
                        gLogger.logError(err);
                        PRINT_USAGE_AND_EXIT;
                    }
                    int flag = -1;
                    size_t flagLen = strlen(*argv) - typeLen - 1;
                    for (size_t fIndex = 0; fIndex < kFilterFlagsCount; ++fIndex) {
                        if (flagLen == strlen(gFilterFlags[fIndex])
                                && !strncmp(colon + 1, gFilterFlags[fIndex], flagLen)) {
                            flag = 1 << fIndex;
                            break;
                        }
                    }
                    if (flag < 0) {
                        SkString err;
                        err.printf("Unknown flag for --filter %s\n", *argv);
                        gLogger.logError(err);
                        PRINT_USAGE_AND_EXIT;
                    }
                    for (int index = 0; index < SkDrawFilter::kTypeCount; ++index) {
                        if (type != SkDrawFilter::kTypeCount && index != type) {
                            continue;
                        }
                        drawFilters[index] = (sk_tools::PictureRenderer::DrawFilterFlags)
                                (drawFilters[index] | flag);
                    }
                } else {
                    SkString err;
                    err.printf("Unknown arg for --filter %s : missing colon\n", *argv);
                    gLogger.logError(err);
                    PRINT_USAGE_AND_EXIT;
                }
            } else {
                gLogger.logError("Missing arg for --filter\n");
                PRINT_USAGE_AND_EXIT;
            }
        } else if (0 == strcmp(*argv, "--help") || 0 == strcmp(*argv, "-h")) {
            PRINT_USAGE_AND_EXIT;
        } else {
            inputs->push_back(SkString(*argv));
        }
    }

    if (numThreads > 1 && !useTiles) {
        gLogger.logError("Multithreaded drawing requires tiled rendering.\n");
        PRINT_USAGE_AND_EXIT;
    }

    if (usePipe && sk_tools::PictureRenderer::kNone_BBoxHierarchyType != bbhType) {
        gLogger.logError("--pipe and --bbh cannot be used together\n");
        PRINT_USAGE_AND_EXIT;
    }

    if (sk_tools::PictureRenderer::kTileGrid_BBoxHierarchyType == bbhType &&
        !gridSupported) {
        gLogger.logError("'--bbh grid' is not compatible with specified --mode.\n");
        PRINT_USAGE_AND_EXIT;
    }

    if (useTiles) {
        SkASSERT(NULL == renderer);
        sk_tools::TiledPictureRenderer* tiledRenderer;
        if (isCopyMode) {
            int x, y;
            if (xTilesString != NULL) {
                SkASSERT(yTilesString != NULL);
                x = atoi(xTilesString);
                y = atoi(yTilesString);
                if (x <= 0 || y <= 0) {
                    gLogger.logError("--tiles must be given values > 0\n");
                    PRINT_USAGE_AND_EXIT;
                }
            } else {
                x = y = 4;
            }
            tiledRenderer = SkNEW_ARGS(sk_tools::CopyTilesRenderer, (x, y));
            if (benchmark->timeIndividualTiles()) {
                gLogger.logError("timeIndividualTiles is not compatible with copyTile\n");
                PRINT_USAGE_AND_EXIT;
            }
        } else if (numThreads > 1) {
            tiledRenderer = SkNEW_ARGS(sk_tools::MultiCorePictureRenderer, (numThreads));
        } else {
            tiledRenderer = SkNEW(sk_tools::TiledPictureRenderer);
        }
        if (isPowerOf2Mode) {
            int minWidth = atoi(widthString);
            if (!SkIsPow2(minWidth) || minWidth < 0) {
                tiledRenderer->unref();
                SkString err;
                err.printf("-mode %s must be given a width"
                         " value that is a power of two\n", mode);
                gLogger.logError(err);
                PRINT_USAGE_AND_EXIT;
            }
            tiledRenderer->setTileMinPowerOf2Width(minWidth);
        } else if (sk_tools::is_percentage(widthString)) {
            if (isCopyMode) {
                tiledRenderer->unref();
                SkString err;
                err.printf("--mode %s does not support percentages.\n", mode);
                gLogger.logError(err.c_str());
                PRINT_USAGE_AND_EXIT;
            }
            tiledRenderer->setTileWidthPercentage(atof(widthString));
            if (!(tiledRenderer->getTileWidthPercentage() > 0)) {
                tiledRenderer->unref();
                SkString err;
                err.appendf("--mode %s must be given a width percentage > 0\n", mode);
                gLogger.logError(err);
                PRINT_USAGE_AND_EXIT;
            }
        } else {
            tiledRenderer->setTileWidth(atoi(widthString));
            if (!(tiledRenderer->getTileWidth() > 0)) {
                tiledRenderer->unref();
                SkString err;
                err.appendf("--mode %s must be given a width > 0\n", mode);
                gLogger.logError(err);
                PRINT_USAGE_AND_EXIT;
            }
        }

        if (sk_tools::is_percentage(heightString)) {
            if (isCopyMode) {
                tiledRenderer->unref();
                SkString err;
                err.printf("--mode %s does not support percentages.\n", mode);
                gLogger.logError(err.c_str());
                PRINT_USAGE_AND_EXIT;
            }
            tiledRenderer->setTileHeightPercentage(atof(heightString));
            if (!(tiledRenderer->getTileHeightPercentage() > 0)) {
                tiledRenderer->unref();
                SkString err;
                err.appendf("--mode %s must be given a height percentage > 0\n", mode);
                gLogger.logError(err);
                PRINT_USAGE_AND_EXIT;
            }
        } else {
            tiledRenderer->setTileHeight(atoi(heightString));
            if (!(tiledRenderer->getTileHeight() > 0)) {
                tiledRenderer->unref();
                SkString err;
                err.appendf("--mode %s must be given a height > 0\n", mode);
                gLogger.logError(err);
                PRINT_USAGE_AND_EXIT;
            }
        }
        if (numThreads > 1) {
#if SK_SUPPORT_GPU
            if (sk_tools::PictureRenderer::kGPU_DeviceType == deviceType) {
                tiledRenderer->unref();
                gLogger.logError("GPU not compatible with multithreaded tiling.\n");
                PRINT_USAGE_AND_EXIT;
            }
#endif
        }
        renderer.reset(tiledRenderer);
        if (usePipe) {
            gLogger.logError("Pipe rendering is currently not compatible with tiling.\n"
                     "Turning off pipe.\n");
        }
    } else {
        if (benchmark->timeIndividualTiles()) {
            gLogger.logError("timeIndividualTiles requires tiled rendering.\n");
            PRINT_USAGE_AND_EXIT;
        }
        if (usePipe) {
            if (renderer.get() != NULL) {
                gLogger.logError("Pipe is incompatible with other modes.\n");
                PRINT_USAGE_AND_EXIT;
            }
            renderer.reset(SkNEW(sk_tools::PipePictureRenderer));
        }
    }
    if (inputs->count() < 1) {
        PRINT_USAGE_AND_EXIT;
    }

    if (NULL == renderer) {
        renderer.reset(SkNEW(sk_tools::SimplePictureRenderer));
    }

    renderer->setBBoxHierarchyType(bbhType);
    renderer->setDrawFilters(drawFilters, filtersName(drawFilters));
    renderer->setGridSize(gridWidth, gridHeight);
    renderer->setViewport(viewport);
    benchmark->setRenderer(renderer);
    benchmark->setRepeats(repeats);
    benchmark->setDeviceType(deviceType);
    benchmark->setLogger(&gLogger);
    // Report current settings:
    gLogger.logProgress(commandLine);
}
示例#21
0
文件: GrGpu.cpp 项目: crabfang/skia
GrTexture* GrGpu::createTexture(const GrSurfaceDesc& origDesc, bool budgeted,
                                const void* srcData, size_t rowBytes) {
    GrSurfaceDesc desc = origDesc;

    if (!this->caps()->isConfigTexturable(desc.fConfig)) {
        return nullptr;
    }

    bool isRT = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag);
    if (isRT && !this->caps()->isConfigRenderable(desc.fConfig, desc.fSampleCnt > 0)) {
        return nullptr;
    }

    // We currently do not support multisampled textures
    if (!isRT && desc.fSampleCnt > 0) {
        return nullptr;
    }

    GrTexture *tex = nullptr;

    if (isRT) {
        int maxRTSize = this->caps()->maxRenderTargetSize();
        if (desc.fWidth > maxRTSize || desc.fHeight > maxRTSize) {
            return nullptr;
        }
    } else {
        int maxSize = this->caps()->maxTextureSize();
        if (desc.fWidth > maxSize || desc.fHeight > maxSize) {
            return nullptr;
        }
    }

