示例#1
0
void SkGridView::onSizeChange()
{
	fScrollBar->setHeight(this->height());
	fScrollBar->setLoc(this->locX() + this->width() - fScrollBar->width(), 0);

	if (fCellSize.equals(0, 0))
	{
		fVisibleCount.set(0, 0);
		return;
	}

	SkScalar rows = SkScalarDiv(this->height(), fCellSize.fY);
	SkScalar cols = SkScalarDiv(this->width(), fCellSize.fX);
	int		 y = SkScalarFloor(rows);
	int		 x = SkScalarFloor(cols);

	y = check_count(y, rows);
	x = check_count(x, cols);

	if (!fVisibleCount.equals(x, y))
	{
		fVisibleCount.set(x, y);
		this->ensureSelectionIsVisible();
	//	this->dirtyStrCache();
	}
}
示例#2
0
IntRect OpaqueRegionSkia::asRect() const
{
    // Returns the largest enclosed rect.
    int left = SkScalarCeil(m_opaqueRect.fLeft);
    int top = SkScalarCeil(m_opaqueRect.fTop);
    int right = SkScalarFloor(m_opaqueRect.fRight);
    int bottom = SkScalarFloor(m_opaqueRect.fBottom);
    return IntRect(left, top, right-left, bottom-top);
}
示例#3
0
static bool HitTestPath(const SkPath& path, SkScalar x, SkScalar y) {
    SkRegion    rgn, clip;

    int ix = SkScalarFloor(x);
    int iy = SkScalarFloor(y);

    clip.setRect(ix, iy, ix + 1, iy + 1);

    bool contains = rgn.setPath(path, clip);
    return contains;
}
static SkColor HSV_to_RGB(SkColor color, HSV_Choice choice, SkScalar hsv) {
    SkScalar hue = choice == kGetHue ? hsv : RGB_to_HSV(color, kGetHue);
    SkScalar saturation = choice == kGetSaturation ? hsv : RGB_to_HSV(color, kGetSaturation);
    SkScalar value = choice == kGetValue ? hsv : RGB_to_HSV(color, kGetValue);
    value *= 255;
    SkScalar red SK_INIT_TO_AVOID_WARNING;
    SkScalar green SK_INIT_TO_AVOID_WARNING;
    SkScalar blue SK_INIT_TO_AVOID_WARNING;
    if (saturation == 0)    // color is on black-and-white center line
        red = green = blue = value;
    else {
        //SkScalar fraction = SkScalarMod(hue, 60 * SK_Scalar1);
        int sextant = SkScalarFloor(hue / 60);
        SkScalar fraction = hue / 60 - SkIntToScalar(sextant);
        SkScalar p = SkScalarMul(value , SK_Scalar1 - saturation);
        SkScalar q = SkScalarMul(value, SK_Scalar1 - SkScalarMul(saturation, fraction));
        SkScalar t = SkScalarMul(value, SK_Scalar1 - 
            SkScalarMul(saturation, SK_Scalar1 - fraction));
        switch (sextant % 6) {
            case 0: red = value; green = t; blue = p; break;
            case 1: red = q; green = value; blue = p; break;
            case 2: red = p; green = value; blue = t; break;
            case 3: red = p; green = q; blue = value; break;
            case 4: red = t;  green = p; blue = value; break;
            case 5: red = value; green = p; blue = q; break;
        }
    }
    //used to say SkToU8((U8CPU) red) etc
    return SkColorSetARGB(SkColorGetA(color), SkScalarRound(red), 
        SkScalarRound(green), SkScalarRound(blue));
}
void SkListView::ensureVisibleRowCount()
{
	SkScalar	height = this->height();
	int			n = 0;
	
	if (height > 0)
	{
		n = 1;
		height -= fHeights[kSelected_Height];
		if (height > 0)
		{
			SkScalar count = SkScalarDiv(height, fHeights[kNormal_Height]);
			n += SkScalarFloor(count);
			if (count - SkIntToScalar(n) > SK_Scalar1*3/4)
				n += 1;
				
		//	SkDebugf("count %g, n %d\n", count/65536., n);
		}
	}

	if (fVisibleRowCount != n)
	{
		if (fScrollBar)
			fScrollBar->setShown(n);

		fVisibleRowCount = n;
		this->ensureSelectionIsVisible();
		this->dirtyCache(kAnimCount_DirtyFlag | kAnimContent_DirtyFlag);
	}
}
示例#6
0
void SkListView::onSizeChange()
{
	SkScalar count = SkScalarDiv(this->height(), fRowHeight);
	int		 n = SkScalarFloor(count);

