示例#1
0
/***************************************************************************
Declaration : void init_mcu (void)

Function :    Initializes ATmega88 MCU
***************************************************************************/
void init_mcu (void)
{
#ifdef DEBUG
  debug();
#endif
  /* System Clocks Configuration */
  RCC_Configuration();
       
  /* Configure the GPIO ports */
  GPIO_Configuration();
 
  /* Configure EXTI Line9 to generate an interrupt on falling edge */
  EXTI_Configuration();

  /* SPI the GPIO ports */
  SPI_Configuration(); 
   
  /* USART  Configuration as SPI */
  USART1_Configuration();
  
  /* TIM2 Configuration */
  TIM2_Configuration();
  
  /* TIM3 Configuration */
  TIM3_Configuration();
  
  /* TIM4 Configuration */
  TIM4_Configuration();
  
   /* Configure RTC clock source and prescaler */
  RTC_Configuration(); 
   
  /* NVIC configuration */
  NVIC_Configuration();
}
示例#2
0
void timer2_init(void)
{
     TIM2_NVIC_Configuration();
     TIM2_Configuration();
  //   timer2_disable();

}
示例#3
0
//================================================================================================
// System Pheriperal Initialize
//================================================================================================
void SysConfiguration_Test(void)
{
	RCC_ClocksTypeDef clocks;

	RCC_Configuration();
	GPIO_Configuration();
	USART_Configuration();

	NVIC_Configuration();

	TIM2_Configuration();

//	ExtI_Configuration();
//	TIM3_Configuration();

	RCC_GetClocksFreq(&clocks);

	dp("ADC    Clk: %d\r\n", clocks.ADCCLK_Frequency);
	dp("HCLK   Clk: %d\r\n", clocks.HCLK_Frequency);
	dp("PCLK1  Clk: %d\r\n", clocks.PCLK1_Frequency);
	dp("PCLK2  Clk: %d\r\n", clocks.PCLK2_Frequency);
	dp("SYSCLK Clk: %d\r\n", clocks.SYSCLK_Frequency);

	if(SysTick_Config(SystemCoreClock/1000) != 0){	// Sys Tick을 1ms로 설정
		dp("Sys Tick Configuration Fail\r\n");
	}

}
示例#4
0
/*
 * 函数名:main
 * 描述  :主函数
 * 输入  :无
 * 输出  :无	
 */
int main(void)
{
	/* 配置系统时钟为 72M */  
	SystemInit();

	/* led 端口配置 */ 
	LED_GPIO_Config();

	/* TIM2 定时配置 */
	TIM2_NVIC_Configuration();
  TIM2_Configuration();

	/* TIM2 开始计时 */
	START_TIME;
	
  while(1)
  {
    if ( time == 1000 ) /* 1s 时间到 */
    {
      time = 0;
			/* LED1 取反 */      
			GPIO_WriteBit(GPIOE, GPIO_Pin_5, 
		               (BitAction)((1-GPIO_ReadOutputDataBit(GPIOE, GPIO_Pin_5)))); 
    }        
  }
}
示例#5
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
    GPIO_Configuration();
    DAC_Configuration();
    TIM2_Configuration();
    while (1)
    {
    }
}    
示例#6
0
/**
  * @brief  Main program.
  * @param  None
  * @retval None
  */
int main(void)
{
	RCC_ClocksTypeDef RCC_Clocks;


  /* SysTick end of count event each 10ms */
  RCC_GetClocksFreq(&RCC_Clocks);
  SysTick_Config(RCC_Clocks.HCLK_Frequency / 100);
	
	/********************输出 初始化 ******************/
	PWM_init();
  
	
	STM324xG_LCD_Init();	
  LCD_Clear(BLACK);/* Clear the LCD */
  LCD_SetBackColor(BLACK);/* Set the LCD Back Color */  
  LCD_SetTextColor(WHITE);/* Set the LCD Text Color */	
  LCD_DisplayStringLine(LINE(0), "  Hello jaja. I'm xiaohei01");
	
	
	/********************输入 初始化 ******************/
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_3);/*!< 3 bits for pre-emption priority 1 bits for subpriority */	
	
	Encoder_init();	//encoder tim8	
	usart_init();//通信COM usart2 115200
	
	IMU_init();	
	if (get_mode()==1)
	{
		IMU_BE10();
	}
	
	KEY_init();		
	AD_Init();	
	GPS_int();

	TIM2_Configuration();
	printf("uart init OK 2 \r\n");

	
while(1)
  {


	if(LCD_flag)
	{
		LCD_flag=0;
		lcd_refresh();
	}


  }  
}
/*
 * ³õʼ»¯Òº¾§£¬´®¿Ú£¬´¥ÃþÆÁ£¬flash¼°sd¿¨ * 
 */
void ISO_Init(void)
{
	uint8_t k;
  
  /* ÅäÖÃUSART1 */
  USART1_Config();		
	/* ÅäÖÃUSART2 */
  USART2_Config();
	/* ÉèÖÃ TIM */
	TIM2_Configuration();

	USART2_DMATxd_Init();
	
	Set_PrintfPort(1);		//ÉèÖÃDebugPf´Ó´®¿Ú1Êä³ö
}
示例#8
0
文件: main.c 项目: Xctickle/pss32
/**
  * @brief  
  * @param  无
  * @retval 无
  */
int main(void)
{
	
		/* USART1  115200 8-N-1, */
	USART1_Config();	
	NVIC_Configuration();
	
		/* 10us*/
	SysTick_Init();
	
	MOTOR_GPIO_Config();
  TIM2_Configuration();
	

	TIM2_NVIC_Configuration();


	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2 , ENABLE);

	//printf(READY);	
	printf("POLARGRAPH ON!");
	
	setAcceleration(&motorA,currentAcceleration);
	setAcceleration(&motorB,currentAcceleration);
	
	mmPerStep = mmPerRev / motorStepsPerRev;
	stepsPerMM = motorStepsPerRev / mmPerRev;
	
	motorA._name = 0;
	motorB._name = 1;
	setAcceleration(&motorA,currentAcceleration);
	setAcceleration(&motorB,currentAcceleration);
	
	pixel_drawSquarePixel(990,486,18,23);
	
	
	for(;;)
	{
		if(getNewComms)
		{
			exec_executeBasicCommand();
			getNewComms = 0;
		}			

	}
}
示例#9
0
int main(void)
{
  // setup SYSCLK
  SYSCLK_Configuration();
  
  // setup RCC
  RCC_Configuration();
  
  // Remap JTRST so PB4 (red LED) can be used as 
  GPIO_PinRemapConfig(GPIO_Remap_SWJ_NoJTRST , ENABLE);
  
  // setup system tick timer
  // SysTick_Configuration();
  // set SysTick priority
  NVIC_SetPriority (SysTick_IRQn, NVIC_IPR0_PRI_1);
  //NVIC->ISER[0] |= (1 << SysTick_IRQn); // enable SysTick int in NVIC

  // Configure PB5 (green LED) and PB4 (red LED)
  GPIO_InitTypeDef GPIO_InitStructure;
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_4;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
  GPIO_Init(GPIOB, &GPIO_InitStructure);
  
  // Configure Timer3 & 4 to be used as push pull alternative function on pins 0 1 8 9
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_8 | GPIO_Pin_9;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  GPIO_Init(GPIOB, &GPIO_InitStructure);
  GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE);
  