    GrGpuResource::LifeCycle lifeCycle = budgeted ? GrGpuResource::kCached_LifeCycle :
                                                    GrGpuResource::kUncached_LifeCycle;

    desc.fSampleCnt = SkTMin(desc.fSampleCnt, this->caps()->maxSampleCount());
    // Attempt to catch un- or wrongly initialized sample counts;
    SkASSERT(desc.fSampleCnt >= 0 && desc.fSampleCnt <= 64);

    desc.fOrigin = resolve_origin(desc.fOrigin, isRT);

    if (GrPixelConfigIsCompressed(desc.fConfig)) {
        // We shouldn't be rendering into this
        SkASSERT(!isRT);
        SkASSERT(0 == desc.fSampleCnt);

        if (!this->caps()->npotTextureTileSupport() &&
            (!SkIsPow2(desc.fWidth) || !SkIsPow2(desc.fHeight))) {
            return nullptr;
        }

        this->handleDirtyContext();
        tex = this->onCreateCompressedTexture(desc, lifeCycle, srcData);
    } else {
        this->handleDirtyContext();
        tex = this->onCreateTexture(desc, lifeCycle, srcData, rowBytes);
    }
    if (!this->caps()->reuseScratchTextures() && !isRT) {
        tex->resourcePriv().removeScratchKey();
    }
    if (tex) {
        fStats.incTextureCreates();
        if (srcData) {
            fStats.incTextureUploads();
        }
    }
    return tex;
}
示例#22
0
sk_sp<GrDrawContext> GaussianBlur(GrContext* context,
                                  GrTexture* origSrc,
                                  sk_sp<SkColorSpace> colorSpace,
                                  const SkIRect& dstBounds,
                                  const SkIRect* srcBounds,
                                  float sigmaX,
                                  float sigmaY,
                                  SkBackingFit fit) {
    SkASSERT(context);
    SkIRect clearRect;
    int scaleFactorX, radiusX;
    int scaleFactorY, radiusY;
    int maxTextureSize = context->caps()->maxTextureSize();
    sigmaX = adjust_sigma(sigmaX, maxTextureSize, &scaleFactorX, &radiusX);
    sigmaY = adjust_sigma(sigmaY, maxTextureSize, &scaleFactorY, &radiusY);
    SkASSERT(sigmaX || sigmaY);

    SkIPoint srcOffset = SkIPoint::Make(-dstBounds.x(), -dstBounds.y());
    SkIRect localDstBounds = SkIRect::MakeWH(dstBounds.width(), dstBounds.height());
    SkIRect localSrcBounds;
    SkIRect srcRect;
    if (srcBounds) {
        srcRect = localSrcBounds = *srcBounds;
        srcRect.offset(srcOffset);
        srcBounds = &localSrcBounds;
    } else {
        srcRect = localDstBounds;
    }

    scale_irect_roundout(&srcRect, 1.0f / scaleFactorX, 1.0f / scaleFactorY);
    scale_irect(&srcRect, scaleFactorX, scaleFactorY);

    // setup new clip
    GrFixedClip clip(localDstBounds);

    sk_sp<GrTexture> srcTexture(sk_ref_sp(origSrc));

    SkASSERT(kBGRA_8888_GrPixelConfig == srcTexture->config() ||
             kRGBA_8888_GrPixelConfig == srcTexture->config() ||
             kSRGBA_8888_GrPixelConfig == srcTexture->config() ||
             kSBGRA_8888_GrPixelConfig == srcTexture->config() ||
             kRGBA_half_GrPixelConfig == srcTexture->config() ||
             kAlpha_8_GrPixelConfig == srcTexture->config());

    const int width = dstBounds.width();
    const int height = dstBounds.height();
    const GrPixelConfig config = srcTexture->config();

    sk_sp<GrDrawContext> dstDrawContext(context->makeDrawContext(fit,
                                                                 width, height, config, colorSpace,
                                                                 0, kDefault_GrSurfaceOrigin));
    if (!dstDrawContext) {
        return nullptr;
    }

    // For really small blurs (certainly no wider than 5x5 on desktop gpus) it is faster to just
    // launch a single non separable kernel vs two launches
    if (sigmaX > 0.0f && sigmaY > 0.0f &&
            (2 * radiusX + 1) * (2 * radiusY + 1) <= MAX_KERNEL_SIZE) {
        // We shouldn't be scaling because this is a small size blur
        SkASSERT((1 == scaleFactorX) && (1 == scaleFactorY));

        convolve_gaussian_2d(dstDrawContext.get(), clip, localDstBounds, srcOffset,
                             srcTexture.get(), radiusX, radiusY, sigmaX, sigmaY, srcBounds);

        return dstDrawContext;
    } 

    sk_sp<GrDrawContext> tmpDrawContext(context->makeDrawContext(fit,
                                                                 width, height, config, colorSpace,
                                                                 0, kDefault_GrSurfaceOrigin));
    if (!tmpDrawContext) {
        return nullptr;
    }

    sk_sp<GrDrawContext> srcDrawContext;

    SkASSERT(SkIsPow2(scaleFactorX) && SkIsPow2(scaleFactorY));

    for (int i = 1; i < scaleFactorX || i < scaleFactorY; i *= 2) {
        GrPaint paint;
        paint.setGammaCorrect(dstDrawContext->isGammaCorrect());
        SkMatrix matrix;
        matrix.setIDiv(srcTexture->width(), srcTexture->height());
        SkIRect dstRect(srcRect);
        if (srcBounds && i == 1) {
            SkRect domain;
            matrix.mapRect(&domain, SkRect::Make(*srcBounds));
            domain.inset((i < scaleFactorX) ? SK_ScalarHalf / srcTexture->width() : 0.0f,
                         (i < scaleFactorY) ? SK_ScalarHalf / srcTexture->height() : 0.0f);
            sk_sp<GrFragmentProcessor> fp(GrTextureDomainEffect::Make(
                                                        srcTexture.get(),
                                                        nullptr,
                                                        matrix,
                                                        domain,
                                                        GrTextureDomain::kDecal_Mode,
                                                        GrTextureParams::kBilerp_FilterMode));
            paint.addColorFragmentProcessor(std::move(fp));
            srcRect.offset(-srcOffset);
            srcOffset.set(0, 0);
        } else {
            GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kBilerp_FilterMode);
            paint.addColorTextureProcessor(srcTexture.get(), nullptr, matrix, params);
        }
        paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
        shrink_irect_by_2(&dstRect, i < scaleFactorX, i < scaleFactorY);

        dstDrawContext->fillRectToRect(clip, paint, SkMatrix::I(),
                                       SkRect::Make(dstRect), SkRect::Make(srcRect));

        srcDrawContext = dstDrawContext;
        srcRect = dstRect;
        srcTexture = srcDrawContext->asTexture();
        dstDrawContext.swap(tmpDrawContext);
        localSrcBounds = srcRect;
    }

    srcRect = localDstBounds;
    scale_irect_roundout(&srcRect, 1.0f / scaleFactorX, 1.0f / scaleFactorY);
    if (sigmaX > 0.0f) {
        if (scaleFactorX > 1) {
            SkASSERT(srcDrawContext);

            // Clear out a radius to the right of the srcRect to prevent the
            // X convolution from reading garbage.
            clearRect = SkIRect::MakeXYWH(srcRect.fRight, srcRect.fTop,
                                          radiusX, srcRect.height());
            srcDrawContext->clear(&clearRect, 0x0, false);
        }

        convolve_gaussian(dstDrawContext.get(), clip, srcRect,
                          srcTexture.get(), Gr1DKernelEffect::kX_Direction, radiusX, sigmaX,
                          srcBounds, srcOffset);
        srcDrawContext = dstDrawContext;
        srcTexture = srcDrawContext->asTexture();
        srcRect.offsetTo(0, 0);
        dstDrawContext.swap(tmpDrawContext);
        localSrcBounds = srcRect;
        srcOffset.set(0, 0);
    }

    if (sigmaY > 0.0f) {
        if (scaleFactorY > 1 || sigmaX > 0.0f) {
            SkASSERT(srcDrawContext);

            // Clear out a radius below the srcRect to prevent the Y
            // convolution from reading garbage.
            clearRect = SkIRect::MakeXYWH(srcRect.fLeft, srcRect.fBottom,
                                          srcRect.width(), radiusY);
            srcDrawContext->clear(&clearRect, 0x0, false);
        }

        convolve_gaussian(dstDrawContext.get(), clip, srcRect,
                          srcTexture.get(), Gr1DKernelEffect::kY_Direction, radiusY, sigmaY,
                          srcBounds, srcOffset);

        srcDrawContext = dstDrawContext;
        srcRect.offsetTo(0, 0);
        dstDrawContext.swap(tmpDrawContext);
    }