	// only want to show rows that are mostly visible
	if (n == 0 || count - SkIntToScalar(n) > SK_Scalar1*75/100)
		n += 1;

	if (fVisibleRowCount != n)
	{
		fVisibleRowCount = n;
		this->ensureSelectionIsVisible();
		this->dirtyStrCache();
	}
}
示例#7
0
    static jint getFontMetricsInt(JNIEnv* env, jobject paint, jobject metricsObj) {
        NPE_CHECK_RETURN_ZERO(env, paint);
        SkPaint::FontMetrics metrics;
        
        GraphicsJNI::getNativePaint(env, paint)->getFontMetrics(&metrics);
        int ascent = SkScalarRound(metrics.fAscent);
        int descent = SkScalarRound(metrics.fDescent);
        int leading = SkScalarRound(metrics.fLeading);

        if (metricsObj) {
            SkASSERT(env->IsInstanceOf(metricsObj, gFontMetricsInt_class));
            env->SetIntField(metricsObj, gFontMetricsInt_fieldID.top, SkScalarFloor(metrics.fTop));
            env->SetIntField(metricsObj, gFontMetricsInt_fieldID.ascent, ascent);
            env->SetIntField(metricsObj, gFontMetricsInt_fieldID.descent, descent);
            env->SetIntField(metricsObj, gFontMetricsInt_fieldID.bottom, SkScalarCeil(metrics.fBottom));
            env->SetIntField(metricsObj, gFontMetricsInt_fieldID.leading, leading);
        }
        return descent - ascent + leading;
    }
void SkDisplayMath::executeFunction(SkDisplayable* target, int index,
        SkTDArray<SkScriptValue>& parameters, SkDisplayTypes type,
        SkScriptValue* scriptValue) {
    if (scriptValue == NULL)
        return;
    SkASSERT(target == this);
    SkScriptValue* array = parameters.begin();
    SkScriptValue* end = parameters.end();
    SkScalar input = parameters[0].fOperand.fScalar;
    SkScalar scalarResult;
    switch (index) {
        case SK_FUNCTION(abs):
            scalarResult = SkScalarAbs(input);
            break;
        case SK_FUNCTION(acos):
            scalarResult = SkScalarACos(input);
            break;
        case SK_FUNCTION(asin):
            scalarResult = SkScalarASin(input);
            break;
        case SK_FUNCTION(atan):
            scalarResult = SkScalarATan2(input, SK_Scalar1);
            break;
        case SK_FUNCTION(atan2):
            scalarResult = SkScalarATan2(input, parameters[1].fOperand.fScalar);
            break;
        case SK_FUNCTION(ceil):
            scalarResult = SkIntToScalar(SkScalarCeil(input));
            break;
        case SK_FUNCTION(cos):
            scalarResult = SkScalarCos(input);
            break;
        case SK_FUNCTION(exp):
            scalarResult = SkScalarExp(input);
            break;
        case SK_FUNCTION(floor):
            scalarResult = SkIntToScalar(SkScalarFloor(input));
            break;
        case SK_FUNCTION(log):
            scalarResult = SkScalarLog(input);
            break;
        case SK_FUNCTION(max):
            scalarResult = -SK_ScalarMax;
            while (array < end) {
                scalarResult = SkMaxScalar(scalarResult, array->fOperand.fScalar);
                array++;
            }
            break;
        case SK_FUNCTION(min):
            scalarResult = SK_ScalarMax;
            while (array < end) {
                scalarResult = SkMinScalar(scalarResult, array->fOperand.fScalar);
                array++;
            }
            break;
        case SK_FUNCTION(pow):
            // not the greatest -- but use x^y = e^(y * ln(x))
            scalarResult = SkScalarLog(input);
            scalarResult = SkScalarMul(parameters[1].fOperand.fScalar, scalarResult);
            scalarResult = SkScalarExp(scalarResult);
            break;
        case SK_FUNCTION(random):
            scalarResult = fRandom.nextUScalar1();
            break;
        case SK_FUNCTION(round):
            scalarResult = SkIntToScalar(SkScalarRound(input));
            break;
        case SK_FUNCTION(sin):
            scalarResult = SkScalarSin(input);
            break;
        case SK_FUNCTION(sqrt): {
            SkASSERT(parameters.count() == 1);
            SkASSERT(type == SkType_Float);
            scalarResult = SkScalarSqrt(input);
            } break;
        case SK_FUNCTION(tan):
            scalarResult = SkScalarTan(input);
            break;
        default:
            SkASSERT(0);
            scalarResult = SK_ScalarNaN;
    }
    scriptValue->fOperand.fScalar = scalarResult;
    scriptValue->fType = SkType_Float;
}
示例#9
0
bool SkDashPathEffect::filterPath(SkPath* dst, const SkPath& src,
                                  SkStrokeRec* rec) {
    // we do nothing if the src wants to be filled, or if our dashlength is 0
    if (rec->isFillStyle() || fInitialDashLength < 0) {
        return false;
    }