  // Setup timers
  TIM1_Configuration();
  TIM2_Configuration();
  TIM3_Configuration();
  TIM4_Configuration();
  
  // FreeRTOS initialization
  FreeRTOS_Configuration();
  
  // start scheduler
  vTaskStartScheduler();
  
  return 0;
}
示例#10
0
文件: main.c 项目: emmamuelo/IPM
/**  
  * @brief  Main program  
  * @param   None.  
  * @retval : None.  
  */   
int main(void)   
{   
    /* System clocks configuration */   
    RCC_Configuration();   
    /* NVIC configuration*/   
    NVIC_Configuration();   
    /* GPIO configuration ----------------------------------------------------*/   
    GPIO_Configuration();   
#ifdef master   
    /* Master configuration --------------------------------------------------*/   
    Master_Configuration();   
#endif   
#if defined(slave1) || defined(slave2)   
    /* Slave configuration ---------------------------------------------------*/   
    Slave_Configuration();   
   
    /* ADC1 configuration ----------------------------------------------------*/   
    ADC1_Configuration();   
   
    /* ADC DMA Channel1 configuration */   
    DMA_Channel1_Configuration();   
#endif   
   
#ifdef  DMA_Master_Receive   
    DMA_Channel7_Configuration();   
#endif   
   
#ifdef  DMA_Slave_Transmit   
    DMA_Channel4_Configuration();   
#endif   
   
#ifdef  master   
    /* TIM2 configuration ----------------------------------------------------*/   
    TIM2_Configuration();   
#endif   
   
    while (1)   
    {   
#if defined(slave1) || defined(slave2)   
        I2C_Slave_BufferWrite(Slave_Buffer_Tx,  255);   
#endif   
    }   
   
}   
示例#11
0
//================================================================================================
// System Pheriperal Initialize
//================================================================================================
void SysConfiguration(void)
{

	RCC_Configuration();
	GPIO_Configuration();
	USART_Configuration();
	NVIC_Configuration();
//	ExtI_Configuration();
	TIM2_Configuration();
	TIM3_Configuration();

	RCC_ClocksTypeDef clocks;
//	trace_printf("trace_printf Message\r\n");
	RCC_GetClocksFreq(&clocks);

	if(SysTick_Config(SystemCoreClock/1000) != 0){	// Sys Tick을 1ms로 설정
		dp("Sys Tick Configuration Fail\r\n");
	}

}
示例#12
0
int main(void)
{
	//设置NVIC中断分组2位抢占优先级,2位响应优先级
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2) ;

	Ticker_Configuration();

	LED_Configuration();

	USART2_Configuration();

	delay_init();

	//Do_Loop_LED_Test();
	//Do_Loop_Motor_Test();
	//DISABLE_FOLLOWING_CODE(1);

	//主控通信控制器初始化
	Maincontrol_Configuration();

	Encoder_Configuration();
	Encoder_Start();

	//速度采样控制器初始化
	TIM2_Configuration(5);
	TIM2_Start();

	//电流检测
	ADC_Configuration();

	//电机初始化
	Motor_Init();

	while (1)
	{
		delay_ms(200);

		LED_RED_TOGGLE();
		LED_GREEN_TOGGLE();
	}
}
int main(void)
{
    uint16_t i;

    NVIC_Configuration();
    delay_init();	    	//延时函数初始化
    uart_init(9600);	 	//串口初始化为9600
    Dac1_Init();		  	//DAC通道1初始化

    TIM2_NVIC_Configuration();
    TIM2_Configuration(25*360/STEP);
    
    //生成数据
    for(i=0; i<360; i++)
    {
        sine_table1[i] = (uint16_t)((sin((i*PI)/180) + 1)*4095/2);
        sine_table2[i] = (uint16_t)((sin((i*PI)/180 + PHA_DIFF) + 1)*4095/2);
    }
    while(1)
    {
    }
}
示例#14
0
void Hardware_Init(void)
{
  RCC_Configuration();

  SysTick_Configuration();
  NVIC_Configuration();

  GPIO_Configuration();

  //TIM1_Configuration();    
  TIM2_Configuration();
  TIM3_Configuration();
  TIM4_Configuration();

  UART2_Init();

  Unselect_SPI_Device(); //不选中任何一个SPI设备

  SPI1_FLASH_Init();

  

}
示例#15
0
/**
  * @brief  主函数
  * @param  无  
  * @retval 无
  */
int main(void)
{
	/* led 端口配置 */ 
	LED_GPIO_Config();

	/* TIM2 定时配置 */	
  TIM2_Configuration();
	
	/* 实战定时器的中断优先级 */
	TIM2_NVIC_Configuration();

	/* TIM2 重新开时钟,开始计时 */
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2 , ENABLE);
	
  while(1)
  {
    if ( time == 1000 ) /* 1000 * 1 ms = 1s 时间到 */
    {
      time = 0;
			/* LED1 取反 */      
			LED1_TOGGLE; 
    }        
  }
}
示例#16
0
文件: bsp_init.c 项目: zhiyix/jlydemo
/**
  * @brief  Description 外设初始化
  * @param  None
  * @retval None
  */
void PeripheralInit(void)
{
	RCC_Config();
	
	SysTick_Init();
	
    TIM2_Configuration();
    
	LED_GPIO_Config();
	KEY_GPIO_Config();
	EXTI15_10_Config();
	
	General_GPIO_Config();
	
	LCD_GLASS_Init();
	
	USART1_Config(115200);
    
//	Delay_ms(10);   //开启滴答定时
	LCD_GLASS_Clear();
	
	AVCC1_POWER(OFF);    //关ADC1电源
    BATTEST_POWER(OFF);  //关电池电压检测电源
	MODEL_PWRCTRL(ON);	//开对外接口电源
	ADC1_Init();
    
    /* 8M串行flash W25Q64初始化 */
	SPI_FLASH_Init();
	
	I2C_GPIO_Config();
    
    //rtc  初始化
    rtc_init();
    
    
}
示例#17
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void) {
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */
  
  /* System Clocks Configuration */
  RCC_Configuration();
  
  /* System Tick Configuration at 1us */
  SysTick_Config(SystemCoreClock / 1000000);
  
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
  
  /* TIM2 Configuration (Client & ATFC Server) */
  TIM2_Configuration();
  
#elif defined USE_EQDAS_SERVER
  
  /* TIM4 Configuration */
  TIM4_Configuration();
  
#endif
  
  /* TIM5 Configuration (GLCD & Ethernet) */
  TIM5_Configuration();
  
  /* TIM6 Configuration (RTC load) */
  //TIM6_Configuration();
  
  /* CLCD Configuration */
  CLCD_Configuration();
  
  /* GLCD Configuration */
  GLCD_Configuration();
  
  /* UART1 Configuration */
  UART_Configuration();
  
  /* RTC configuration by setting the time by Serial USART1 */
  RTC_SetTimeBySerial();
  
  /* Let user set the IP through terminal forcefully */
  //ForceIPSetBySerial();

  /* WIZ820io SPI1 configuration */
  WIZ820io_SPI1_Configuration();
  
  /* W5200 Configuration */
  Set_network();
  
  /* Print WIZ820io configuration */
  printSysCfg();
  
  /* EXTI Configuration */
  EXTI_Configuration();
  
  /* FatFS configuration */
  f_mount(0, &fs);  // mSD
  //f_mount(1, &fs);  // NAND
  