    SkASSERT(srcDrawContext);
    srcTexture = nullptr;     // we don't use this from here on out

    if (scaleFactorX > 1 || scaleFactorY > 1) {
        // Clear one pixel to the right and below, to accommodate bilinear upsampling.
        clearRect = SkIRect::MakeXYWH(srcRect.fLeft, srcRect.fBottom, srcRect.width() + 1, 1);
        srcDrawContext->clear(&clearRect, 0x0, false);
        clearRect = SkIRect::MakeXYWH(srcRect.fRight, srcRect.fTop, 1, srcRect.height());
        srcDrawContext->clear(&clearRect, 0x0, false);

        SkMatrix matrix;
        matrix.setIDiv(srcDrawContext->width(), srcDrawContext->height());

        GrPaint paint;
        paint.setGammaCorrect(dstDrawContext->isGammaCorrect());
        // FIXME:  this should be mitchell, not bilinear.
        GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kBilerp_FilterMode);
        sk_sp<GrTexture> tex(srcDrawContext->asTexture());
        paint.addColorTextureProcessor(tex.get(), nullptr, matrix, params);
        paint.setPorterDuffXPFactory(SkBlendMode::kSrc);

        SkIRect dstRect(srcRect);
        scale_irect(&dstRect, scaleFactorX, scaleFactorY);

        dstDrawContext->fillRectToRect(clip, paint, SkMatrix::I(),
                                       SkRect::Make(dstRect), SkRect::Make(srcRect));

        srcDrawContext = dstDrawContext;
        srcRect = dstRect;
        dstDrawContext.swap(tmpDrawContext);
    }

    return srcDrawContext;
}
示例#23
0
sk_tools::PictureRenderer* parseRenderer(SkString& error, PictureTool tool) {
    error.reset();

    if (FLAGS_multi <= 0) {
        error.printf("--multi must be > 0, was %i", FLAGS_multi);
        return NULL;
    }

    bool useTiles = false;
    const char* widthString = NULL;
    const char* heightString = NULL;
    bool isPowerOf2Mode = false;
    bool isCopyMode = false;
    const char* mode = NULL;
    bool gridSupported = false;

    SkAutoTUnref<sk_tools::PictureRenderer> renderer;
    if (FLAGS_mode.count() >= 1) {
        mode = FLAGS_mode[0];
        if (0 == strcmp(mode, "record")) {
            renderer.reset(SkNEW(sk_tools::RecordPictureRenderer));
            gridSupported = true;
        // undocumented
        } else if (0 == strcmp(mode, "clone")) {
            renderer.reset(sk_tools::CreatePictureCloneRenderer());
        } else if (0 == strcmp(mode, "tile") || 0 == strcmp(mode, "pow2tile")
                   || 0 == strcmp(mode, "copyTile")) {
            useTiles = true;

            if (0 == strcmp(mode, "pow2tile")) {
                isPowerOf2Mode = true;
            } else if (0 == strcmp(mode, "copyTile")) {
                isCopyMode = true;
            } else {
                gridSupported = true;
            }

            if (FLAGS_mode.count() < 2) {
                error.printf("Missing width for --mode %s\n", mode);
                return NULL;
            }

            widthString = FLAGS_mode[1];
            if (FLAGS_mode.count() < 3) {
                error.printf("Missing height for --mode %s\n", mode);
                return NULL;
            }

            heightString = FLAGS_mode[2];
        } else if (0 == strcmp(mode, "playbackCreation") && kBench_PictureTool == tool) {
            renderer.reset(SkNEW(sk_tools::PlaybackCreationRenderer));
            gridSupported = true;
        // undocumented
        } else if (0 == strcmp(mode, "gatherPixelRefs") && kBench_PictureTool == tool) {
            renderer.reset(sk_tools::CreateGatherPixelRefsRenderer());
        } else if (0 == strcmp(mode, "rerecord") && kRender_PictureTool == tool) {
            renderer.reset(SkNEW(sk_tools::RecordPictureRenderer));
        // Allow 'mode' to be set to 'simple', but do not create a renderer, so we can
        // ensure that pipe does not override a mode besides simple. The renderer will
        // be created below.
        } else if (0 != strcmp(mode, "simple")) {
            error.printf("%s is not a valid mode for --mode\n", mode);
            return NULL;
        }
    }

    if (useTiles) {
        SkASSERT(NULL == renderer);
        SkAutoTUnref<sk_tools::TiledPictureRenderer> tiledRenderer;
        if (isCopyMode) {
            int xTiles = -1;
            int yTiles = -1;
            if (FLAGS_tiles.count() > 0) {
                if (FLAGS_tiles.count() != 2) {
                    error.printf("--tiles requires an x value and a y value.\n");
                    return NULL;
                }
                xTiles = atoi(FLAGS_tiles[0]);
                yTiles = atoi(FLAGS_tiles[1]);
            }

            int x, y;
            if (xTiles != -1 && yTiles != -1) {
                x = xTiles;
                y = yTiles;
                if (x <= 0 || y <= 0) {
                    error.printf("--tiles must be given values > 0\n");
                    return NULL;
                }
            } else {
                x = y = 4;
            }
            tiledRenderer.reset(SkNEW_ARGS(sk_tools::CopyTilesRenderer, (x, y)));
        } else if (FLAGS_multi > 1) {
            tiledRenderer.reset(SkNEW_ARGS(sk_tools::MultiCorePictureRenderer,
                                           (FLAGS_multi)));
        } else {
            tiledRenderer.reset(SkNEW(sk_tools::TiledPictureRenderer));
        }

        if (isPowerOf2Mode) {
            int minWidth = atoi(widthString);
            if (!SkIsPow2(minWidth) || minWidth < 0) {
                SkString err;
                error.printf("-mode %s must be given a width"
                             " value that is a power of two\n", mode);
                return NULL;
            }
            tiledRenderer->setTileMinPowerOf2Width(minWidth);
        } else if (sk_tools::is_percentage(widthString)) {
            if (isCopyMode) {
                error.printf("--mode %s does not support percentages.\n", mode);
                return NULL;
            }
            tiledRenderer->setTileWidthPercentage(atof(widthString));
            if (!(tiledRenderer->getTileWidthPercentage() > 0)) {
                error.printf("--mode %s must be given a width percentage > 0\n", mode);
                return NULL;
            }
        } else {
            tiledRenderer->setTileWidth(atoi(widthString));
            if (!(tiledRenderer->getTileWidth() > 0)) {
                error.printf("--mode %s must be given a width > 0\n", mode);
                return NULL;
            }
        }

        if (sk_tools::is_percentage(heightString)) {
            if (isCopyMode) {
                error.printf("--mode %s does not support percentages.\n", mode);
                return NULL;
            }
            tiledRenderer->setTileHeightPercentage(atof(heightString));
            if (!(tiledRenderer->getTileHeightPercentage() > 0)) {
                error.printf("--mode %s must be given a height percentage > 0\n", mode);
                return NULL;
            }
        } else {
            tiledRenderer->setTileHeight(atoi(heightString));
            if (!(tiledRenderer->getTileHeight() > 0)) {
                SkString err;
                error.printf("--mode %s must be given a height > 0\n", mode);
                return NULL;
            }
        }

        renderer.reset(tiledRenderer.detach());
        if (FLAGS_pipe) {
            error.printf("Pipe rendering is currently not compatible with tiling.\n"
                         "Turning off pipe.\n");
        }

    } else { // useTiles
        if (FLAGS_multi > 1) {
            error.printf("Multithreaded drawing requires tiled rendering.\n");
            return NULL;
        }
        if (FLAGS_pipe) {
            if (renderer != NULL) {
                error.printf("Pipe is incompatible with other modes.\n");
                return NULL;
            }
            renderer.reset(SkNEW(sk_tools::PipePictureRenderer));
        }
    }

    if (NULL == renderer) {
        renderer.reset(SkNEW(sk_tools::SimplePictureRenderer));
    }

    if (FLAGS_viewport.count() > 0) {
        if (FLAGS_viewport.count() != 2) {
            error.printf("--viewport requires a width and a height.\n");
            return NULL;
        }
        SkISize viewport;
        viewport.fWidth = atoi(FLAGS_viewport[0]);
        viewport.fHeight = atoi(FLAGS_viewport[1]);
        renderer->setViewport(viewport);
    }