    SkPathMeasure   meas(src, false);
    const SkScalar* intervals = fIntervals;
    SkScalar        dashCount = 0;

    SpecialLineRec lineRec;
    const bool specialLine = lineRec.init(src, dst, rec, meas.getLength(),
                                          fCount >> 1, fIntervalLength);

    do {
        bool        skipFirstSegment = meas.isClosed();
        bool        addedSegment = false;
        SkScalar    length = meas.getLength();
        int         index = fInitialDashIndex;
        SkScalar    scale = SK_Scalar1;

        // Since the path length / dash length ratio may be arbitrarily large, we can exert
        // significant memory pressure while attempting to build the filtered path. To avoid this,
        // we simply give up dashing beyond a certain threshold.
        //
        // The original bug report (http://crbug.com/165432) is based on a path yielding more than
        // 90 million dash segments and crashing the memory allocator. A limit of 1 million
        // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
        // maximum dash memory overhead at roughly 17MB per path.
        static const SkScalar kMaxDashCount = 1000000;
        dashCount += length * (fCount >> 1) / fIntervalLength;
        if (dashCount > kMaxDashCount) {
            dst->reset();
            return false;
        }

        if (fScaleToFit) {
            if (fIntervalLength >= length) {
                scale = SkScalarDiv(length, fIntervalLength);
            } else {
                SkScalar div = SkScalarDiv(length, fIntervalLength);
                int n = SkScalarFloor(div);
                scale = SkScalarDiv(length, n * fIntervalLength);
            }
        }

        // Using double precision to avoid looping indefinitely due to single precision rounding
        // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
        double  distance = 0;
        double  dlen = SkScalarMul(fInitialDashLength, scale);

        while (distance < length) {
            SkASSERT(dlen >= 0);
            addedSegment = false;
            if (is_even(index) && dlen > 0 && !skipFirstSegment) {
                addedSegment = true;

                if (specialLine) {
                    lineRec.addSegment(SkDoubleToScalar(distance),
                                       SkDoubleToScalar(distance + dlen),
                                       dst);
                } else {
                    meas.getSegment(SkDoubleToScalar(distance),
                                    SkDoubleToScalar(distance + dlen),
                                    dst, true);
                }
            }
            distance += dlen;

            // clear this so we only respect it the first time around
            skipFirstSegment = false;

            // wrap around our intervals array if necessary
            index += 1;
            SkASSERT(index <= fCount);
            if (index == fCount) {
                index = 0;
            }

            // fetch our next dlen
            dlen = SkScalarMul(intervals[index], scale);
        }

        // extend if we ended on a segment and we need to join up with the (skipped) initial segment
        if (meas.isClosed() && is_even(fInitialDashIndex) &&
                fInitialDashLength > 0) {
            meas.getSegment(0, SkScalarMul(fInitialDashLength, scale), dst, !addedSegment);
        }
    } while (meas.nextContour());

    return true;
}
示例#10
0
bool SkDashPathEffect::filterPath(SkPath* dst, const SkPath& src, SkScalar* width)
{
    // we do nothing if the src wants to be filled, or if our dashlength is 0
    if (*width < 0 || fInitialDashLength < 0)
        return false;

    SkPathMeasure   meas(src, false);
    const SkScalar* intervals = fIntervals;

    do {
        bool        skipFirstSegment = meas.isClosed();
        bool        addedSegment = false;
        SkScalar    length = meas.getLength();
        int         index = fInitialDashIndex;
        SkScalar    scale = SK_Scalar1;

        if (fScaleToFit)
        {
            if (fIntervalLength >= length)
                scale = SkScalarDiv(length, fIntervalLength);
            else
            {
                SkScalar div = SkScalarDiv(length, fIntervalLength);
                int n = SkScalarFloor(div);
                scale = SkScalarDiv(length, n * fIntervalLength);
            }
        }