  /* Display Total size of SD card in MB scale */
  SD_TotalSize();
  
  /* Scan all files in mSD card */
  //scan_files(path);
  
  /* MAL configuration */
  //Set_System();
  
  /* UMS configuration */
  //Set_USBClock();
  //USB_Interrupts_Config();
  //USB_Init();
  
  /* loop upon completion of USB Enumeration */
  //while (bDeviceState != CONFIGURED);
  
  /* ATFC Algorithm GPIO */
  ATFC_GPIO_Configuration();
  
  /* ATFC Parameter Initialization */
  ATFCAlgorithmParameterSetup();
  
  /* GPS-UART3 Configuration - This have to be here otherwise it wouldn't work */
  GPS_Configuration();
  
  // For TCP client's connection request delay
  presentTime = my_time;

  /* Create directory and sub directory in accordance with current date */
  filePath = CreateDirectoryAccordingly(GetYearAndMergeToInt(), GetMonthAndMergeToInt(), 
                                        GetDayAndMergeToInt(), RTC_GetCounter() / 3600);
  
  /* Create file in append mode in accordance with current minute */
  CreateFileAppendModeAccordingly(filePath, (RTC_GetCounter() % 3600) / 60);
  
  /* Clear GLCD to better represent waveform */
  GLCD_Clear();
  
  //BKP_WriteBackupRegister(BKP_DR8, 0);
  
  // When everything is set, print message
  printf("\r\n\n - System is ready - ");
  
  while (1) {
    
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
    
    /* Index synchronization routine -----------------------------------------------*/
    if(SyncFlag) { // prevent unpleasant impuse from happening
      // Index synchronization dedicated to GLCD & Ethernet
      if(arrIdx != index) {
        // Index synchronization
        arrIdx = index;
      }
    }
    /* End of index synchronization routine -----------------------------------------*/
    
    if(TimerCount > 999) { // 0 ~ 999 (1000) = 1 sec
      TimerCount = 0;
      
      //my_time++;  // uncomment when tcp connection is needed
      
      /* Setup TCP Client or Server -------------------------------------------------*/
      /* Please open config.h file to choose a proper board you wish to use ---------*/    
      /* Start TCP Client process */
      ProcessTcpClient(SOCK_ZERO);  // TCP Client
      
      /* Parameter setting Server side with port 5050 in default */
      ATFCTcpServer(SOCK_TWO, EQDAS_Conf_PORT);  // SOCK_TWO because of flag conformity
      /*------------------------------------------------------------------------------*/
      
      /* Process Parameter Text Stream -----------------------------------------------*/
      if(PCFlag) {  // EQDAS Client System and ATFC Algorithm Setting
        PCFlag = false;
        
        ProcessParameterStream();
      }
      /* End of Parameter process ----------------------------------------------------*/
    }

    /* 10ms interval between points */
    if(TIM5Count >= 9) {
      TIM5Count = 0;
      
      // Make a copy from raw collected data to temporary array
      CopyToTmpArray(arrIdx);
      
      // Determine KMA scale
      KMAGrade = DetermineKMA(arrIdx);
      
      // Check sign bit and apply to int container
      CheckSignAndToInt(arrIdx); // this function also cuts surplus 1G
      
      /* Switch menu & waveform display through graphic lcd */
      GLCD_AxisViewWithWaveform(mode, arrIdx);
      
      //int mATFCBit;
      //mATFCBit_lcd = mAxisBuf.ATFCBit_lcd[arrIdx];
      
      int AxisDataToATFCAlgorithm, mATFCEventDetection;
      AxisDataToATFCAlgorithm = mAxisBuf.tmp_data_y_lcd[arrIdx];  // Axis Z
      ATFCAlgorithm(AxisDataToATFCAlgorithm);
      mATFCEventDetection = EventDetection;
      
      /* Display KMA Intensity on Graphic LCD */
      GLCD_DisplayKMAIntensity(KMAGrade, mATFCEventDetection);
      
      /* Prevent access to volatile variable warning */
      /* This have to be here in order to correct data to be used in ATFC */      
      /* ATFC Server side for each EQ DAS Client */
      if(EQATFCFlag) {
        int mYear, mMonth, mDay, mHour, mMin, mSec, mTMSec;
        mYear = year; mMonth = month; mDay = day;
        mHour = hour; mMin = minute; mSec = second; mTMSec = arrIdx;
        
        int mX, mY, mZ, mATFCBit;
        mX = mAxisBuf.tmp_data_x_lcd[arrIdx] >> 2;
        mY = mAxisBuf.tmp_data_y_lcd[arrIdx] >> 2;
        mZ = mAxisBuf.tmp_data_z_lcd[arrIdx] >> 2;
        mATFCBit = mATFCEventDetection;
        
        char ATFC_Buf[40];
        sprintf(ATFC_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d_%d\r\n",
                mYear, mMonth, mDay, mHour, mMin, mSec, mTMSec,
                mX, mY, mZ, mATFCBit);
        // Only when socket is established, allow send data
        if(getSn_SR(SOCK_TWO) == SOCK_ESTABLISHED) {  // SOCK_TWO : PC
          /* send selected data */
          send(SOCK_TWO, (uint8_t*)ATFC_Buf, strlen(ATFC_Buf), (bool)false);
        }
      }
      // Copy to data buffer to be written through FATFS
      //CopyToFatFsDataBuffer(arrIdx);
    }
    
    /* RTC 1Hz interrupt */
    if(RTCTimeDisplay) { // 1Hz calibrated by RTC
      RTCTimeDisplay = false;
      
      int TimeVar;
      TimeVar = RTC_GetCounter();
      /* Compute hour */
      THH = TimeVar / 3600;
      /* Compute minute */
      TMM = (TimeVar % 3600) / 60;
      /* Compute second */
      TSS = (TimeVar % 3600) % 60;
      
      /* Refresh date on every 1s */
      year = GetYearAndMergeToInt();
      month = GetMonthAndMergeToInt();
      day = GetDayAndMergeToInt();
      hour = THH; minute = TMM; second = TSS; tmsecond = 0;
      
      if(ThirtyMinuteMark == 1799) {
        ThirtyMinuteMark = 0;
        ThirtyMinuteFlag = true;
      } else {
        ThirtyMinuteMark++; 
      }
      
      /* Adjust realtime clock deviation */
      if(hour > 23) {
        int i, currentDay, mDay, mHour, mMin, mSec;
        mDay = hour / 24;
        
        for(i=0; i<mDay; i++) {
          IncreaseSingleDay();
          if(i == mDay - 1) {
            currentDay = (GetMonthAndMergeToInt() * 100) + GetDayAndMergeToInt();
            BKP_WriteBackupRegister(BKP_DR3, currentDay); // Save Month and Date
          }
        }
        mHour = THH % 24;
        mMin = TMM;
        mSec = TSS;
        
        /* Change the current time */
        RTC_SetCounter(mHour*3600 + mMin*60 + mSec);
      }
    }
    
