static void showConn(struct IpTunnel_Connection* conn, String* txid, struct Admin* admin, struct Allocator* alloc) { Dict* d = Dict_new(alloc); if (!Bits_isZero(conn->connectionIp6, 16)) { struct Sockaddr* addr = Sockaddr_clone(Sockaddr_LOOPBACK6, alloc); uint8_t* address; Assert_true(16 == Sockaddr_getAddress(addr, &address)); Bits_memcpy(address, conn->connectionIp6, 16); char* printedAddr = Sockaddr_print(addr, alloc); Dict_putString(d, String_CONST("ip6Address"), String_CONST(printedAddr), alloc); Dict_putInt(d, String_CONST("ip6Prefix"), conn->connectionIp6Prefix, alloc); } if (!Bits_isZero(conn->connectionIp4, 4)) { struct Sockaddr* addr = Sockaddr_clone(Sockaddr_LOOPBACK, alloc); uint8_t* address; Assert_true(4 == Sockaddr_getAddress(addr, &address)); Bits_memcpy(address, conn->connectionIp4, 4); char* printedAddr = Sockaddr_print(addr, alloc); Dict_putString(d, String_CONST("ip4Address"), String_CONST(printedAddr), alloc); Dict_putInt(d, String_CONST("ip4Prefix"), conn->connectionIp4Prefix, alloc); } Dict_putString(d, String_CONST("key"), Key_stringify(conn->routeHeader.publicKey, alloc), alloc); Dict_putInt(d, String_CONST("outgoing"), (conn->isOutgoing) ? 1 : 0, alloc); Dict_putString(d, String_CONST("error"), String_CONST("none"), alloc); Admin_sendMessage(d, txid, admin); }
static uint8_t receiveMessage(struct Message* msg, struct Interface* iface) { struct Context* ctx = Identity_cast((struct Context*) iface->receiverContext); struct Sockaddr_storage source; Message_pop(msg, &source, ctx->targetAddr->addrLen, NULL); if (Bits_memcmp(&source, ctx->targetAddr, ctx->targetAddr->addrLen)) { Log_info(ctx->logger, "Got spurious message from [%s], expecting messages from [%s]", Sockaddr_print(&source.addr, msg->alloc), Sockaddr_print(ctx->targetAddr, msg->alloc)); return 0; } // we don't yet know with which message this data belongs, // the message alloc lives the length of the message reception. struct Allocator* alloc = Allocator_child(msg->alloc); struct Reader* reader = ArrayReader_new(msg->bytes, msg->length, alloc); Dict* d = Dict_new(alloc); if (StandardBencSerializer_get()->parseDictionary(reader, alloc, d)) { return 0; } String* txid = Dict_getString(d, String_CONST("txid")); if (!txid || txid->len != 8) { return 0; } // look up the result uint32_t handle = ~0u; Hex_decode((uint8_t*)&handle, 4, txid->bytes, 8); int idx = Map_OfRequestByHandle_indexForHandle(handle, &ctx->outstandingRequests); if (idx < 0) { return 0; } struct Request* req = ctx->outstandingRequests.values[idx]; // now this data will outlive the life of the message. Allocator_adopt(req->promise->alloc, alloc); req->res.responseDict = d; int len = (msg->length > AdminClient_MAX_MESSAGE_SIZE) ? AdminClient_MAX_MESSAGE_SIZE : msg->length; Bits_memset(req->res.messageBytes, 0, AdminClient_MAX_MESSAGE_SIZE); Bits_memcpy(req->res.messageBytes, msg->bytes, len); done(req, AdminClient_Error_NONE); return 0; }
void NetDev_addAddress(const char* ifName, struct Sockaddr* sa, int prefixLen, struct Log* logger, struct Except* eh) { int addrFam = Sockaddr_getFamily(sa); struct Allocator* alloc; BufferAllocator_STACK(alloc, 4096); char* printedAddr = Sockaddr_print(sa, alloc); if (addrFam != Sockaddr_AF_INET && addrFam != Sockaddr_AF_INET6) { Except_throw(eh, "Unknown address type for address [%s]", printedAddr); } int prefixMax = (addrFam == Sockaddr_AF_INET6) ? 128 : 32; if (prefixLen < 0 || prefixLen > prefixMax) { Except_throw(eh, "prefixLen [%d] must be greater than 0 and less than %d", prefixLen, prefixMax); } void* addr; int len = Sockaddr_getAddress(sa, &addr); if (len < 0 || len != prefixMax / 8) { Except_throw(eh, "Invalid sockaddr [%s]", printedAddr); } Log_info(logger, "Setting IP address [%s/%d] on interface [%s]", printedAddr, prefixLen, ifName); NetPlatform_addAddress(ifName, addr, prefixLen, addrFam, logger, eh); }