        SkScalar    distance = 0;
        SkScalar    dlen = SkScalarMul(fInitialDashLength, scale);

        while (distance < length)
        {
            SkASSERT(dlen >= 0);
            addedSegment = false;
            if (is_even(index) && dlen > 0 && !skipFirstSegment)
            {
                addedSegment = true;
                meas.getSegment(distance, distance + dlen, dst, true);
            }
            distance += dlen;

            // clear this so we only respect it the first time around
            skipFirstSegment = false;

            // wrap around our intervals array if necessary
            index += 1;
            SkASSERT(index <= fCount);
            if (index == fCount)
                index = 0;

            // fetch our next dlen
            dlen = SkScalarMul(intervals[index], scale);
        }

        // extend if we ended on a segment and we need to join up with the (skipped) initial segment
        if (meas.isClosed() && is_even(fInitialDashIndex) && fInitialDashLength > 0)
            meas.getSegment(0, SkScalarMul(fInitialDashLength, scale), dst, !addedSegment);
    } while (meas.nextContour());
    return true;
}
示例#11
0
JSBool SkJSDisplayable::GetProperty(JSContext *cx, JSObject *obj, jsval id,
                                 jsval *vp)
{
    if (JSVAL_IS_INT(id) == 0)
        return JS_TRUE; 
    SkJSDisplayable *p = (SkJSDisplayable *) JS_GetPrivate(cx, obj);
    SkDisplayable* displayable = p->fDisplayable;
    SkDisplayTypes displayableType = displayable->getType();
    int members;
    const SkMemberInfo* info = SkDisplayType::GetMembers(NULL /* fMaker */, displayableType, &members);
    int idIndex = JSVAL_TO_INT(id);
    SkASSERT(idIndex >= 0 && idIndex < members);
    info = &info[idIndex];
    SkDisplayTypes infoType = (SkDisplayTypes) info->fType;
    SkScalar scalar = 0;
    S32 s32 = 0;
    SkString* string= NULL;
    JSString *str;
    if (infoType == SkType_MemberProperty) {
        infoType = info->propertyType();
        switch (infoType) {
            case SkType_Scalar: {
                SkScriptValue scriptValue;
                bool success = displayable->getProperty(info->propertyIndex(), &scriptValue);
                SkASSERT(scriptValue.fType == SkType_Scalar);
                scalar = scriptValue.fOperand.fScalar;
                } break;
            default:
                SkASSERT(0); // !!! unimplemented
        }
    } else {
        SkASSERT(info->fCount == 1);
        switch (infoType) {
            case SkType_Boolean:
            case SkType_Color:
            case SkType_S32:
                s32 = *(S32*) info->memberData(displayable);
                break;
            case SkType_String:
                info->getString(displayable, &string);
                break;
            case SkType_Scalar:
                SkOperand operand;
                info->getValue(displayable, &operand, 1);
                scalar = operand.fScalar;
                break;
            default:
                SkASSERT(0); // !!! unimplemented
        }
    }
    switch (infoType) {
        case SkType_Boolean:
            *vp = BOOLEAN_TO_JSVAL(s32);
            break;
        case SkType_Color:
        case SkType_S32:
            *vp = INT_TO_JSVAL(s32);
            break;
        case SkType_Scalar:
            if (SkScalarFraction(scalar) == 0)
                *vp = INT_TO_JSVAL(SkScalarFloor(scalar));
            else
#ifdef SK_SCALAR_IS_FLOAT
            *vp = DOUBLE_TO_JSVAL(scalar);
#else
            *vp = DOUBLE_TO_JSVAL(scalar / 65536.0f );
#endif
            break;
        case SkType_String:
            str = JS_NewStringCopyN(cx, string->c_str(), string->size());
            *vp = STRING_TO_JSVAL(str);
            break;
        default:
            SkASSERT(0); // !!! unimplemented
    }
    return JS_TRUE;
}
bool SkScriptRuntime::executeTokens(unsigned char* opCode) {
    SkOperand2 operand[2];    // 1=accumulator and 2=operand
    SkScriptEngine2::TypeOp op;
    size_t ref;
    int index, size;
    int registerLoad;
    SkScriptCallBack* callBack SK_INIT_TO_AVOID_WARNING;
    do {
    switch ((op = (SkScriptEngine2::TypeOp) *opCode++)) {
        case SkScriptEngine2::kArrayToken:    // create an array
            operand[0].fArray = new SkOpArray(SkOperand2::kNoType /*fReturnType*/);
            break;
        case SkScriptEngine2::kArrayIndex:    // array accessor
            index = operand[1].fS32;
            if (index >= operand[0].fArray->count()) {
                fError = kArrayIndexOutOfBounds;
                return false;
            }
            operand[0] = operand[0].fArray->begin()[index];
            break;
        case SkScriptEngine2::kArrayParam:    // array initializer, or function param
            *operand[0].fArray->append() = operand[1];
            break;
        case SkScriptEngine2::kCallback:
            memcpy(&index, opCode, sizeof(index));
            opCode += sizeof(index);
            callBack = fCallBackArray[index];
            break;
        case SkScriptEngine2::kFunctionCall: {