#endif
    
    if(ParseGPS) {
      ParseGPS = false;
      
      char *srcstr = "$GPRMC";
      char *token = ",";  char *processedString;
      char StringYear[3], StringMonth[3], StringDay[3], StringHour[3], StringMinute[3], StringSecond[3];
      int GPSYear, GPSMonth, GPSDay, GPSHour, GPSMinute, GPSSecond;
      if(strncmp((char const*)GPS_Buffer, srcstr, 6) == 0) {
        //printf("GPS_Buffer = %s\r\n\r\n", (char*)GPS_Buffer);
        processedString = strtok((char*)GPS_Buffer, token);
        processedString = strtok(NULL, token);
        
        strncpy(StringHour, processedString, 2); StringHour[2] = 0;
        strncpy(StringMinute, processedString+2, 2); StringMinute[2] = 0;
        strncpy(StringSecond, processedString+4, 2); StringSecond[2] = 0;
        
        GPSHour = atoi(StringHour) + 9; // Current Hour = StringHour + 9
        GPSMinute = atoi(StringMinute);
        GPSSecond = atoi(StringSecond);
        
        int i; for(i=4; i!=0 ; i--) processedString = strtok(NULL, token);
        
        strncpy(StringYear, processedString+4, 2); StringYear[2] = 0;
        strncpy(StringMonth, processedString+2, 2); StringMonth[2] = 0;
        strncpy(StringDay, processedString, 2); StringDay[2] = 0;
        
        GPSYear = atoi(StringYear) + 2000;  // Currnet Year = StringYear + 2000
        GPSMonth = atoi(StringMonth);
        GPSDay = atoi(StringDay);
        
        /* The Year is chosen as criteria to the time */
        if( (GPSYear == GetYearAndMergeToInt()) && ThirtyMinuteFlag ) { // only when year matches between RTC and GPS
          ThirtyMinuteFlag = false;
          
          if(GPSMonth != GetMonthAndMergeToInt() || GPSDay != GetDayAndMergeToInt() ||
             GPSHour != THH || GPSMinute != TMM || GPSSecond != TSS) {
            /* Change the month and day */
            TranslateIntoMonth(GPSMonth);
            TranslateIntoDay(GPSDay);
            
            /* Save year data to unresettable backup register addr. no. 3 */
            int MMDD; MMDD = (GPSMonth * 100) + GPSDay;
            BKP_WriteBackupRegister(BKP_DR3, MMDD); // Save Month and Date  
            
            /* Change the current time */
            RTC_SetCounter(GPSHour*3600 + GPSMinute*60 + GPSSecond);
            
            printf("GPSHour = %d\r\n", GPSHour);
            printf("GPSMinute = %d\r\n", GPSMinute);
            printf("GPSSecond = %d\r\n\r\n", GPSSecond);
            
            printf("GPSYear = %d\r\n", GPSYear);
            printf("GPSMonth = %d\r\n", GPSMonth);
            printf("GPSDay = %d\r\n\r\n", GPSDay);
            
            printf("GPS-to-System synchronization complete!\r\n\r\n");
          }
        }
      }
    }
    
    if(ParseUSART1) {
      ParseUSART1 = false;
      
      // run some test on SDIO
      //SDIO_TEST();

#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
      
      /* Print WIZ820io configuration */
      printSysCfg();

      printf("\r\n");
      printf("BKP_DR1 = %d\r\n", BKP_ReadBackupRegister(BKP_DR1));
      printf("BKP_DR2 = %d\r\n", BKP_ReadBackupRegister(BKP_DR2));
      printf("BKP_DR3 = %d\r\n", BKP_ReadBackupRegister(BKP_DR3));
      printf("BKP_DR4 = %d\r\n", BKP_ReadBackupRegister(BKP_DR4));
      printf("BKP_DR5 = %d\r\n", BKP_ReadBackupRegister(BKP_DR5));
      printf("BKP_DR6 = %d\r\n", BKP_ReadBackupRegister(BKP_DR6));
      printf("BKP_DR7 = %d\r\n", BKP_ReadBackupRegister(BKP_DR7));
      printf("BKP_DR8 = %d\r\n", BKP_ReadBackupRegister(BKP_DR8));
      printf("BKP_DR9 = %d\r\n", BKP_ReadBackupRegister(BKP_DR9));
      printf("BKP_DR10 = %d\r\n", BKP_ReadBackupRegister(BKP_DR10));
      printf("BKP_DR11 = %d\r\n", BKP_ReadBackupRegister(BKP_DR11));
      printf("BKP_DR12 = %d\r\n", BKP_ReadBackupRegister(BKP_DR12));
      printf("BKP_DR13 = %d\r\n", BKP_ReadBackupRegister(BKP_DR13));
      printf("BKP_DR14 = %d\r\n", BKP_ReadBackupRegister(BKP_DR14));
      printf("BKP_DR15 = %d\r\n", BKP_ReadBackupRegister(BKP_DR15));
      printf("BKP_DR16 = %d\r\n\r\n", BKP_ReadBackupRegister(BKP_DR16));
      
      printf("RX_BUF = %s\r\n", RX_BUF);
      
      /*
      printf("\r\nstrlen(HEADER) : %d %s", strlen(HEADER), HEADER);
      
      printf("\r\nf_mkdir1 : ");
      char *dirPath = "0:/20130517";
      res = f_mkdir(dirPath);
      FPrintFatResult(res);
      
      printf("\r\nf_mkdir2 : ");
      dirPath = "0:/20130517/22H-23H";
      res = f_mkdir(dirPath);
      FPrintFatResult(res);
      
      char *filePath = "0:/20130517/2-23H/test.txt";
      // Create log file on the drive 0
      res = open_append(&fsrc, filePath);
      FPrintFatResult(res);
      
      if(res == FR_OK) {
        printf("test.txt successfully created\r\n");
        
        // Write buffer to file
        int bytesWritten;
        bytesWritten = f_printf(&fsrc, HEADER);
        printf("\r\n%d of bytesWritten", bytesWritten);
        
        // Close file
        f_close(&fsrc);
        
      } else if ( res == FR_EXIST ) {
        printf("\r\ntest.txt already exist");
      }
      */
      
      
#elif (defined) USE_EQDAS_SERVER
      
      char buffer[40];
      sprintf(buffer, "%s_%s_%s_%s_%s\r\n",
                DAQBoardOne[arrIdx].Date,
                DAQBoardOne[arrIdx].Time,
                DAQBoardOne[arrIdx].AxisX,
                DAQBoardOne[arrIdx].AxisY,
                DAQBoardOne[arrIdx].AxisZ);
      printf("\r\nRX_BUF : %s, strlen(RX_BUF) : %d", (char*)RX_BUF, strlen((char*)RX_BUF));
      printf("\r\nstrlen(buffer) = %d\n%s", strlen(buffer), buffer);
      
#endif
    
    }
    
// following routine is only necessary when the board works as server
#if defined USE_EQDAS_SERVER
    
    /* Server also needs to have get CLCD going while running */
    /* RTC 1Hz interrupt */
    if(RTCTimeDisplay) { // 1Hz calibrated by RTC
      RTCTimeDisplay = false;
      
      /* Adjust realtime clock deviation */
      if(hour > 23) {
        int i, currentDay, mDay, mHour, mMin, mSec;
        mDay = hour / 24;
        
        for(i=0; i<mDay; i++) {
          IncreaseSingleDay();
          if(i == mDay - 1) {
            currentDay = (GetMonthAndMergeToInt() * 100) + GetDayAndMergeToInt();
            BKP_WriteBackupRegister(BKP_DR3, currentDay); // Save Month and Date
          }
        }
        
        mHour = THH % 24;
        mMin = TMM;
        mSec = TSS;
        
        /* Change the current time */
        RTC_SetCounter(mHour*3600 + mMin*60 + mSec);
      }
      