    sk_tools::PictureRenderer::SkDeviceTypes deviceType =
        sk_tools::PictureRenderer::kBitmap_DeviceType;
#if SK_SUPPORT_GPU
    int sampleCount = 0;
#endif
    if (FLAGS_config.count() > 0) {
        if (0 == strcmp(FLAGS_config[0], "8888")) {
            deviceType = sk_tools::PictureRenderer::kBitmap_DeviceType;
        }
#if SK_SUPPORT_GPU
        else if (0 == strcmp(FLAGS_config[0], "gpu")) {
            deviceType = sk_tools::PictureRenderer::kGPU_DeviceType;
            if (FLAGS_multi > 1) {
                error.printf("GPU not compatible with multithreaded tiling.\n");
                return NULL;
            }
        }
        else if (0 == strcmp(FLAGS_config[0], "msaa4")) {
            deviceType = sk_tools::PictureRenderer::kGPU_DeviceType;
            if (FLAGS_multi > 1) {
                error.printf("GPU not compatible with multithreaded tiling.\n");
                return NULL;
            }
            sampleCount = 4;
        }
        else if (0 == strcmp(FLAGS_config[0], "msaa16")) {
            deviceType = sk_tools::PictureRenderer::kGPU_DeviceType;
            if (FLAGS_multi > 1) {
                error.printf("GPU not compatible with multithreaded tiling.\n");
                return NULL;
            }
            sampleCount = 16;
        }
        else if (0 == strcmp(FLAGS_config[0], "nvprmsaa4")) {
            deviceType = sk_tools::PictureRenderer::kNVPR_DeviceType;
            if (FLAGS_multi > 1) {
                error.printf("GPU not compatible with multithreaded tiling.\n");
                return NULL;
            }
            sampleCount = 4;
        }
        else if (0 == strcmp(FLAGS_config[0], "nvprmsaa16")) {
            deviceType = sk_tools::PictureRenderer::kNVPR_DeviceType;
            if (FLAGS_multi > 1) {
                error.printf("GPU not compatible with multithreaded tiling.\n");
                return NULL;
            }
            sampleCount = 16;
        }
#if SK_ANGLE
        else if (0 == strcmp(FLAGS_config[0], "angle")) {
            deviceType = sk_tools::PictureRenderer::kAngle_DeviceType;
            if (FLAGS_multi > 1) {
                error.printf("Angle not compatible with multithreaded tiling.\n");
                return NULL;
            }
        }
#endif
#if SK_MESA
        else if (0 == strcmp(FLAGS_config[0], "mesa")) {
            deviceType = sk_tools::PictureRenderer::kMesa_DeviceType;
            if (FLAGS_multi > 1) {
                error.printf("Mesa not compatible with multithreaded tiling.\n");
                return NULL;
            }
        }
#endif
#endif
        else {
            error.printf("%s is not a valid mode for --config\n", FLAGS_config[0]);
            return NULL;
        }
        renderer->setDeviceType(deviceType);
#if SK_SUPPORT_GPU
        renderer->setSampleCount(sampleCount);
#endif
    }


    sk_tools::PictureRenderer::BBoxHierarchyType bbhType
            = sk_tools::PictureRenderer::kNone_BBoxHierarchyType;
    if (FLAGS_bbh.count() > 0) {
        const char* type = FLAGS_bbh[0];
        if (0 == strcmp(type, "none")) {
            bbhType = sk_tools::PictureRenderer::kNone_BBoxHierarchyType;
        } else if (0 == strcmp(type, "quadtree")) {
            bbhType = sk_tools::PictureRenderer::kQuadTree_BBoxHierarchyType;
        } else if (0 == strcmp(type, "rtree")) {
            bbhType = sk_tools::PictureRenderer::kRTree_BBoxHierarchyType;
        } else if (0 == strcmp(type, "grid")) {
            if (!gridSupported) {
                error.printf("'--bbh grid' is not compatible with --mode=%s.\n", mode);
                return NULL;
            }
            bbhType = sk_tools::PictureRenderer::kTileGrid_BBoxHierarchyType;
            if (FLAGS_bbh.count() != 3) {
                error.printf("--bbh grid requires a width and a height.\n");
                return NULL;
            }
            int gridWidth = atoi(FLAGS_bbh[1]);
            int gridHeight = atoi(FLAGS_bbh[2]);
            renderer->setGridSize(gridWidth, gridHeight);

        } else {
            error.printf("%s is not a valid value for --bbhType\n", type);
            return NULL;
        }
        if (FLAGS_pipe && sk_tools::PictureRenderer::kNone_BBoxHierarchyType != bbhType) {
            error.printf("--pipe and --bbh cannot be used together\n");
            return NULL;
        }
    }
    renderer->setBBoxHierarchyType(bbhType);
    renderer->setScaleFactor(SkDoubleToScalar(FLAGS_scale));

    return renderer.detach();
}
示例#24
0
sk_tools::PictureRenderer* parseRenderer(SkString& error, PictureTool tool) {
    error.reset();

    bool useTiles = false;
    const char* widthString = NULL;
    const char* heightString = NULL;
    bool isPowerOf2Mode = false;
    bool isCopyMode = false;
    const char* mode = NULL;

#if SK_SUPPORT_GPU
    GrContextOptions grContextOpts;
    grContextOpts.fDrawPathToCompressedTexture = FLAGS_gpuCompressAlphaMasks;
  #define RENDERER_ARGS (grContextOpts)
#else
  #define RENDERER_ARGS ()
#endif

    SkAutoTUnref<sk_tools::PictureRenderer> renderer;
    if (FLAGS_mode.count() >= 1) {
        mode = FLAGS_mode[0];
        if (0 == strcmp(mode, "record")) {
            renderer.reset(SkNEW_ARGS(sk_tools::RecordPictureRenderer, RENDERER_ARGS));
        } else if (0 == strcmp(mode, "tile") || 0 == strcmp(mode, "pow2tile")
                   || 0 == strcmp(mode, "copyTile")) {
            useTiles = true;

            if (0 == strcmp(mode, "pow2tile")) {
                isPowerOf2Mode = true;
            } else if (0 == strcmp(mode, "copyTile")) {
                isCopyMode = true;
            }

            if (FLAGS_mode.count() < 2) {
                error.printf("Missing width for --mode %s\n", mode);
                return NULL;
            }

            widthString = FLAGS_mode[1];
            if (FLAGS_mode.count() < 3) {
                error.printf("Missing height for --mode %s\n", mode);
                return NULL;
            }

            heightString = FLAGS_mode[2];
        } else if (0 == strcmp(mode, "playbackCreation") && kBench_PictureTool == tool) {
            renderer.reset(SkNEW_ARGS(sk_tools::PlaybackCreationRenderer, RENDERER_ARGS));
        // undocumented
        } else if (0 == strcmp(mode, "rerecord") && kRender_PictureTool == tool) {
            renderer.reset(SkNEW_ARGS(sk_tools::RecordPictureRenderer, RENDERER_ARGS));
        } else if (0 == strcmp(mode, "simple")) {
            // Allow 'mode' to be set to 'simple', but do not create a renderer, so we can
            // ensure that pipe does not override a mode besides simple. The renderer will
            // be created below.
        } else {
            error.printf("%s is not a valid mode for --mode\n", mode);
            return NULL;
        }
    }

    if (useTiles) {
        SkASSERT(NULL == renderer);
        SkAutoTUnref<sk_tools::TiledPictureRenderer> tiledRenderer;
        if (isCopyMode) {
            int xTiles = -1;
            int yTiles = -1;
            if (FLAGS_tiles.count() > 0) {
                if (FLAGS_tiles.count() != 2) {
                    error.printf("--tiles requires an x value and a y value.\n");
                    return NULL;
                }
                xTiles = atoi(FLAGS_tiles[0]);
                yTiles = atoi(FLAGS_tiles[1]);
            }

            int x, y;
            if (xTiles != -1 && yTiles != -1) {
                x = xTiles;
                y = yTiles;
                if (x <= 0 || y <= 0) {
                    error.printf("--tiles must be given values > 0\n");
                    return NULL;
                }
            } else {
                x = y = 4;
            }
#if SK_SUPPORT_GPU
            tiledRenderer.reset(SkNEW_ARGS(sk_tools::CopyTilesRenderer, (grContextOpts, x, y)));
#else
            tiledRenderer.reset(SkNEW_ARGS(sk_tools::CopyTilesRenderer, (x, y)));
#endif
        } else {
            tiledRenderer.reset(SkNEW_ARGS(sk_tools::TiledPictureRenderer, RENDERER_ARGS));
        }

        if (isPowerOf2Mode) {
            int minWidth = atoi(widthString);
            if (!SkIsPow2(minWidth) || minWidth < 0) {
                SkString err;
                error.printf("-mode %s must be given a width"
                             " value that is a power of two\n", mode);
                return NULL;
            }
            tiledRenderer->setTileMinPowerOf2Width(minWidth);
        } else if (sk_tools::is_percentage(widthString)) {
            if (isCopyMode) {
                error.printf("--mode %s does not support percentages.\n", mode);
                return NULL;
            }
            tiledRenderer->setTileWidthPercentage(atof(widthString));
            if (!(tiledRenderer->getTileWidthPercentage() > 0)) {
                error.printf("--mode %s must be given a width percentage > 0\n", mode);
                return NULL;
            }
        } else {
            tiledRenderer->setTileWidth(atoi(widthString));
            if (!(tiledRenderer->getTileWidth() > 0)) {
                error.printf("--mode %s must be given a width > 0\n", mode);
                return NULL;
            }
        }

        if (sk_tools::is_percentage(heightString)) {
            if (isCopyMode) {
                error.printf("--mode %s does not support percentages.\n", mode);
                return NULL;
            }
            tiledRenderer->setTileHeightPercentage(atof(heightString));
            if (!(tiledRenderer->getTileHeightPercentage() > 0)) {
                error.printf("--mode %s must be given a height percentage > 0\n", mode);
                return NULL;
            }
        } else {
            tiledRenderer->setTileHeight(atoi(heightString));
            if (!(tiledRenderer->getTileHeight() > 0)) {
                SkString err;
                error.printf("--mode %s must be given a height > 0\n", mode);
                return NULL;
            }
        }

        renderer.reset(tiledRenderer.detach());
        if (FLAGS_pipe) {
            error.printf("Pipe rendering is currently not compatible with tiling.\n"
                         "Turning off pipe.\n");
        }