            memcpy(&ref, opCode, sizeof(ref));
            opCode += sizeof(ref);
            SkScriptCallBackFunction* callBackFunction = (SkScriptCallBackFunction*) callBack;
            if (callBackFunction->invoke(ref, operand[0].fArray, /* params */
                    &operand[0] /* result */) == false) {
                fError = kFunctionCallFailed;
                return false;
            }
            } break;
        case SkScriptEngine2::kMemberOp: {
            memcpy(&ref, opCode, sizeof(ref));
            opCode += sizeof(ref);
            SkScriptCallBackMember* callBackMember = (SkScriptCallBackMember*) callBack;
            if (callBackMember->invoke(ref, operand[0].fObject, &operand[0]) == false) {
                fError = kMemberOpFailed;
                return false;
            }
            } break;
        case SkScriptEngine2::kPropertyOp: {
            memcpy(&ref, opCode, sizeof(ref));
            opCode += sizeof(ref);
            SkScriptCallBackProperty* callBackProperty = (SkScriptCallBackProperty*) callBack;
            if (callBackProperty->getResult(ref, &operand[0])== false) {
                fError = kPropertyOpFailed;
                return false;
            }
            } break;
        case SkScriptEngine2::kAccumulatorPop:
            fRunStack.pop(&operand[0]);
            break;
        case SkScriptEngine2::kAccumulatorPush:
            *fRunStack.push() = operand[0];
            break;
        case SkScriptEngine2::kIntegerAccumulator:
        case SkScriptEngine2::kIntegerOperand:
            registerLoad = op - SkScriptEngine2::kIntegerAccumulator;
            memcpy(&operand[registerLoad].fS32, opCode, sizeof(int32_t));
            opCode += sizeof(int32_t);
            break;
        case SkScriptEngine2::kScalarAccumulator:
        case SkScriptEngine2::kScalarOperand:
            registerLoad = op - SkScriptEngine2::kScalarAccumulator;
            memcpy(&operand[registerLoad].fScalar, opCode, sizeof(SkScalar));
            opCode += sizeof(SkScalar);
            break;
        case SkScriptEngine2::kStringAccumulator:
        case SkScriptEngine2::kStringOperand: {
            SkString* strPtr = new SkString();
            track(strPtr);
            registerLoad = op - SkScriptEngine2::kStringAccumulator;
            memcpy(&size, opCode, sizeof(size));
            opCode += sizeof(size);
            strPtr->set((char*) opCode, size);
            opCode += size;
            operand[registerLoad].fString = strPtr;
            } break;
        case SkScriptEngine2::kStringTrack: // call after kObjectToValue
            track(operand[0].fString);
            break;
        case SkScriptEngine2::kBoxToken: {
            SkOperand2::OpType type;
            memcpy(&type, opCode, sizeof(type));
            opCode += sizeof(type);
            SkScriptCallBackConvert* callBackBox = (SkScriptCallBackConvert*) callBack;
            if (callBackBox->convert(type, &operand[0]) == false)
                return false;
            } break;
        case SkScriptEngine2::kUnboxToken:
        case SkScriptEngine2::kUnboxToken2: {
            SkScriptCallBackConvert* callBackUnbox = (SkScriptCallBackConvert*) callBack;
            if (callBackUnbox->convert(SkOperand2::kObject, &operand[0]) == false)
                return false;
            } break;
        case SkScriptEngine2::kIfOp:
        case SkScriptEngine2::kLogicalAndInt:
            memcpy(&size, opCode, sizeof(size));
            opCode += sizeof(size);
            if (operand[0].fS32 == 0)
                opCode += size; // skip to else (or end of if predicate)
            break;
        case SkScriptEngine2::kElseOp:
            memcpy(&size, opCode, sizeof(size));
            opCode += sizeof(size);
            opCode += size; // if true: after predicate, always skip to end of else
            break;
        case SkScriptEngine2::kLogicalOrInt:
            memcpy(&size, opCode, sizeof(size));
            opCode += sizeof(size);
            if (operand[0].fS32 != 0)
                opCode += size; // skip to kToBool opcode after || predicate
            break;
        // arithmetic conversion ops
        case SkScriptEngine2::kFlipOpsOp:
            SkTSwap(operand[0], operand[1]);
            break;
        case SkScriptEngine2::kIntToString:
        case SkScriptEngine2::kIntToString2:
        case SkScriptEngine2::kScalarToString:
        case SkScriptEngine2::kScalarToString2:{
            SkString* strPtr = new SkString();
            track(strPtr);
            if (op == SkScriptEngine2::kIntToString || op == SkScriptEngine2::kIntToString2)
                strPtr->appendS32(operand[op - SkScriptEngine2::kIntToString].fS32);
            else
                strPtr->appendScalar(operand[op - SkScriptEngine2::kScalarToString].fScalar);
            operand[0].fString = strPtr;
            } break;
        case SkScriptEngine2::kIntToScalar:
        case SkScriptEngine2::kIntToScalar2:
            operand[0].fScalar = SkScriptEngine2::IntToScalar(operand[op - SkScriptEngine2::kIntToScalar].fS32);
            break;