      /* Display current time */
      Time_Display(RTC_GetCounter());
    }
    
    /* EQ-DAQ-01 Parsing routine ------------------------------------------------- */
    /* Set E1Flag indicate that we have valid connection from EQ-DAQ-01(port 5050) */
    if(E1Flag) {
      E1Flag = false; // clear flag since this routine excutes ceaselessly over time
      
      ProcessTextStream(EQ_ONE, (char*)RX_BUF, E1Order);
      
      /* PC Client Parsing routine ------------------------------------------------- */
      /* Set PCFlag indicate that we have valid connection from PC Client(port 7070) */
      if(PCFlag && !E2Flag) { // only when PC is connected and EQ-DAQ-02 is not connected
        // Send directly to PC
        SingleBoardDataToSendToPC(EQ_ONE, E1Order-10);
      }
      
      if(E1Order < 99) E1Order++;
      else E1Order = 0;
    }
    
    /* EQ-DAQ-02 Parsing routine ------------------------------------------------- */
    /* Set E2Flag indicate that we have valid connection from EQ-DAQ-02(port 6060) */
    if(E2Flag) {
      E2Flag = false;
      
      ProcessTextStream(EQ_TWO, (char*)RX_BUF, E2Order);
      
      /* PC Client Parsing routine ------------------------------------------------- */
      /* Set PCFlag indicate that we have valid connection from PC Client(port 7070) */
      if(PCFlag && !E1Flag) { // only when PC is connected and EQ-DAQ-01 is not connected
        // Send directly to PC
        //SendToPC(EQ_TWO, E2Order);
      }
      
      if(E2Order < 99) E2Order++;
      else E2Order = 0;
      
      /* PC Client Parsing routine ------------------------------------------------- */
      /* Set PCFlag indicate that we have valid connection from PC Client(port 7070) */
      if(PCFlag) {
        // Send directly to PC
        MultipleBoardDataToSendToPC(EQ_BOTH, E1Order-10, E2Order-10);
      }
    }
    
    /* Process server socket with each port */
    ProcessTcpServer(SOCK_ZERO, 5050);  // designated as for EQM-DAQ-01 with port 5050
    ProcessTcpServer(SOCK_ONE, 6060);   // designated as for EQM-DAQ-02 with port 6060
    ProcessTcpServer(SOCK_TWO, 7070);   // designated as for PC-CLIENT  with port 7070
    ProcessTcpServer(SOCK_THREE, 8080); // designated as for PC_DUMP    with port 8080
    
    /*
    ProcessTcpServer(SOCK_FOUR, 9090);   // designated as for TOBEUSED with port 9090
    ProcessTcpServer(SOCK_FIVE, 10010);   // designated as for TOBEUSED with port 10010
    ProcessTcpServer(SOCK_SIX, 10020);    // designated as for TOBEUSED with port 10020
    ProcessTcpServer(SOCK_SEVEN, 10030);  // designated as for TOBEUSED with port 10030
    */
      
#endif
      
  }
示例#18
0
/**
* @brief   Main program
* @param  None
* @retval None
*/
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
  this is done through SystemInit() function which is called from startup
  file (startup_stm32f10x_xx.s) before to branch to application main.
  To reconfigure the default setting of SystemInit() function, refer to
  system_stm32f10x.c file
  */  
  uint32_t delay;
  uint8_t sendFlag_Ai = 0;
  SOE_Struct soe;
  
  uint32_t start = 0;
  
  
  /* System clocks configuration ---------------------------------------------*/
  SystemInit();
  
  RCC_ClocksTypeDef clock;
  RCC_GetClocksFreq(&clock);
  
  RCC_Configuration();
  
  GPIO_Configuration();
  
  ADC_Configuration();
  
  COM3_Configuration(9600);
  
  DMA_Configuration();
  
  TIM_UART_Config();  //uart3-rx
  
  FREQ_MEA_Init();  //freq采样
  
  TIM2_Configuration(); //adc采样
  
  SysTick_Configuration();  //DI采样
  
  RTC_Init();
  
  NVIC_Configuration();
  
  DataBase_Init();
  //memset(DiStatus_DI, 0, sizeof(DiStatus_Type)*DI_NUM); //初始化DI内存列表
  GetComAddr();
  
  SetCurrent.ChannelCoef[0] =1050;//1#:1029;2#:1028
  SetCurrent.ChannelCoef[1] =1029;//1#:1029;2#:1027
  SetCurrent.ChannelCoef[2] =1050;//1#:1030;2#:1028
  SetCurrent.ChannelCoef[3] =1028;//1#:1033;2#:1028
  SetCurrent.ChannelCoef[4] =1029;//1#:1033;2#:1029
  SetCurrent.ChannelCoef[5] =1028;//1#:1033;2#:1028
  SetCurrent.ChannelCoef[6] =1025;//1#:1029;2#:1028
  SetCurrent.ChannelCoef[7] =1026;//1#:1029;2#:1027
  SetCurrent.ChannelCoef[8] =1027;//1#:1030;2#:1028
  

#ifdef WATCHDOG
  IWDG_Configuration();
#endif
  
  DMA_Cmd(DMA1_Channel3, ENABLE); // Emable TIM3, 使能串口接收通道 
  TIM_Cmd(TIM3, ENABLE);  //UART3接收,使能
  
  while (1)
  {
    Di_PostWork();
    
    if(63==PeriodCycle_Index)
    {
      TOTAL_MEASURE(&meas);
      
      SequenceFilter_2(&meas);
      SequenceFilter_0(&meas);
      
      ValueScaling(MeaTab,&meas);
      
      //tyh:20150629 添加遥测数据上送
      if(Begin_AI_Send)
      {
        if(Is_new_soe())
        {
          get_soe(&soe, 1);
          SoeResponse(soe);
        }
        else
        {
          if((sendFlag_Ai%3)==0)
            AiResponse(0);
          else
          {
            if((sendFlag_Ai%5)==0)    //tyh:20150803 增加遥信数据上送
              DiResponse(0);
          }
          
          sendFlag_Ai++;
        }
      }
    }
    
    if(Flag_Uart_Recv) 
      BusCalling_Process(Flag_Uart_Recv);     //处理数据    
    
#ifdef WATCHDOG
    WDGFeeding();
#endif
  }
}
int main(void)
{
	while (1);
	/* Configuration */
  SystemInit();
	LED_Configuration();
	BUZZ_Configuration();
	//ADC_Configuration();
	CAN_Configuration();
/****************************µ×Å̳õʼ»¯******************************/
	Elmo_Init(elmo, 3);
//	PositionPID_Init();
	PositionIPD_Init();
	MoveLock();
	Delay_ms(100);
	BLUETOOTH_Configuration();
	Delay_ms(100);
	Encoder_Clear();
	Delay_ms(1000);
  MPU6500_init();
	TIM1_Configuration();
	TIM2_Configuration();
	TIM3_Configuration();
	TIM4_Configuration();

	if (SysTick_Config(SystemCoreClock / 1000))    /* Setup SysTick Timer for 1 msec interrupts  */
	{
		while(1){LED_ON(LED2);}/* Capture error */
	}
//	IpdAxisX.setpoint = 200;
//	IpdAngle.setpoint = 90;
//	PidAxisX.setpoint = 200;
//	CMDVelocity.X = 10; 
//	CMDVelocity.Y = 0;
//	CMDVelocity.A = 0;//Degree/Second
//  Elmo_Write(&elmo[0],0x01,0x01,50);	
  while (1)
  {	
		if(MPU_FLAG == 1)
		{
			MPU_FLAG = 0;
		}
		if(MAPAN_FLAG == 1)
		{
			MAPAN_FLAG = 0;
//			LED_TOGGLE(LED1);	
			MapanTask();//ÂëÅÌ	
	  }
		if(PID_PFLAG ==1)
		{
			PID_PFLAG = 0;
//			PositionPIDCal();
			PositionIPDCal();
			VelocityTransform();				
//			LED_TOGGLE(LED2);
		}
		if (LED_FLAG == 1)
		{
			LED_FLAG = 0;	
//			SquareTracking();
//			CircleTracking();
//			GoBack();
//			LED_TOGGLE(LED3);
//			SignalTracking();
//			angle_print();
//			PositionVelocity_print();
		}
  }
}
示例#20
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void) {
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */
  