static void checkAddressAndPrefix(struct Sockaddr* sa, int* addrFam, char** printedAddr, void** addr, struct Allocator* alloc, struct Except* eh) { *printedAddr = Sockaddr_print(sa, alloc); *addrFam = Sockaddr_getFamily(sa); if (*addrFam != Sockaddr_AF_INET && *addrFam != Sockaddr_AF_INET6) { Except_throw(eh, "Unknown address type for address [%s]", *printedAddr); } int prefixMax = (*addrFam == Sockaddr_AF_INET6) ? 128 : 32; if (!(sa->flags & Sockaddr_flags_PREFIX)) { sa->prefix = prefixMax; } if (sa->prefix > prefixMax) { Except_throw(eh, "prefix [%u] must be less than %d", sa->prefix, prefixMax); } int len = Sockaddr_getAddress(sa, addr); if (len < 0 || len != prefixMax / 8) { Except_throw(eh, "Invalid sockaddr [%s]", *printedAddr); } }
static void newInterface2(struct Context* ctx, struct Sockaddr* addr, String* txid, struct Allocator* requestAlloc) { struct Allocator* const alloc = Allocator_child(ctx->alloc); struct UDPAddrIface* udpIf = NULL; struct Jmp jmp; Jmp_try(jmp) { udpIf = UDPAddrIface_new(ctx->eventBase, addr, alloc, &jmp.handler, ctx->logger); } Jmp_catch { String* errStr = String_CONST(jmp.message); Dict out = Dict_CONST(String_CONST("error"), String_OBJ(errStr), NULL); Admin_sendMessage(&out, txid, ctx->admin); Allocator_free(alloc); return; } struct AddrIface* ai = ctx->udpIf = &udpIf->generic; struct InterfaceController_Iface* ici = InterfaceController_newIface(ctx->ic, String_CONST("UDP"), alloc); Iface_plumb(&ici->addrIf, &ai->iface); Dict* out = Dict_new(requestAlloc); Dict_putString(out, String_CONST("error"), String_CONST("none"), requestAlloc); Dict_putInt(out, String_CONST("interfaceNumber"), ici->ifNum, requestAlloc); char* printedAddr = Sockaddr_print(ai->addr, requestAlloc); Dict_putString(out, String_CONST("bindAddress"), String_CONST(printedAddr), requestAlloc); Admin_sendMessage(out, txid, ctx->admin); }
static Iface_DEFUN receiveMessage(struct Message* msg, struct Iface* addrIface) { struct Context* ctx = Identity_containerOf(addrIface, struct Context, addrIface); struct Sockaddr_storage source; Message_pop(msg, &source, ctx->targetAddr->addrLen, NULL); if (Bits_memcmp(&source, ctx->targetAddr, ctx->targetAddr->addrLen)) { Log_info(ctx->logger, "Got spurious message from [%s], expecting messages from [%s]", Sockaddr_print(&source.addr, msg->alloc), Sockaddr_print(ctx->targetAddr, msg->alloc)); return NULL; } // we don't yet know with which message this data belongs, // the message alloc lives the length of the message reception. struct Allocator* alloc = Allocator_child(msg->alloc); int origLen = msg->length; Dict* d = NULL; char* err = BencMessageReader_readNoExcept(msg, alloc, &d); if (err) { return NULL; } Message_shift(msg, origLen, NULL); String* txid = Dict_getString(d, String_CONST("txid")); if (!txid || txid->len != 8) { return NULL; } // look up the result uint32_t handle = ~0u; Hex_decode((uint8_t*)&handle, 4, txid->bytes, 8); int idx = Map_OfRequestByHandle_indexForHandle(handle, &ctx->outstandingRequests); if (idx < 0) { return NULL; } struct Request* req = ctx->outstandingRequests.values[idx]; // now this data will outlive the life of the message. Allocator_adopt(req->promise->alloc, alloc); req->res.responseDict = d; int len = (msg->length > AdminClient_MAX_MESSAGE_SIZE) ? AdminClient_MAX_MESSAGE_SIZE : msg->length; Bits_memset(req->res.messageBytes, 0, AdminClient_MAX_MESSAGE_SIZE); Bits_memcpy(req->res.messageBytes, msg->bytes, len); done(req, AdminClient_Error_NONE); return NULL; }