        case SkScriptEngine2::kStringToInt:
            if (SkParse::FindS32(operand[0].fString->c_str(), &operand[0].fS32) == false)
                return false;
            break;
        case SkScriptEngine2::kStringToScalar:
        case SkScriptEngine2::kStringToScalar2:
            if (SkParse::FindScalar(operand[0].fString->c_str(),
                    &operand[op - SkScriptEngine2::kStringToScalar].fScalar) == false)
                return false;
            break;
        case SkScriptEngine2::kScalarToInt:
            operand[0].fS32 = SkScalarFloor(operand[0].fScalar);
            break;
        // arithmetic ops
        case SkScriptEngine2::kAddInt:
            operand[0].fS32 += operand[1].fS32;
            break;
        case SkScriptEngine2::kAddScalar:
            operand[0].fScalar += operand[1].fScalar;
            break;
        case SkScriptEngine2::kAddString:
//            if (fTrackString.find(operand[1].fString) < 0) {
//                operand[1].fString = SkNEW_ARGS(SkString, (*operand[1].fString));
//                track(operand[1].fString);
//            }
            operand[0].fString->append(*operand[1].fString);
            break;
        case SkScriptEngine2::kBitAndInt:
            operand[0].fS32 &= operand[1].fS32;
            break;
        case SkScriptEngine2::kBitNotInt:
            operand[0].fS32 = ~operand[0].fS32;
            break;
        case SkScriptEngine2::kBitOrInt:
            operand[0].fS32 |= operand[1].fS32;
            break;
        case SkScriptEngine2::kDivideInt:
            SkASSERT(operand[1].fS32 != 0);
            if (operand[1].fS32 == 0)
                operand[0].fS32 = operand[0].fS32 == 0 ? SK_NaN32 :
                    operand[0].fS32 > 0 ? SK_MaxS32 : -SK_MaxS32;
            else
            if (operand[1].fS32 != 0) // throw error on divide by zero?
                operand[0].fS32 /= operand[1].fS32;
            break;
        case SkScriptEngine2::kDivideScalar:
            if (operand[1].fScalar == 0)
                operand[0].fScalar = operand[0].fScalar == 0 ? SK_ScalarNaN :
                    operand[0].fScalar > 0 ? SK_ScalarMax : -SK_ScalarMax;
            else
                operand[0].fScalar = SkScalarDiv(operand[0].fScalar, operand[1].fScalar);
            break;
        case SkScriptEngine2::kEqualInt:
            operand[0].fS32 = operand[0].fS32 == operand[1].fS32;
            break;
        case SkScriptEngine2::kEqualScalar:
            operand[0].fS32 = operand[0].fScalar == operand[1].fScalar;
            break;
        case SkScriptEngine2::kEqualString:
            operand[0].fS32 = *operand[0].fString == *operand[1].fString;
            break;
        case SkScriptEngine2::kGreaterEqualInt:
            operand[0].fS32 = operand[0].fS32 >= operand[1].fS32;
            break;
        case SkScriptEngine2::kGreaterEqualScalar:
            operand[0].fS32 = operand[0].fScalar >= operand[1].fScalar;
            break;
        case SkScriptEngine2::kGreaterEqualString:
            operand[0].fS32 = strcmp(operand[0].fString->c_str(), operand[1].fString->c_str()) >= 0;
            break;
        case SkScriptEngine2::kToBool:
            operand[0].fS32 = !! operand[0].fS32;
            break;
        case SkScriptEngine2::kLogicalNotInt:
            operand[0].fS32 = ! operand[0].fS32;
            break;
        case SkScriptEngine2::kMinusInt:
            operand[0].fS32 = -operand[0].fS32;
            break;
        case SkScriptEngine2::kMinusScalar:
            operand[0].fScalar = -operand[0].fScalar;
            break;
        case SkScriptEngine2::kModuloInt:
            operand[0].fS32 %= operand[1].fS32;
            break;
        case SkScriptEngine2::kModuloScalar:
            operand[0].fScalar = SkScalarMod(operand[0].fScalar, operand[1].fScalar);
            break;
        case SkScriptEngine2::kMultiplyInt:
            operand[0].fS32 *= operand[1].fS32;
            break;
        case SkScriptEngine2::kMultiplyScalar:
            operand[0].fScalar = SkScalarMul(operand[0].fScalar, operand[1].fScalar);
            break;
        case SkScriptEngine2::kShiftLeftInt:
            operand[0].fS32 <<= operand[1].fS32;
            break;
        case SkScriptEngine2::kShiftRightInt:
            operand[0].fS32 >>= operand[1].fS32;
            break;
        case SkScriptEngine2::kSubtractInt:
            operand[0].fS32 -= operand[1].fS32;
            break;
        case SkScriptEngine2::kSubtractScalar:
            operand[0].fScalar -= operand[1].fScalar;
            break;
        case SkScriptEngine2::kXorInt:
            operand[0].fS32 ^= operand[1].fS32;
            break;
        case SkScriptEngine2::kEnd:
            goto done;
        case SkScriptEngine2::kNop:
                SkASSERT(0);
    default:
        break;
    }
    } while (true);
done:
    fRunStack.push(operand[0]);
    return true;
}
示例#13
0
bool MCGBlurBox(const SkMask& p_src, SkScalar p_x_radius, SkScalar p_y_radius, SkScalar p_x_spread, SkScalar p_y_spread, SkMask& r_dst)
{
	int t_pass_count;
	t_pass_count = 3;
	