  /* System Clocks Configuration */
  RCC_Configuration();
  
  /* System Tick Configuration at 1us */
  SysTick_Config(SystemCoreClock / 1000000);
  
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
  
  /* TIM2 Configuration */
  TIM2_Configuration();
  
  /* TIM3 Configuration */
  TIM3_Configuration();
  
  /* TIM6 Configuration (RTC load) */
  TIM6_Configuration();
  
#elif defined USE_EQDAS_SERVER
  
  /* TIM4 Configuration */
  TIM4_Configuration();
  
#endif
  
  /* UART1 Configuration */
  UART_Configuration();

  /* WIZ820io SPI1 configuration */
  WIZ820io_SPI1_Configuration();
  
  /* W5200 Configuration */
  Set_network();
  
  /* EXTI Configuration */
  EXTI_Configuration();
  
  /* CLCD Configuration */
  CLCD_Configuration();
  
  /* GLCD Configuration */
  GLCD_Configuration();
  
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
  
  /* RTC configuration by setting the time by Serial USART1 */
  RTC_SetTimeBySerial();
  
#endif
  
  /* FatFS configuration */
  f_mount(0, &fs);  // mSD
  //f_mount(1, &fs);  // NAND
  
  /* Display Total size of SD card in MB scale */
  SD_TotalSize();
  
  /* Scan all files in mSD card */
  scan_files(path);
  
  /* MAL configuration */
  //Set_System();
  
  /* UMS configuration */
  //Set_USBClock();
  //USB_Interrupts_Config();
  //USB_Init();
  
  /* loop upon completion of USB Enumeration */
  //while (bDeviceState != CONFIGURED);
  
  // For TCP client's connection request delay
  presentTime = my_time;
  
  /* Clear CLCD before branch into main */
  CLCD_Clear();
  
  /* Alarm in 3 second */
  //RTC_SetAlarm(RTC_GetCounter() + 3);
  /* Wait until last write operation on RTC registers has finished */
  //RTC_WaitForLastTask();
  
  // When everything is set, print message
  printf("\r\n\n - System is ready - ");
  
  while (1) {
    
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
    
    if(TimerCount >= 999) { // 0 ~ 999 (1000) = 1 sec
      TimerCount = 0;
      
      /*
      int x, y, z;
      x = mAxisBuf.tmp_data_x_lcd[index];
      y = mAxisBuf.tmp_data_y_lcd[index];
      z = mAxisBuf.tmp_data_z_lcd[index];
    
      char Serial_Buf[37];
      int hour, minute, second, tmsecond;
      hour = THH; minute = TMM; second = TSS; tmsecond = 0;
      sprintf(Serial_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d\r\n", 
                year, month, day, hour, minute, second, tmsecond, x, y, z);
      printf(Serial_Buf);
      */
      
      //my_time++;  // uncomment when tcp connection is needed

    }
    
    /* Clock generated by TIM3 */
    if(ClientTimerCounter >= 99) {  // 0 ~ 999 (1000) = 1 sec
      ClientTimerCounter = 0;
      
      arrIdx = index;
      
      year = GetYearAndMergeToInt();
      month = GetMonthAndMergeToInt();
      day = GetDayAndMergeToInt();
      hour = THH; minute = TMM; second = TSS; tmsecond = 0;
      
      /* EQDAQ01, 02 Client Routine ---------------------------------------------*/
      /* E1Flag or E2Flag set when client board successfully connect to server --*/
      /* Refer to wiz820.c line no. 300 for which flag to be set */
      if(E1Flag) {
        int x, y, z;
        x = mAxisBuf.tmp_data_x_lcd[arrIdx];
        y = mAxisBuf.tmp_data_y_lcd[arrIdx];
        z = mAxisBuf.tmp_data_z_lcd[arrIdx];
      
        char E1_Buf[20];        
        sprintf(E1_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d\r\n", 
                year, month, day, hour, minute, second, tmsecond, x, y, z);
        // Only when socket is established, allow send data
        if(getSn_SR(SOCK_ZERO) == SOCK_ESTABLISHED) {
          /* send selected data */
          CountSendByte = send(SOCK_ZERO, (uint8_t*)E1_Buf, strlen(E1_Buf), (bool)false);
        }
      }
      
      if(E2Flag) {
        int x, y, z;
        x = mAxisBuf.tmp_data_x_lcd[arrIdx];
        y = mAxisBuf.tmp_data_y_lcd[arrIdx];
        z = mAxisBuf.tmp_data_z_lcd[arrIdx];
        
        char E2_Buf[20];
        sprintf(E2_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d\r\n", 
                year, month, day, hour, minute, second, tmsecond, x, y, z);
        // Only when socket is established, allow send data
        if(getSn_SR(SOCK_ZERO) == SOCK_ESTABLISHED) {
          /* send selected data */
          send(SOCK_ZERO, (uint8_t*)E2_Buf, strlen(E2_Buf), (bool)false);
        }
      }
    }
    
    /* do RTC work on every 0.5 sec */
    if(RTCTIM6Count >= 499) {
      RTCTIM6Count = 0;
      
      /* RTC 1Hz interrupt */
      if(RTCTimeDisplay) { // 1Hz calibrated by RTC
        RTCTimeDisplay = false; 
        
        /* Display current time */
        Time_Display(RTC_GetCounter());
      }
      
      /* RTC Alarm interrupt */
      if(RTCAlarmFlag) {
        RTCAlarmFlag = false;
        
        printf("\r\nRTC Alarm Actviated!");
      } 
    }
    
#endif
    
    if(ParseUSART1) {
      ParseUSART1 = false;
      
      // print system configuration
      //printSysCfg();
      
      // run some test on SDIO
      //SDIO_TEST();

#if (defined USE_EQDAS01) || (defined USE_EQDAS02)

      
      
#elif (defined) USE_EQDAS_SERVER
      
      char buffer[37];
      sprintf(buffer, "%s_%s_%s_%s_%s\r\n",
                DAQBoardOne[arrIdx].Date,
                DAQBoardOne[arrIdx].Time,
                DAQBoardOne[arrIdx].AxisX,
                DAQBoardOne[arrIdx].AxisY,
                DAQBoardOne[arrIdx].AxisZ);
      printf("\r\nRX_BUF : %s, strlen(RX_BUF) : %d", (char*)RX_BUF, strlen((char*)RX_BUF));
      printf("\r\nstrlen(buffer) = %d\n%s", strlen(buffer), buffer);
      