static void expectConvert(char* address, char* expectedOutput) { struct Sockaddr_storage ss; Assert_always(!Sockaddr_parse(address, &ss)); struct Allocator* alloc = MallocAllocator_new(20000); char* outAddr = Sockaddr_print(&ss.addr, alloc); Assert_always(outAddr); Assert_always(strlen(outAddr) == strlen(expectedOutput)); Assert_always(!strcmp(outAddr, expectedOutput)); Allocator_free(alloc); }
static Iface_DEFUN fromAsync(struct Message* msg, struct Iface* fnpFromAsync) { struct FakeNetwork_pvt* fnp = Identity_containerOf(fnpFromAsync, struct FakeNetwork_pvt, fromAsync); struct Sockaddr_storage dest; struct Sockaddr* dp = &dest.addr; popSockaddr(msg, &dest); int idx = Map_OfIfaces_indexForKey(&dp, &fnp->map); if (idx == -1) { char* destAddr = Sockaddr_print(dp, msg->alloc); // hack, the 'dest' becomes the source. popSockaddr(msg, &dest); char* srcAddr = Sockaddr_print(dp, msg->alloc); Log_debug(fnp->log, "Message with unknown dest address [%s] from [%s]", destAddr, srcAddr); return NULL; } struct FakeNetwork_UDPIface_pvt* fnip = Identity_check(fnp->map.values[idx]); return Iface_next(&fnip->pub.generic.iface, msg); }
static void udpInterface(Dict* config, struct Context* ctx) { List* ifaces = Dict_getList(config, String_CONST("UDPInterface")); if (!ifaces) { ifaces = List_new(ctx->alloc); List_addDict(ifaces, Dict_getDict(config, String_CONST("UDPInterface")), ctx->alloc); } uint32_t count = List_size(ifaces); for (uint32_t i = 0; i < count; i++) { Dict *udp = List_getDict(ifaces, i); if (!udp) { continue; } // Setup the interface. String* bindStr = Dict_getString(udp, String_CONST("bind")); Dict* d = Dict_new(ctx->alloc); if (bindStr) { Dict_putString(d, String_CONST("bindAddress"), bindStr, ctx->alloc); } Dict* resp = NULL; rpcCall0(String_CONST("UDPInterface_new"), d, ctx, ctx->alloc, &resp, true); int ifNum = *(Dict_getInt(resp, String_CONST("interfaceNumber"))); // Make the connections. Dict* connectTo = Dict_getDict(udp, String_CONST("connectTo")); if (connectTo) { struct Dict_Entry* entry = *connectTo; struct Allocator* perCallAlloc = Allocator_child(ctx->alloc); while (entry != NULL) { String* key = (String*) entry->key; if (entry->val->type != Object_DICT) { Log_critical(ctx->logger, "interfaces.UDPInterface.connectTo: entry [%s] " "is not a dictionary type.", key->bytes); exit(-1); } Dict* all = entry->val->as.dictionary; Dict* value = Dict_new(perCallAlloc); String* pub_d = Dict_getString(all, String_CONST("publicKey")); String* pss_d = Dict_getString(all, String_CONST("password")); String* peerName_d = Dict_getString(all, String_CONST("peerName")); String* login_d = Dict_getString(all, String_CONST("login")); if ( !pub_d || !pss_d ) { const char * error_name = "(unknown)"; if ( !pub_d ) { error_name = "publicKey"; } if ( !pss_d ) { error_name = "password"; } Log_warn(ctx->logger, "Skipping peer: missing %s for peer [%s]", error_name, key->bytes); if (abort_if_invalid_ref) { Assert_failure("Invalid peer reference"); } else { entry = entry->next; continue; } } Dict_putString(value, String_CONST("publicKey"), pub_d, perCallAlloc); Dict_putString(value, String_CONST("password"), pss_d, perCallAlloc); Dict_putString(value, String_CONST("peerName"), peerName_d, perCallAlloc); Dict_putString(value, String_CONST("login"), login_d, perCallAlloc); Log_keys(ctx->logger, "Attempting to connect to node [%s].", key->bytes); key = String_clone(key, perCallAlloc); char* lastColon = CString_strrchr(key->bytes, ':'); if (!Sockaddr_parse(key->bytes, NULL)) { // it's a sockaddr, fall through } else if (lastColon) { // try it as a hostname. int port = atoi(lastColon+1); if (!port) { Log_critical(ctx->logger, "Couldn't get port number from [%s]", key->bytes); exit(-1); } *lastColon = '\0'; struct Sockaddr* adr = Sockaddr_fromName(key->bytes, perCallAlloc); if (adr != NULL) { Sockaddr_setPort(adr, port); key = String_new(Sockaddr_print(adr, perCallAlloc), perCallAlloc); } else { Log_warn(ctx->logger, "Failed to lookup hostname [%s]", key->bytes); entry = entry->next; continue; } } struct Allocator* child = Allocator_child(ctx->alloc); struct Message* msg = Message_new(0, AdminClient_MAX_MESSAGE_SIZE + 256, child); int r = BencMessageWriter_writeDictTry(value, msg, NULL); const int max_reference_size = 298; if (r != 0 || msg->length > max_reference_size) { Log_warn(ctx->logger, "Peer skipped:"); Log_warn(ctx->logger, "Too long peer reference for [%s]", key->bytes); if (abort_if_invalid_ref) { Assert_failure("Invalid peer reference"); } else { entry = entry->next; continue; } } Dict_putInt(value, String_CONST("interfaceNumber"), ifNum, perCallAlloc); Dict_putString(value, String_CONST("address"), key, perCallAlloc); rpcCall(String_CONST("UDPInterface_beginConnection"), value, ctx, perCallAlloc); entry = entry->next; } Allocator_free(perCallAlloc); } } }
/* * This process is started with 2 parameters, they must all be numeric in base 10. * toAngel the pipe which is used to send data back to the angel process. * fromAngel the pipe which is used to read incoming data from the angel. * * Upon initialization, this process will wait for an initial configuration to be sent to * it and then it will send an initial response. */ int Core_main(int argc, char** argv) { struct Except* eh = NULL; if (argc != 3) { Except_raise(eh, -1, "This is internal to cjdns and shouldn't started manually."); } struct Allocator* alloc = MallocAllocator_new(ALLOCATOR_FAILSAFE); struct Log* preLogger = FileWriterLog_new(stderr, alloc); struct EventBase* eventBase = EventBase_new(alloc); // -------------------- Setup the Pre-Logger ---------------------- // struct Log* logger = IndirectLog_new(alloc); IndirectLog_set(logger, preLogger); // -------------------- Setup the PRNG ---------------------- // struct Random* rand = LibuvEntropyProvider_newDefaultRandom(eventBase, logger, eh, alloc); // -------------------- Change Canary Value ---------------------- // MallocAllocator_setCanary(alloc, (long)Random_int64(rand)); struct Allocator* tempAlloc = Allocator_child(alloc); // The first read inside of getInitialConfig() will begin it waiting. struct Pipe* angelPipe = Pipe_named(argv[2], eventBase, eh, alloc); angelPipe->logger = logger; angelPipe->onClose = angelDied; struct Interface* angelIface = FramingInterface_new(65535, &angelPipe->iface, alloc); Dict* config = getInitialConfig(angelIface, eventBase, tempAlloc, eh); struct Hermes* hermes = Hermes_new(angelIface, eventBase, logger, alloc); String* privateKeyHex = Dict_getString(config, String_CONST("privateKey")); Dict* adminConf = Dict_getDict(config, String_CONST("admin")); String* pass = Dict_getString(adminConf, String_CONST("pass")); String* bind = Dict_getString(adminConf, String_CONST("bind")); if (!(pass && privateKeyHex && bind)) { if (!pass) { Except_raise(eh, -1, "Expected 'pass'"); } if (!bind) { Except_raise(eh, -1, "Expected 'bind'"); } if (!privateKeyHex) { Except_raise(eh, -1, "Expected 'privateKey'"); } Except_raise(eh, -1, "Expected 'pass', 'privateKey' and 'bind' in configuration."); } Log_keys(logger, "Starting core with admin password [%s]", pass->bytes); uint8_t privateKey[32]; if (privateKeyHex->len != 64 || Hex_decode(privateKey, 32, (uint8_t*) privateKeyHex->bytes, 64) != 32) { Except_raise(eh, -1, "privateKey must be 64 bytes of hex."); } struct