	// Maximum amount of spread is 254 pixels.
	int x_spread, y_spread;
	x_spread = SkMin32(SkScalarFloor(p_x_radius * p_x_spread), 254);
	y_spread = SkMin32(SkScalarFloor(p_y_radius * p_y_spread), 254);
	
	p_x_radius -= x_spread;
	p_y_radius -= y_spread;
	
	int rx, ry;
	rx = SkScalarCeil(p_x_radius);
	ry = SkScalarCeil(p_y_radius);
	
	SkScalar px, py;
	px = rx;
	py = ry;
	
	int wx, wy;
	wx = 255 - SkScalarRound((SkIntToScalar(rx) - px) * 255);
	wy = 255 - SkScalarRound((SkIntToScalar(ry) - py) * 255);
	
	int t_pad_x, t_pad_y;
	t_pad_x = rx + x_spread;
	t_pad_y = ry + y_spread;
	
	r_dst . fBounds . set(p_src . fBounds . fLeft - t_pad_x, p_src . fBounds . fTop - t_pad_y,
						  p_src . fBounds . fRight + t_pad_x, p_src . fBounds . fBottom + t_pad_y);
	r_dst . fRowBytes = r_dst . fBounds . width();
	r_dst . fFormat = SkMask::kA8_Format;
	r_dst . fImage = NULL;
	
	if (p_src . fImage == NULL)
		return true;
	
	size_t t_dst_size;
	t_dst_size = r_dst . computeImageSize();
	if (t_dst_size == 0)
		return false;
	
	int sw, sh;
	sw = p_src . fBounds . width();
	sh = p_src . fBounds . height();
	
	const uint8_t *sp;
	sp = p_src . fImage;
	