    } else { // useTiles
        if (FLAGS_pipe) {
            if (renderer != NULL) {
                error.printf("Pipe is incompatible with other modes.\n");
                return NULL;
            }
            renderer.reset(SkNEW_ARGS(sk_tools::PipePictureRenderer, RENDERER_ARGS));
        }
    }

    if (NULL == renderer) {
        renderer.reset(SkNEW_ARGS(sk_tools::SimplePictureRenderer, RENDERER_ARGS));
    }

    if (FLAGS_viewport.count() > 0) {
        if (FLAGS_viewport.count() != 2) {
            error.printf("--viewport requires a width and a height.\n");
            return NULL;
        }
        SkISize viewport;
        viewport.fWidth = atoi(FLAGS_viewport[0]);
        viewport.fHeight = atoi(FLAGS_viewport[1]);
        renderer->setViewport(viewport);
    }

    sk_tools::PictureRenderer::SkDeviceTypes deviceType =
        sk_tools::PictureRenderer::kBitmap_DeviceType;
#if SK_SUPPORT_GPU
    GrGLStandard gpuAPI = kNone_GrGLStandard;
    if (1 == FLAGS_gpuAPI.count()) {
        if (FLAGS_gpuAPI.contains(kGpuAPINameGL)) {
            gpuAPI = kGL_GrGLStandard;
        } else if (FLAGS_gpuAPI.contains(kGpuAPINameGLES)) {
            gpuAPI = kGLES_GrGLStandard;
        } else {
            error.printf("--gpuAPI invalid api value.\n");
            return NULL;
        }
    } else if (FLAGS_gpuAPI.count() > 1) {
        error.printf("--gpuAPI invalid api value.\n");
        return NULL;
    }

    int sampleCount = 0;
    bool useDFText = false;
#endif
    if (FLAGS_config.count() > 0) {
        if (0 == strcmp(FLAGS_config[0], "8888")) {
            deviceType = sk_tools::PictureRenderer::kBitmap_DeviceType;
        }
#if SK_SUPPORT_GPU
        else if (0 == strcmp(FLAGS_config[0], "gpu")) {
            deviceType = sk_tools::PictureRenderer::kGPU_DeviceType;
        }
        else if (0 == strcmp(FLAGS_config[0], "msaa4")) {
            deviceType = sk_tools::PictureRenderer::kGPU_DeviceType;
            sampleCount = 4;
        }
        else if (0 == strcmp(FLAGS_config[0], "msaa16")) {
            deviceType = sk_tools::PictureRenderer::kGPU_DeviceType;
            sampleCount = 16;
        }
        else if (0 == strcmp(FLAGS_config[0], "nvprmsaa4")) {
            deviceType = sk_tools::PictureRenderer::kNVPR_DeviceType;
            sampleCount = 4;
        }
        else if (0 == strcmp(FLAGS_config[0], "nvprmsaa16")) {
            deviceType = sk_tools::PictureRenderer::kNVPR_DeviceType;
            sampleCount = 16;
        }
        else if (0 == strcmp(FLAGS_config[0], "gpudft")) {
            deviceType = sk_tools::PictureRenderer::kGPU_DeviceType;
            useDFText = true;
        }
#if SK_ANGLE
        else if (0 == strcmp(FLAGS_config[0], "angle")) {
            deviceType = sk_tools::PictureRenderer::kAngle_DeviceType;
        }
#endif
#if SK_MESA
        else if (0 == strcmp(FLAGS_config[0], "mesa")) {
            deviceType = sk_tools::PictureRenderer::kMesa_DeviceType;
        }
#endif
#endif
        else {
            error.printf("%s is not a valid mode for --config\n", FLAGS_config[0]);
            return NULL;
        }
#if SK_SUPPORT_GPU
        if (!renderer->setDeviceType(deviceType, gpuAPI)) {
#else
        if (!renderer->setDeviceType(deviceType)) {
#endif
            error.printf("Could not create backend for --config %s\n", FLAGS_config[0]);
            return NULL;
        }
#if SK_SUPPORT_GPU
        renderer->setSampleCount(sampleCount);
        renderer->setUseDFText(useDFText);
#endif
    }


    sk_tools::PictureRenderer::BBoxHierarchyType bbhType
            = sk_tools::PictureRenderer::kNone_BBoxHierarchyType;
    if (FLAGS_bbh.count() > 0) {
        const char* type = FLAGS_bbh[0];
        if (0 == strcmp(type, "none")) {
            bbhType = sk_tools::PictureRenderer::kNone_BBoxHierarchyType;
        } else if (0 == strcmp(type, "rtree")) {
            bbhType = sk_tools::PictureRenderer::kRTree_BBoxHierarchyType;
        } else {
            error.printf("%s is not a valid value for --bbhType\n", type);
            return NULL;
        }
        if (FLAGS_pipe && sk_tools::PictureRenderer::kNone_BBoxHierarchyType != bbhType) {
            error.printf("--pipe and --bbh cannot be used together\n");
            return NULL;
        }
    }
    renderer->setBBoxHierarchyType(bbhType);
    renderer->setScaleFactor(SkDoubleToScalar(FLAGS_scale));

    return renderer.detach();
}
示例#25
0
static void parse_commandline(int argc, char* const argv[], SkTArray<SkString>* inputs,
                              sk_tools::PictureBenchmark*& benchmark) {
    const char* argv0 = argv[0];
    char* const* stop = argv + argc;

    int repeats = DEFAULT_REPEATS;
    sk_tools::PictureRenderer::SkDeviceTypes deviceType =
        sk_tools::PictureRenderer::kBitmap_DeviceType;

    // Create a string to show our current settings.
    // TODO: Make it prettier. Currently it just repeats the command line.
    SkString commandLine("bench_pictures:");
    for (int i = 1; i < argc; i++) {
        commandLine.appendf(" %s", *(argv+i));
    }
    commandLine.append("\n");

    bool usePipe = false;
    bool multiThreaded = false;
    bool useTiles = false;
    const char* widthString = NULL;
    const char* heightString = NULL;
    bool isPowerOf2Mode = false;
    const char* mode = NULL;
    for (++argv; argv < stop; ++argv) {
        if (0 == strcmp(*argv, "--repeat")) {
            ++argv;
            if (argv < stop) {
                repeats = atoi(*argv);
                if (repeats < 1) {
                    SkDELETE(benchmark);
                    gLogger.logError("--repeat must be given a value > 0\n");
                    exit(-1);
                }
            } else {
                SkDELETE(benchmark);
                gLogger.logError("Missing arg for --repeat\n");
                usage(argv0);
                exit(-1);
            }
        } else if (0 == strcmp(*argv, "--pipe")) {
            usePipe = true;
        } else if (0 == strcmp(*argv, "--logFile")) {
            argv++;
            if (argv < stop) {
                if (!gLogger.SetLogFile(*argv)) {
                    SkString str;
                    str.printf("Could not open %s for writing.", *argv);
                    gLogger.logError(str);
                    usage(argv0);
                    exit(-1);
                }
            } else {
                gLogger.logError("Missing arg for --logFile\n");
                usage(argv0);
                exit(-1);
            }
        } else if (0 == strcmp(*argv, "--mode")) {
            SkDELETE(benchmark);

            ++argv;
            if (argv >= stop) {
                gLogger.logError("Missing mode for --mode\n");
                usage(argv0);
                exit(-1);
            }

            if (0 == strcmp(*argv, "record")) {
                benchmark = SkNEW(sk_tools::RecordPictureBenchmark);
            } else if (0 == strcmp(*argv, "simple")) {
                benchmark = SkNEW(sk_tools::SimplePictureBenchmark);
            } else if ((0 == strcmp(*argv, "tile")) || (0 == strcmp(*argv, "pow2tile"))) {
                useTiles = true;
                mode = *argv;

                if (0 == strcmp(*argv, "pow2tile")) {
                    isPowerOf2Mode = true;
                }