Sockaddr_storage bindAddr; if (Sockaddr_parse(bind->bytes, &bindAddr)) { Except_raise(eh, -1, "bind address [%s] unparsable", bind->bytes); } struct AddrInterface* udpAdmin = UDPAddrInterface_new(eventBase, &bindAddr.addr, alloc, eh, logger); struct Admin* admin = Admin_new(udpAdmin, alloc, logger, eventBase, pass); char* boundAddr = Sockaddr_print(udpAdmin->addr, tempAlloc); Dict adminResponse = Dict_CONST( String_CONST("bind"), String_OBJ(String_CONST(boundAddr)), NULL ); Dict response = Dict_CONST( String_CONST("error"), String_OBJ(String_CONST("none")), Dict_CONST( String_CONST("admin"), Dict_OBJ(&adminResponse), NULL )); // This always times out because the angel doesn't respond. Hermes_callAngel(&response, angelResponse, NULL, alloc, eh, hermes); // --------------------- Setup the Logger --------------------- // Dict* logging = Dict_getDict(config, String_CONST("logging")); String* logTo = Dict_getString(logging, String_CONST("logTo")); if (logTo && String_equals(logTo, String_CONST("stdout"))) { // do nothing, continue logging to stdout. } else { struct Log* adminLogger = AdminLog_registerNew(admin, alloc, rand); IndirectLog_set(logger, adminLogger); logger = adminLogger; } // CryptoAuth struct Address addr; parsePrivateKey(privateKey, &addr, eh); struct CryptoAuth* cryptoAuth = CryptoAuth_new(alloc, privateKey, eventBase, logger, rand); struct Sockaddr* myAddr = Sockaddr_fromBytes(addr.ip6.bytes, Sockaddr_AF_INET6, alloc); struct SwitchCore* switchCore = SwitchCore_new(logger, alloc); struct DHTModuleRegistry* registry = DHTModuleRegistry_new(alloc); ReplyModule_register(registry, alloc); // Router struct RouterModule* router = RouterModule_register(registry, alloc, addr.key, eventBase, logger, admin, rand); SerializationModule_register(registry, logger, alloc); struct IpTunnel* ipTun = IpTunnel_new(logger, eventBase, alloc, rand, hermes); struct Ducttape* dt = Ducttape_register(privateKey, registry, router, switchCore, eventBase, alloc, logger, admin, ipTun, rand); struct SwitchPinger* sp = SwitchPinger_new(&dt->switchPingerIf, eventBase, logger, alloc); // Interfaces. struct InterfaceController* ifController = DefaultInterfaceController_new(cryptoAuth, switchCore, router, logger, eventBase, sp, rand, alloc); // ------------------- Register RPC functions ----------------------- // SwitchPinger_admin_register(sp, admin, alloc); UDPInterface_admin_register(eventBase, alloc, logger, admin, ifController); #ifdef HAS_ETH_INTERFACE ETHInterface_admin_register(eventBase, alloc, logger, admin, ifController); #endif RouterModule_admin_register(router, admin, alloc); AuthorizedPasswords_init(admin, cryptoAuth, alloc); Admin_registerFunction("ping", adminPing, admin, false, NULL, admin); Core_admin_register(myAddr, dt, logger, ipTun, alloc, admin, eventBase); Security_admin_register(alloc, logger, admin); IpTunnel_admin_register(ipTun, admin, alloc); struct Context* ctx = Allocator_clone(alloc, (&(struct Context) { .allocator = alloc, .admin = admin, .logger = logger, .hermes = hermes }));
static void udpInterface(Dict* config, struct Context* ctx) { List* ifaces = Dict_getList(config, String_CONST("UDPInterface")); if (!ifaces) { ifaces = List_addDict(ifaces, Dict_getDict(config, String_CONST("UDPInterface")), ctx->alloc); } uint32_t count = List_size(ifaces); for (uint32_t i = 0; i < count; i++) { Dict *udp = List_getDict(ifaces, i); if (!udp) { continue; } // Setup the interface. String* bindStr = Dict_getString(udp, String_CONST("bind")); Dict* d = Dict_new(ctx->alloc); if (bindStr) { Dict_putString(d, String_CONST("bindAddress"), bindStr, ctx->alloc); } rpcCall(String_CONST("UDPInterface_new"), d, ctx, ctx->alloc); // Make