	uint8_t *dp;
	dp = SkMask::AllocImage(t_dst_size);
	if (dp == nil)
		return false;
	
	uint8_t *tp;
	tp = SkMask::AllocImage(t_dst_size);
	if (tp == nil)
	{
		SkMask::FreeImage(dp);
		return false;
	}
	
	int w, h;
	w = sw;
	h = sh;
	if (wx == 255)
	{
		if (t_pass_count == 3)
		{
			int r;
			r = rx;
			
			bool t_has_spread;
			t_has_spread = false;
			if (x_spread != 0 || y_spread != 0)
			{
				//w = dilateMask(sp, p_src . fRowBytes, tp, x_spread, w, h, true);
				//h = dilateMask(tp, h, dp, y_spread, h, w, true);
				dilateDistanceXY(sp, dp, x_spread, y_spread, w, h, w, h);
				t_has_spread = true;
			}
			
			int trx;
			trx = (r + 2) / 3; 
			r -= trx;
			
			int rx_lo, rx_hi;
			rx_lo = rx_hi = trx;
			
			w = boxBlur(t_has_spread ? dp : sp, t_has_spread ? w : p_src . fRowBytes, tp, rx_lo, rx_hi, w, h, false);
			
			trx = (r + 1) / 2;
			r -= trx;
			
			rx_lo = rx_hi = trx;
			w = boxBlur(tp, w, dp, rx_hi, rx_lo, w, h, false);
			
			trx = r;
			rx_lo = rx_hi = trx;
			w = boxBlur(dp, w, tp, rx_hi, rx_hi, w, h, true);
		}
		else
			w = boxBlur(sp, p_src . fRowBytes, tp, rx, rx, w, h, true);
	}
	else
	{
		if (t_pass_count == 3)
		{
			int r;
			r = rx;
			
			bool t_has_spread;
			t_has_spread = false;
			if (x_spread != 0 || y_spread != 0)
			{
				//w = dilateMask(sp, p_src . fRowBytes, tp, x_spread, w, h, true);
				//h = dilateMask(tp, h, dp, y_spread, h, w, true);
				dilateDistanceXY(sp, dp, x_spread, y_spread, w, h, w, h);
				t_has_spread = true;
			}
			
			int trx;
			trx = (r + 2) / 3; 
			r -= trx;
			
			w = boxBlurInterp(t_has_spread ? dp : sp, t_has_spread ? w : p_src . fRowBytes, tp, trx, w, h, false, wx);
			
			trx = (r + 1) / 2;
			r -= trx;
			
			w = boxBlurInterp(tp, w, dp, trx, w, h, false, wx);
			
			trx = r;
			
			w = boxBlurInterp(dp, w, tp, trx, w, h, true, wx);
		}
		else
			w = boxBlurInterp(sp, p_src . fRowBytes, tp, rx, w, h, true, wx);
	}
	
	if (wy == 255)
	{
		if (t_pass_count == 3)
		{
			int r;
			r = ry;
			
			int sry;
			sry = (r + 2) / 3;
			r -= sry;
			
			int ry_lo, ry_hi;
			ry_lo = ry_hi = sry;
			
			h = boxBlur(tp, h, dp, ry_lo, ry_hi, h, w, false);
			
			sry = (r + 1) / 2;
			r -= sry;
			ry_lo = ry_hi = sry;
			
			h = boxBlur(dp, h, tp, ry_hi, ry_lo, h, w, false);
			
			sry = r;
			ry_lo = ry_hi = sry;
			
			h = boxBlur(tp, h, dp, ry_hi, ry_hi, h, w, true);
		}
		else
			h = boxBlur(tp, h, dp, ry, ry, h, w, true);
	}
	else
	{
		if (t_pass_count == 3)
		{
			int r;
			r = ry;
			
			int sry;
			sry = (r + 2) / 3;
			r -= sry;
			
			h = boxBlurInterp(tp, h, dp, sry, h, w, false, wy);
			
			sry = (r + 1) / 2;
			r -= sry;
			
			h = boxBlurInterp(dp, h, tp, sry, h, w, false, wy);
			
			sry = r;
			
			h = boxBlurInterp(tp, h, dp, sry, h, w, true, wy);
		}
		else
			w = boxBlurInterp(tp, h, dp, rx, h, w, true, wy);
	}
	
	SkMask::FreeImage(tp);
	
	r_dst . fImage = dp;
	
	return true;
}