                ++argv;
                if (argv >= stop) {
                    SkString err;
                    err.printf("Missing width for --mode %s\n", mode);
                    gLogger.logError(err);
                    usage(argv0);
                    exit(-1);
                }

                widthString = *argv;
                ++argv;
                if (argv >= stop) {
                    gLogger.logError("Missing height for --mode tile\n");
                    usage(argv0);
                    exit(-1);
                }
                heightString = *argv;

                ++argv;
                if (argv < stop && 0 == strcmp(*argv, "multi")) {
                    multiThreaded = true;
                } else {
                    --argv;
                }
            } else if (0 == strcmp(*argv, "playbackCreation")) {
                benchmark = SkNEW(sk_tools::PlaybackCreationBenchmark);
            } else {
                SkString err;
                err.printf("%s is not a valid mode for --mode\n", *argv);
                gLogger.logError(err);
                usage(argv0);
                exit(-1);
            }
        }  else if (0 == strcmp(*argv, "--device")) {
            ++argv;
            if (argv >= stop) {
                gLogger.logError("Missing mode for --deivce\n");
                usage(argv0);
                exit(-1);
            }

            if (0 == strcmp(*argv, "bitmap")) {
                deviceType = sk_tools::PictureRenderer::kBitmap_DeviceType;
            }
#if SK_SUPPORT_GPU
            else if (0 == strcmp(*argv, "gpu")) {
                deviceType = sk_tools::PictureRenderer::kGPU_DeviceType;
            }
#endif
            else {
                SkString err;
                err.printf("%s is not a valid mode for --device\n", *argv);
                gLogger.logError(err);
                usage(argv0);
                exit(-1);
            }

        } else if (0 == strcmp(*argv, "--help") || 0 == strcmp(*argv, "-h")) {
            SkDELETE(benchmark);
            usage(argv0);
            exit(0);
        } else {
            inputs->push_back(SkString(*argv));
        }
    }

    if (useTiles) {
        sk_tools::TiledPictureBenchmark* tileBenchmark = SkNEW(sk_tools::TiledPictureBenchmark);
        if (isPowerOf2Mode) {
            int minWidth = atoi(widthString);
            if (!SkIsPow2(minWidth) || minWidth < 0) {
                SkDELETE(tileBenchmark);
                SkString err;
                err.printf("--mode %s must be given a width"
                         " value that is a power of two\n", mode);
                gLogger.logError(err);
                exit(-1);
            }
            tileBenchmark->setTileMinPowerOf2Width(minWidth);
        } else if (sk_tools::is_percentage(widthString)) {
            tileBenchmark->setTileWidthPercentage(atof(widthString));
            if (!(tileBenchmark->getTileWidthPercentage() > 0)) {
                SkDELETE(tileBenchmark);
                gLogger.logError("--mode tile must be given a width percentage > 0\n");
                exit(-1);
            }
        } else {
            tileBenchmark->setTileWidth(atoi(widthString));
            if (!(tileBenchmark->getTileWidth() > 0)) {
                SkDELETE(tileBenchmark);
                gLogger.logError("--mode tile must be given a width > 0\n");
                exit(-1);
            }
        }

        if (sk_tools::is_percentage(heightString)) {
            tileBenchmark->setTileHeightPercentage(atof(heightString));
            if (!(tileBenchmark->getTileHeightPercentage() > 0)) {
                SkDELETE(tileBenchmark);
                gLogger.logError("--mode tile must be given a height percentage > 0\n");
                exit(-1);
            }
        } else {
            tileBenchmark->setTileHeight(atoi(heightString));
            if (!(tileBenchmark->getTileHeight() > 0)) {
                SkDELETE(tileBenchmark);
                gLogger.logError("--mode tile must be given a height > 0\n");
                exit(-1);
            }
        }
        tileBenchmark->setThreading(multiThreaded);
        tileBenchmark->setUsePipe(usePipe);
        benchmark = tileBenchmark;
    } else if (usePipe) {
        SkDELETE(benchmark);
        benchmark = SkNEW(sk_tools::PipePictureBenchmark);
    }
    if (inputs->count() < 1) {
        SkDELETE(benchmark);
        usage(argv0);
        exit(-1);
    }

    if (NULL == benchmark) {
        benchmark = SkNEW(sk_tools::SimplePictureBenchmark);
    }

    benchmark->setRepeats(repeats);
    benchmark->setDeviceType(deviceType);
    benchmark->setLogger(&gLogger);
    // Report current settings:
    gLogger.logProgress(commandLine);
}
示例#26
0
    void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
        const GrDistanceFieldLCDTextGeoProc& dfTexEffect =
                args.fGP.cast<GrDistanceFieldLCDTextGeoProc>();
        GrGLGPBuilder* pb = args.fPB;

        GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();

        // emit attributes
        vsBuilder->emitAttributes(dfTexEffect);

        // setup pass through color
        if (!dfTexEffect.colorIgnored()) {
            this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
        }

        // Setup position
        this->setupPosition(pb, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix(),
                            &fViewMatrixUniform);

        // emit transforms
        this->emitTransforms(args.fPB, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName,
                             args.fTransformsIn, args.fTransformsOut);

        // set up varyings
        bool isUniformScale = SkToBool(dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask);
        GrGLVertToFrag recipScale(kFloat_GrSLType);
        GrGLVertToFrag st(kVec2f_GrSLType);
        args.fPB->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision);
        vsBuilder->codeAppendf("%s = %s;", st.vsOut(), dfTexEffect.inTextureCoords()->fName);

        // compute numbers to be hardcoded to convert texture coordinates from int to float
        SkASSERT(dfTexEffect.numTextures() == 1);
        GrTexture* atlas = dfTexEffect.textureAccess(0).getTexture();
        SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height()));
        SkScalar recipWidth = 1.0f / atlas->width();
        SkScalar recipHeight = 1.0f / atlas->height();

        GrGLVertToFrag uv(kVec2f_GrSLType);
        args.fPB->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision);
        vsBuilder->codeAppendf("%s = vec2(%.*f, %.*f) * %s;", uv.vsOut(),
                               GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipWidth,
                               GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipHeight,
                               dfTexEffect.inTextureCoords()->fName);

        // add frag shader code
        GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();

        SkAssertResult(fsBuilder->enableFeature(
                GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));

        // create LCD offset adjusted by inverse of transform
        // Use highp to work around aliasing issues
        fsBuilder->codeAppend(GrGLShaderVar::PrecisionString(kHigh_GrSLPrecision,
                                                             pb->ctxInfo().standard()));
        fsBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn());
        fsBuilder->codeAppend(GrGLShaderVar::PrecisionString(kHigh_GrSLPrecision,
                                                             pb->ctxInfo().standard()));

        SkScalar lcdDelta = 1.0f / (3.0f * atlas->width());
        if (dfTexEffect.getFlags() & kBGR_DistanceFieldEffectFlag) {
            fsBuilder->codeAppendf("float delta = -%.*f;\n", SK_FLT_DECIMAL_DIG, lcdDelta);
        } else {
            fsBuilder->codeAppendf("float delta = %.*f;\n", SK_FLT_DECIMAL_DIG, lcdDelta);
        }
        if (isUniformScale) {
            fsBuilder->codeAppendf("float dy = abs(dFdy(%s.y));", st.fsIn());
            fsBuilder->codeAppend("vec2 offset = vec2(dy*delta, 0.0);");
        } else {
            fsBuilder->codeAppendf("vec2 st = %s;\n", st.fsIn());

            fsBuilder->codeAppend("vec2 Jdx = dFdx(st);");
            fsBuilder->codeAppend("vec2 Jdy = dFdy(st);");
            fsBuilder->codeAppend("vec2 offset = delta*Jdx;");
        }

        // green is distance to uv center
        fsBuilder->codeAppend("\tvec4 texColor = ");
        fsBuilder->appendTextureLookup(args.fSamplers[0], "uv", kVec2f_GrSLType);
        fsBuilder->codeAppend(";\n");
        fsBuilder->codeAppend("\tvec3 distance;\n");
        fsBuilder->codeAppend("\tdistance.y = texColor.r;\n");
        // red is distance to left offset
        fsBuilder->codeAppend("\tvec2 uv_adjusted = uv - offset;\n");
        fsBuilder->codeAppend("\ttexColor = ");
        fsBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType);
        fsBuilder->codeAppend(";\n");
        fsBuilder->codeAppend("\tdistance.x = texColor.r;\n");
        // blue is distance to right offset
        fsBuilder->codeAppend("\tuv_adjusted = uv + offset;\n");
        fsBuilder->codeAppend("\ttexColor = ");
        fsBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType);
        fsBuilder->codeAppend(";\n");
        fsBuilder->codeAppend("\tdistance.z = texColor.r;\n");

        fsBuilder->codeAppend("\tdistance = "
           "vec3(" SK_DistanceFieldMultiplier ")*(distance - vec3(" SK_DistanceFieldThreshold"));");

        // adjust width based on gamma
        const char* distanceAdjustUniName = NULL;
        fDistanceAdjustUni = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility,
            kVec3f_GrSLType, kDefault_GrSLPrecision,
            "DistanceAdjust", &distanceAdjustUniName);
        fsBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName);

        // To be strictly correct, we should compute the anti-aliasing factor separately
        // for each color component. However, this is only important when using perspective
        // transformations, and even then using a single factor seems like a reasonable
        // trade-off between quality and speed.
        fsBuilder->codeAppend("float afwidth;");
        if (isUniformScale) {
            // For uniform scale, we adjust for the effect of the transformation on the distance
            // by using the length of the gradient of the texture coordinates. We use st coordinates
            // to ensure we're mapping 1:1 from texel space to pixel space.