the connections. Dict* connectTo = Dict_getDict(udp, String_CONST("connectTo")); if (connectTo) { struct Dict_Entry* entry = *connectTo; struct Allocator* perCallAlloc = Allocator_child(ctx->alloc); while (entry != NULL) { String* key = (String*) entry->key; if (entry->val->type != Object_DICT) { Log_critical(ctx->logger, "interfaces.UDPInterface.connectTo: entry [%s] " "is not a dictionary type.", key->bytes); exit(-1); } Dict* value = entry->val->as.dictionary; Log_keys(ctx->logger, "Attempting to connect to node [%s].", key->bytes); key = String_clone(key, perCallAlloc); char* lastColon = strrchr(key->bytes, ':'); if (!Sockaddr_parse(key->bytes, NULL)) { // it's a sockaddr, fall through } else if (lastColon) { // try it as a hostname. int port = atoi(lastColon+1); if (!port) { Log_critical(ctx->logger, "Couldn't get port number from [%s]", key->bytes); exit(-1); } *lastColon = '\0'; struct Sockaddr* adr = Sockaddr_fromName(key->bytes, perCallAlloc); if (adr != NULL) { Sockaddr_setPort(adr, port); key = String_new(Sockaddr_print(adr, perCallAlloc), perCallAlloc); } else { Log_warn(ctx->logger, "Failed to lookup hostname [%s]", key->bytes); entry = entry->next; continue; } } Dict_putString(value, String_CONST("address"), key, perCallAlloc); rpcCall(String_CONST("UDPInterface_beginConnection"), value, ctx, perCallAlloc); entry = entry->next; } Allocator_free(perCallAlloc); } } }
static void adminPeerStats(Dict* args, void* vcontext, String* txid, struct Allocator* alloc) { struct Context* context = Identity_check((struct Context*)vcontext); struct InterfaceController_PeerStats* stats = NULL; int64_t* page = Dict_getIntC(args, "page"); int i = (page) ? *page * ENTRIES_PER_PAGE : 0; int count = InterfaceController_getPeerStats(context->ic, alloc, &stats); List* list = List_new(alloc); for (int counter=0; i < count && counter++ < ENTRIES_PER_PAGE; i++) { Dict* d = Dict_new(alloc); Dict_putIntC(d, "bytesIn", stats[i].bytesIn, alloc); Dict_putIntC(d, "bytesOut", stats[i].bytesOut, alloc); Dict_putIntC(d, "recvKbps", stats[i].recvKbps, alloc); Dict_putIntC(d, "sendKbps", stats[i].sendKbps, alloc); Dict_putStringC(d, "addr", Address_toString(&stats[i].addr, alloc), alloc); String* lladdrString; #ifdef HAS_ETH_INTERFACE if (ETHInterface_Sockaddr_SIZE == stats[i].lladdr->addrLen) { struct ETHInterface_Sockaddr* eth = (struct ETHInterface_Sockaddr*) stats[i].lladdr; uint8_t printedMac[18]; AddrTools_printMac(printedMac, eth->mac); lladdrString = String_new(printedMac, alloc); } else { lladdrString = String_new(Sockaddr_print(stats[i].lladdr, alloc), alloc); } #else lladdrString = String_new(Sockaddr_print(stats[i].lladdr, alloc), alloc); #endif Dict_putStringC(d, "lladdr", lladdrString, alloc); String* stateString = String_new(InterfaceController_stateString(stats[i].state), alloc); Dict_putStringC(d, "state", stateString, alloc); Dict_putIntC(d, "last", stats[i].timeOfLastMessage, alloc); Dict_putIntC(d, "isIncoming", stats[i].isIncomingConnection, alloc); Dict_putIntC(d, "duplicates", stats[i].duplicates, alloc); Dict_putIntC(d, "lostPackets", stats[i].lostPackets, alloc); Dict_putIntC(d, "receivedOutOfRange", stats[i].receivedOutOfRange, alloc); Dict_putIntC(d, "ifNum", stats[i].ifNum, alloc); if (stats[i].user) { Dict_putStringC(d, "user", stats[i].user, alloc); } Dict_putIntC(d, "receivedPackets", stats[i].receivedPackets, alloc); List_addDict(list, d, alloc); } Dict* resp = Dict_new(alloc); Dict_putListC(resp, "peers", list, alloc); Dict_putIntC(resp, "total", count, alloc); if (i < count) { Dict_putIntC(resp, "more", 1, alloc); } Admin_sendMessage(resp, txid, context->admin); }