      /*
      char *original = "-3843,+4095,+2069";
      char target[20];
      strncpy(target, original, strlen(original));
      
      char *one, *two, *three;
      char *AfterToken;
      AfterToken = strtok(target, ",");
      one = AfterToken;
      AfterToken = strtok(NULL, ",");
      two = AfterToken;
      AfterToken = strtok(NULL, ",");
      three = AfterToken;
      AfterToken = strtok(NULL, ",");
      if(AfterToken != NULL) printf("AfterToken is not empty");
      
      printf("\r\none : %s, two : %s, three : %s", one, two, three);*/
      
#endif
    
    }
    
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
    
    for(i=0; i<100; i++) {
      // Make a copy from raw collected data to temporary array
      CopyToTmpArray(i);
        
      // Copy to Temporary GAL array
      CopyToTmpGalArray(i);
      
      // Calculate GAL and copy to single temporary GAL value
      CalculateGalAndCopyToGal(i);
      
      // Determine KMA scale
      DetermineKMA(i);
      
      // Check sign bit and apply to int container
      CheckSignAndToInt(i); // this function also cuts surplus 1G
      
      // Copy to data buffer to be written through FATFS
      //CopyToFatFsDataBuffer(arrIdx);
    }
    
    /* Save log to file process */
    if(GoAppendDataFlag) {  // every 500 sample (equals 5 sec), go save file.
      GoAppendDataFlag = false;
      
      int bytesWritten = 0;
      
      /* Open or create a log file and ready to append */
      //char *filePath = "/20130517/22H-23H/test.txt";
      //res = open_append(&fsrc, filePath);
      //FPrintFatResult(res);
      
      if(FiveSecFlag) {
        // it means that DATA1_BUF is full and ready to flush out
        // be sure to empty out DATA1_BUF or will overflow and cause system to halt.
        
        /* Append 5 second of data */
        bytesWritten = f_printf(&fsrc, DATA1_BUF);
    
        /* Close the file */
        f_close(&fsrc);
        
        printf("\r\n%d of bytesWritten", bytesWritten);
        
        // Reset DATA1_BUF
        memset(DATA1_BUF, 0, sizeof(DATA1_BUF));
        
      } else {
        // here means that DATA2_BUF is full and ready to flush out
        // be sure to empty out DATA2_BUF or will overflow and cause system to halt.
        
        /* Append 5 second of data */
        bytesWritten = f_printf(&fsrc, DATA2_BUF);

        /* Close the file */
        f_close(&fsrc);
        
        printf("\r\n%d of bytesWritten", bytesWritten);
        
        // Reset DATA2_BUF
        memset(DATA2_BUF, 0, sizeof(DATA2_BUF));
      }
    }
    
// following routine is only necessary when the board works as server
#elif defined USE_EQDAS_SERVER
    
    /* EQ-DAQ-01 Parsing routine ------------------------------------------------- */
    /* Set E1Flag indicate that we have valid connection from EQ-DAQ-01(port 5050) */
    if(E1Flag) {
      E1Flag = false; // clear flag since this routine excutes ceaselessly over time
      
      ProcessTextStream(EQ_ONE, (char*)RX_BUF, E1Order);
      
      /* PC Client Parsing routine ------------------------------------------------- */
      /* Set PCFlag indicate that we have valid connection from PC Client(port 7070) */
      if(PCFlag) {        
        // Send directly to PC
        SendToPC(E1Order);
      }
      
      if(E1Order < 99) E1Order++;
      else E1Order = 0;
    }
    
    /* EQ-DAQ-02 Parsing routine ------------------------------------------------- */
    /* Set E2Flag indicate that we have valid connection from EQ-DAQ-02(port 6060) */
    if(E2Flag) {
      E2Flag = false;
      
      ProcessTextStream(EQ_TWO, (char*)RX_BUF, E2Order);
      
      /* PC Client Parsing routine ------------------------------------------------- */
      /* Set PCFlag indicate that we have valid connection from PC Client(port 7070) */
      if(PCFlag) {        
        // Send directly to PC
        SendToPC(E2Order);
      }
      
      if(E2Order < 99) E2Order++;
      else E2Order = 0;
    }

#endif

/* Setup TCP Client or Server -----------------------------------------------------*/
/* Please open config.h file to choose a proper board you wish to use */    
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)    

      /* Start TCP Client process */
      ProcessTcpClient(SOCK_ZERO);
    
#elif defined USE_EQDAS_SERVER
    
      /* Process server socket with each port */
      ProcessTcpServer(SOCK_ZERO, 5050);  // designated as for EQM-DAQ-01 with port 5050
      ProcessTcpServer(SOCK_ONE, 6060);   // designated as for EQM-DAQ-02 with port 6060
      ProcessTcpServer(SOCK_TWO, 7070);   // designated as for PC-CLIENT  with port 7070
      ProcessTcpServer(SOCK_THREE, 8080); // designated as for PC_DUMP    with port 8080
      
      /*
      ProcessTcpServer(SOCK_FOUR, 9090);   // designated as for TOBEUSED with port 9090
      ProcessTcpServer(SOCK_FIVE, 10010);   // designated as for TOBEUSED with port 10010
      ProcessTcpServer(SOCK_SIX, 10020);    // designated as for TOBEUSED with port 10020
      ProcessTcpServer(SOCK_SEVEN, 10030);  // designated as for TOBEUSED with port 10030
      */
      
#endif
      
  }
}
示例#21
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void) {
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */
  
  /* System Clocks Configuration */
  RCC_Configuration();
  
  /* System Tick Configuration at 1us */
  SysTick_Config(SystemCoreClock / 1000000);
  
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
  
  /* TIM2 Configuration */
  TIM2_Configuration();
  
  /* TIM3 Configuration */
  TIM3_Configuration();
  
  /* TIM6 Configuration (RTC load) */
  TIM6_Configuration();
  
#elif defined USE_EQDAS_SERVER
  
  /* TIM4 Configuration */
  TIM4_Configuration();
  
#endif
  
  /* CLCD Configuration */
  CLCD_Configuration();
  
  /* GLCD Configuration */
  GLCD_Configuration();
  
  /* UART1 Configuration */
  UART_Configuration();
  
  /* RTC configuration by setting the time by Serial USART1 */
  //RTC_SetTimeBySerial();

  /* WIZ820io SPI1 configuration */
  WIZ820io_SPI1_Configuration();
  
  /* W5200 Configuration */
  Set_network();
  
  /* Print WIZ820io configuration */
  printSysCfg();
  
  /* EXTI Configuration */
  EXTI_Configuration();
  
  /* FatFS configuration */
  f_mount(0, &fs);  // mSD
  //f_mount(1, &fs);  // NAND
  
  /* Display Total size of SD card in MB scale */
  SD_TotalSize();
  
  /* Scan all files in mSD card */
  scan_files(path);
  
  /* MAL configuration */
  //Set_System();
  
  /* UMS configuration */
  //Set_USBClock();
  //USB_Interrupts_Config();
  //USB_Init();
  
  /* loop upon completion of USB Enumeration */
  //while (bDeviceState != CONFIGURED);
  
  /* ATFC Algorithm GPIO */
  ATFC_GPIO_Configuration();
  
  /* ATFC Parameter Initialization */
  ATFCAlgorithmParameterSetup();
  