            // this gives us a smooth step across approximately one fragment
            fsBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*dy;");
        } else {
            // For general transforms, to determine the amount of correction we multiply a unit
            // vector pointing along the SDF gradient direction by the Jacobian of the st coords
            // (which is the inverse transform for this fragment) and take the length of the result.
            fsBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance.r), dFdy(distance.r));");
            // the length of the gradient may be 0, so we need to check for this
            // this also compensates for the Adreno, which likes to drop tiles on division by 0
            fsBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);");
            fsBuilder->codeAppend("if (dg_len2 < 0.0001) {");
            fsBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);");
            fsBuilder->codeAppend("} else {");
            fsBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);");
            fsBuilder->codeAppend("}");
            fsBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,");
            fsBuilder->codeAppend("                 dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);");

            // this gives us a smooth step across approximately one fragment
            fsBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);");
        }

        fsBuilder->codeAppend(
                      "vec4 val = vec4(smoothstep(vec3(-afwidth), vec3(afwidth), distance), 1.0);");

        fsBuilder->codeAppendf("%s = vec4(val);", args.fOutputCoverage);
    }
示例#27
0
    void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
        const GrBitmapTextGeoProc& cte = args.fGP.cast<GrBitmapTextGeoProc>();

        GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
        GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
        GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;

        // emit attributes
        varyingHandler->emitAttributes(cte);

        // compute numbers to be hardcoded to convert texture coordinates from int to float
        SkASSERT(cte.numTextures() == 1);
        SkDEBUGCODE(GrTexture* atlas = cte.textureAccess(0).getTexture());
        SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height()));

        GrGLSLVertToFrag v(kVec2f_GrSLType);
        varyingHandler->addVarying("TextureCoords", &v, kHigh_GrSLPrecision);
        vertBuilder->codeAppendf("%s = %s;", v.vsOut(),
                                 cte.inTextureCoords()->fName);

        GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;
        // Setup pass through color
        if (!cte.colorIgnored()) {
            if (cte.hasVertexColor()) {
                varyingHandler->addPassThroughAttribute(cte.inColor(), args.fOutputColor);
            } else {
                this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor,
                                        &fColorUniform);
            }
        }

        // Setup position
        this->setupPosition(vertBuilder, gpArgs, cte.inPosition()->fName);

        // emit transforms
        this->emitTransforms(vertBuilder,
                             varyingHandler,
                             uniformHandler,
                             gpArgs->fPositionVar,
                             cte.inPosition()->fName,
                             cte.localMatrix(),
                             args.fTransformsIn,
                             args.fTransformsOut);

        if (cte.maskFormat() == kARGB_GrMaskFormat) {
            fragBuilder->codeAppendf("%s = ", args.fOutputColor);
            fragBuilder->appendTextureLookupAndModulate(args.fOutputColor,
                                                        args.fTexSamplers[0],
                                                        v.fsIn(),
                                                        kVec2f_GrSLType);
            fragBuilder->codeAppend(";");
            fragBuilder->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
        } else {
            fragBuilder->codeAppendf("%s = ", args.fOutputCoverage);
            fragBuilder->appendTextureLookup(args.fTexSamplers[0], v.fsIn(), kVec2f_GrSLType);
            fragBuilder->codeAppend(";");
            if (cte.maskFormat() == kA565_GrMaskFormat) {
                // set alpha to be max of rgb coverage
                fragBuilder->codeAppendf("%s.a = max(max(%s.r, %s.g), %s.b);",
                                         args.fOutputCoverage, args.fOutputCoverage,
                                         args.fOutputCoverage, args.fOutputCoverage);
            }
        }
    }
示例#28
0
static void parse_commandline(int argc, char* const argv[], SkTArray<SkString>* inputs,
                              sk_tools::PictureRenderer*& renderer, SkString*& outputDir,
                              bool* validate, bool* writeWholeImage,
                              int* clones){
    const char* argv0 = argv[0];
    char* const* stop = argv + argc;

    sk_tools::PictureRenderer::SkDeviceTypes deviceType =
        sk_tools::PictureRenderer::kBitmap_DeviceType;

    bool usePipe = false;
    int numThreads = 1;
    bool useTiles = false;
    const char* widthString = NULL;
    const char* heightString = NULL;
    int gridWidth = 0;
    int gridHeight = 0;
    bool isPowerOf2Mode = false;
    bool isCopyMode = false;
    const char* xTilesString = NULL;
    const char* yTilesString = NULL;
    const char* mode = NULL;
    bool gridSupported = false;
    sk_tools::PictureRenderer::BBoxHierarchyType bbhType =
        sk_tools::PictureRenderer::kNone_BBoxHierarchyType;
    *validate = false;
    *writeWholeImage = false;
    *clones = 0;
    SkISize viewport;
    viewport.setEmpty();
    SkScalar scaleFactor = SK_Scalar1;

    for (++argv; argv < stop; ++argv) {
        if (0 == strcmp(*argv, "--mode")) {
            if (renderer != NULL) {
                renderer->unref();
                SkDebugf("Cannot combine modes.\n");
                usage(argv0);
                exit(-1);
            }

            ++argv;
            if (argv >= stop) {
                SkDebugf("Missing mode for --mode\n");
                usage(argv0);
                exit(-1);
            }

            if (0 == strcmp(*argv, "simple")) {
                renderer = SkNEW(sk_tools::SimplePictureRenderer);
            } else if ((0 == strcmp(*argv, "tile")) || (0 == strcmp(*argv, "pow2tile"))
                       || 0 == strcmp(*argv, "copyTile")) {
                useTiles = true;
                mode = *argv;

                if (0 == strcmp(*argv, "pow2tile")) {
                    isPowerOf2Mode = true;
                } else if (0 == strcmp(*argv, "copyTile")) {
                    isCopyMode = true;
                } else {
                    gridSupported = true;
                }

                ++argv;
                if (argv >= stop) {
                    SkDebugf("Missing width for --mode %s\n", mode);
                    usage(argv0);
                    exit(-1);
                }

                widthString = *argv;
                ++argv;
                if (argv >= stop) {
                    SkDebugf("Missing height for --mode %s\n", mode);
                    usage(argv0);
                    exit(-1);
                }
                heightString = *argv;
            } else if (0 == strcmp(*argv, "rerecord")) {
                renderer = SkNEW(sk_tools::RecordPictureRenderer);
            } else {
                SkDebugf("%s is not a valid mode for --mode\n", *argv);
                usage(argv0);
                exit(-1);
            }
        } else if (0 == strcmp(*argv, "--bbh")) {
            ++argv;
            if (argv >= stop) {
                SkDebugf("Missing value for --bbh\n");
                usage(argv0);
                exit(-1);
            }
            if (0 == strcmp(*argv, "none")) {
                bbhType = sk_tools::PictureRenderer::kNone_BBoxHierarchyType;
            } else if (0 == strcmp(*argv, "rtree")) {
                bbhType = sk_tools::PictureRenderer::kRTree_BBoxHierarchyType;
            } else if (0 == strcmp(*argv, "grid")) {
                bbhType = sk_tools::PictureRenderer::kTileGrid_BBoxHierarchyType;
                ++argv;
                if (argv >= stop) {
                    SkDebugf("Missing width for --bbh grid\n");
                    usage(argv0);
                    exit(-1);
                }
                gridWidth = atoi(*argv);
                ++argv;
                if (argv >= stop) {
                    SkDebugf("Missing height for --bbh grid\n");
                    usage(argv0);
                    exit(-1);
                }
                gridHeight = atoi(*argv);
            } else {
                SkDebugf("%s is not a valid value for --bbhType\n", *argv);
                usage(argv0);
                exit(-1);;
            }
        } else if (0 == strcmp(*argv, "--viewport")) {
            ++argv;
            if (argv >= stop) {
                SkDebugf("Missing width for --viewport\n");
                usage(argv0);
                exit(-1);
            }
            viewport.fWidth = atoi(*argv);
            ++argv;
            if (argv >= stop) {
                SkDebugf("Missing height for --viewport\n");
                usage(argv0);
                exit(-1);
            }
            viewport.fHeight = atoi(*argv);
        } else if (0 == strcmp(*argv, "--scale")) {
            ++argv;
            if (argv >= stop) {
                SkDebugf("Missing scaleFactor for --scale\n");
                usage(argv0);
                exit(-1);
            }
            scaleFactor = SkDoubleToScalar(atof(*argv));
        } else if (0 == strcmp(*argv, "--tiles")) {
            ++argv;
            if (argv >= stop) {
                SkDebugf("Missing x for --tiles\n");
                usage(argv0);
                exit(-1);
            }
            xTilesString = *argv;
            ++argv;
            if (argv >= stop) {
                SkDebugf("Missing y for --tiles\n");
                usage(argv0);
                exit(-1);
            }
            yTilesString = *argv;
        } else if (0 == strcmp(*argv, "--pipe")) {
            usePipe = true;
        } else if (0 == strcmp(*argv, "--multi")) {
            ++argv;
            if (argv >= stop) {
                SkSafeUnref(renderer);
                SkDebugf("Missing arg for --multi\n");
                usage(argv0);
                exit(-1);
            }
            numThreads = atoi(*argv);
            if (numThreads < 2) {
                SkSafeUnref(renderer);
                SkDebugf("Number of threads must be at least 2.\n");
                usage(argv0);
                exit(-1);
            }
        } else if (0 == strcmp(*argv, "--clone")) {
            ++argv;
            if (argv >= stop) {
                SkSafeUnref(renderer);
                SkDebugf("Missing arg for --clone\n");
                usage(argv0);
                exit(-1);
            }
            *clones = atoi(*argv);
            if (*clones < 0) {
                SkSafeUnref(renderer);
                SkDebugf("Number of clones must be at least 0.\n");
                usage(argv0);
                exit(-1);
            }
        } else if (0 == strcmp(*argv, "--device")) {
            ++argv;
            if (argv >= stop) {
                SkSafeUnref(renderer);
                SkDebugf("Missing mode for --device\n");
                usage(argv0);
                exit(-1);
            }

            if (0 == strcmp(*argv, "bitmap")) {
                deviceType = sk_tools::PictureRenderer::kBitmap_DeviceType;
            }
#if SK_SUPPORT_GPU
            else if (0 == strcmp(*argv, "gpu")) {
                deviceType = sk_tools::PictureRenderer::kGPU_DeviceType;
            }
#endif
            else {
                SkSafeUnref(renderer);
                SkDebugf("%s is not a valid mode for --device\n", *argv);
                usage(argv0);
                exit(-1);
            }

        } else if ((0 == strcmp(*argv, "-h")) || (0 == strcmp(*argv, "--help"))) {
            SkSafeUnref(renderer);
            usage(argv0);
            exit(-1);
        } else if (0 == strcmp(*argv, "-w")) {
            ++argv;
            if (argv >= stop) {
                SkDebugf("Missing output directory for -w\n");
                usage(argv0);
                exit(-1);
            }
            outputDir = SkNEW_ARGS(SkString, (*argv));
        } else if (0 == strcmp(*argv, "--validate")) {
            *validate = true;
        } else if (0 == strcmp(*argv, "--writeWholeImage")) {
            *writeWholeImage = true;
        } else {
            inputs->push_back(SkString(*argv));
        }
    }

    if (numThreads > 1 && !useTiles) {
        SkSafeUnref(renderer);
        SkDebugf("Multithreaded drawing requires tiled rendering.\n");
        usage(argv0);
        exit(-1);
    }

    if (usePipe && sk_tools::PictureRenderer::kNone_BBoxHierarchyType != bbhType) {
        SkDebugf("--pipe and --bbh cannot be used together\n");
        usage(argv0);
        exit(-1);
    }

    if (sk_tools::PictureRenderer::kTileGrid_BBoxHierarchyType == bbhType &&
        !gridSupported) {
        SkDebugf("'--bbh grid' is not compatible with specified --mode.\n");
        usage(argv0);
        exit(-1);
    }

    if (useTiles) {
        SkASSERT(NULL == renderer);
        sk_tools::TiledPictureRenderer* tiledRenderer;
        if (isCopyMode) {
            int x, y;
            if (xTilesString != NULL) {
                SkASSERT(yTilesString != NULL);
                x = atoi(xTilesString);
                y = atoi(yTilesString);
                if (x <= 0 || y <= 0) {
                    SkDebugf("--tiles must be given values > 0\n");
                    usage(argv0);
                    exit(-1);
                }
            } else {
                x = y = 4;
            }
            tiledRenderer = SkNEW_ARGS(sk_tools::CopyTilesRenderer, (x, y));
        } else if (numThreads > 1) {
            tiledRenderer = SkNEW_ARGS(sk_tools::MultiCorePictureRenderer, (numThreads));
        } else {
            tiledRenderer = SkNEW(sk_tools::TiledPictureRenderer);
        }
        if (isPowerOf2Mode) {
            int minWidth = atoi(widthString);
            if (!SkIsPow2(minWidth) || minWidth < 0) {
                tiledRenderer->unref();
                SkString err;
                err.printf("-mode %s must be given a width"
                           " value that is a power of two\n", mode);
                SkDebugf(err.c_str());
                usage(argv0);
                exit(-1);
            }
            tiledRenderer->setTileMinPowerOf2Width(minWidth);
        } else if (sk_tools::is_percentage(widthString)) {
            if (isCopyMode) {
                tiledRenderer->unref();
                SkString err;
                err.printf("--mode %s does not support percentages.\n", mode);
                SkDebugf(err.c_str());
                usage(argv0);
                exit(-1);
            }
            tiledRenderer->setTileWidthPercentage(atof(widthString));
            if (!(tiledRenderer->getTileWidthPercentage() > 0)) {
                tiledRenderer->unref();
                SkDebugf("--mode %s must be given a width percentage > 0\n", mode);
                usage(argv0);
                exit(-1);
            }
        } else {
            tiledRenderer->setTileWidth(atoi(widthString));
            if (!(tiledRenderer->getTileWidth() > 0)) {
                tiledRenderer->unref();
                SkDebugf("--mode %s must be given a width > 0\n", mode);
                usage(argv0);
                exit(-1);
            }
        }

        if (sk_tools::is_percentage(heightString)) {
            if (isCopyMode) {
                tiledRenderer->unref();
                SkString err;
                err.printf("--mode %s does not support percentages.\n", mode);
                SkDebugf(err.c_str());
                usage(argv0);
                exit(-1);
            }
            tiledRenderer->setTileHeightPercentage(atof(heightString));
            if (!(tiledRenderer->getTileHeightPercentage() > 0)) {
                tiledRenderer->unref();
                SkDebugf("--mode %s must be given a height percentage > 0\n", mode);
                usage(argv0);
                exit(-1);
            }
        } else {
            tiledRenderer->setTileHeight(atoi(heightString));
            if (!(tiledRenderer->getTileHeight() > 0)) {
                tiledRenderer->unref();
                SkDebugf("--mode %s must be given a height > 0\n", mode);
                usage(argv0);
                exit(-1);
            }
        }
        if (numThreads > 1) {
#if SK_SUPPORT_GPU
            if (sk_tools::PictureRenderer::kGPU_DeviceType == deviceType) {
                tiledRenderer->unref();
                SkDebugf("GPU not compatible with multithreaded tiling.\n");
                usage(argv0);
                exit(-1);
            }
#endif
        }
        renderer = tiledRenderer;
        if (usePipe) {
            SkDebugf("Pipe rendering is currently not compatible with tiling.\n"
                     "Turning off pipe.\n");
        }
    } else if (usePipe) {
        if (renderer != NULL) {
            renderer->unref();
            SkDebugf("Pipe is incompatible with other modes.\n");
            usage(argv0);
            exit(-1);
        }
        renderer = SkNEW(sk_tools::PipePictureRenderer);
    }

    if (inputs->empty()) {
        SkSafeUnref(renderer);
        if (NULL != outputDir) {
            SkDELETE(outputDir);
        }
        usage(argv0);
        exit(-1);
    }

    if (NULL == renderer) {
        renderer = SkNEW(sk_tools::SimplePictureRenderer);
    }

    renderer->setBBoxHierarchyType(bbhType);
    renderer->setGridSize(gridWidth, gridHeight);
    renderer->setViewport(viewport);
    renderer->setScaleFactor(scaleFactor);
    renderer->setDeviceType(deviceType);
}