  // For TCP client's connection request delay
  presentTime = my_time;
  
  /* Clear CLCD before branch into main */
  CLCD_Clear();
  
  /* Alarm in 3 second */
  //RTC_SetAlarm(RTC_GetCounter() + 3);
  /* Wait until last write operation on RTC registers has finished */
  //RTC_WaitForLastTask();

  /* Create directory and sub directory in accordance with current date */
  //filePath = CreateDirectoryAccordingly(GetYearAndMergeToInt(), GetMonthAndMergeToInt(), 
                                        //GetDayAndMergeToInt(), RTC_GetCounter() / 3600);
  
  /* Create file in append mode in accordance with current minute */
  //CreateFileAppendModeAccordingly(filePath, (RTC_GetCounter() % 3600) / 60);
  
  // When everything is set, print message
  printf("\r\n\n - System is ready - ");
  
  while (1) {
    
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
    
    if(TimerCount > 1000) { // 0 ~ 999 (1000) = 1 sec
      TimerCount = 0;
      
      /*
      int x, y, z;
      x = mAxisBuf.tmp_data_x_lcd[index];
      y = mAxisBuf.tmp_data_y_lcd[index];
      z = mAxisBuf.tmp_data_z_lcd[index];
    
      char Serial_Buf[37];
      int hour, minute, second, tmsecond;
      hour = THH; minute = TMM; second = TSS; tmsecond = 0;
      sprintf(Serial_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d\r\n", 
                year, month, day, hour, minute, second, tmsecond, x, y, z);
      printf(Serial_Buf);
      */
      
      //my_time++;  // uncomment when tcp connection is needed
      
      /* Process Parameter Text Stream */
      if(PCFlag) {  // EQDAS Client System and ATFC Algorithm Setting
        PCFlag = false;
        
        ProcessParameterStream();
      }
    }
    
    /* Clock generated by TIM3 */
    if(ClientTimerCounter > 10) {  // 0 ~ 999 (1000) = 1 sec
      ClientTimerCounter = 0;
      
      int mAlgorithmContainer;
      
      year = GetYearAndMergeToInt();
      month = GetMonthAndMergeToInt();
      day = GetDayAndMergeToInt();
      hour = THH; minute = TMM; second = TSS; tmsecond = 0;
      
      int mYear, mMonth, mDay, mHour, mMin, mSec, mTMSec;
      mYear = year; mMonth = month; mDay = day;
      mHour = hour; mMin = minute; mSec = second; mTMSec = tmsecond;
      
      x = mAxisBuf.tmp_data_x_lcd[arrIdx];
      y = mAxisBuf.tmp_data_y_lcd[arrIdx];
      z = mAxisBuf.tmp_data_z_lcd[arrIdx];

      if(flag_uart) { // prevent unpleasant impuse
        // Index synchronization
        arrIdx = index; 
        
        // Make a copy from raw collected data to temporary array
        CopyToTmpArray(arrIdx);
          
        // Copy to Temporary GAL array
        CopyToTmpGalArray(arrIdx);
        
        // Calculate GAL and copy to single temporary GAL value
        CalculateGalAndCopyToGal(arrIdx);
        
        // Determine KMA scale
        DetermineKMA(arrIdx);
  
        // Check sign bit and apply to int container
        CheckSignAndToInt(arrIdx); // this function also cuts surplus 1G 
        
        /* Switch menu & waveform display through graphic lcd */
        GLCD_AxisViewWithWaveform(mode, arrIdx, x, y, z);
        
        if(GoATFCFlag) {
          // Apply ATFC Algorithm to Axis x
          ATFCAlgorithm(mAxisBuf.tmp_data_x_lcd[arrIdx]);
        }
      }

      if(EventDetection) {
        GPIO_WriteBit(GPIOE, GPIO_Pin_15, Bit_SET);
        mAlgorithmContainer = x;
      } else {
        GPIO_WriteBit(GPIOE, GPIO_Pin_15, Bit_RESET);
        mAlgorithmContainer = 0; 
      }
      
      // Copy to data buffer to be written through FATFS
      //CopyToFatFsDataBuffer(arrIdx);
      
      /* EQDAQ01, 02 Client Routine ---------------------------------------------*/
      /* E1Flag or E2Flag set when client board successfully connect to server --*/
      /* Refer to wiz820.c line no. 300 for which flag to be set */
      if(E1Flag) {
        char E1_Buf[45];
        sprintf(E1_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d_%+05d\r\n", 
                mYear, mMonth, mDay, mHour, mMin, mSec, mTMSec,
                x, y, z, mAlgorithmContainer);
        // Only when socket is established, allow send data
        if(getSn_SR(SOCK_TWO) == SOCK_ESTABLISHED) {
          /* send selected data */
          CountSendByte = send(SOCK_TWO, (uint8_t*)E1_Buf, strlen(E1_Buf), (bool)false);
        }
      }
      
      if(E2Flag) {
        char E2_Buf[45];
        sprintf(E2_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d\r\n", 
                mYear, mMonth, mDay, mHour, mMin, mSec, mTMSec, x, y, z);
        // Only when socket is established, allow send data
        if(getSn_SR(SOCK_ZERO) == SOCK_ESTABLISHED) {
          /* send selected data */
          send(SOCK_ZERO, (uint8_t*)E2_Buf, strlen(E2_Buf), (bool)false);
        }
      }
    }
    
    /* do RTC work on every second */
    if(RTCTIM6Count > 1000) {
      RTCTIM6Count = 0;
      
      if(InitialThirteenSeconds == 12) {
         InitialThirteenSeconds = 0;
         GoATFCFlag = true;
      } else {
        if(!GoATFCFlag) {
           InitialThirteenSeconds++;
        }
      }
      
      /* RTC 1Hz interrupt */
      if(RTCTimeDisplay) { // 1Hz calibrated by RTC
        RTCTimeDisplay = false; 
        
        /* Display current time */
        Time_Display(RTC_GetCounter());
      }
      
      /* RTC Alarm interrupt */
      if(RTCAlarmFlag) {
        RTCAlarmFlag = false;
        
        printf("\r\nRTC Alarm Actviated!");
      } 
    }
    
    /* Save log to file process ------------------------------------------------*/
    /* Save process needs to be run every single cycle due to delay might occur */
    if(GoAppendDataFlag) {  // every 500 sample (equals 5 sec), go save file.
      GoAppendDataFlag = false;
      
      int bytesWritten = 0;
      
      if(EachSecFlag) {
        // it means that DATA1_BUF is full and ready to flush out
        // be sure to empty out DATA1_BUF or will overflow and cause system to halt.
        
        /* Append first data for the duration of 1 second */
        bytesWritten = f_printf(&fsrc, DATA1_BUF);
        printf("\r\n%d of bytesWritten", bytesWritten);
        
        if(FileRecordCompleteFlag) {
          FileRecordCompleteFlag = false;
          printf("\r\nFile Record Complete!");
          /* Close the file */
          f_close(&fsrc);
        }
        
        // Reset DATA1_BUF
        memset(DATA1_BUF, 0, sizeof(DATA1_BUF)); 
      } else {
        /* Append another second of data */
        bytesWritten = f_printf(&fsrc, DATA2_BUF);
        printf("\r\n%d of bytesWritten", bytesWritten);
        
        if(FileRecordCompleteFlag) {
          FileRecordCompleteFlag = false;
          printf("\r\nFile Record Complete!");
          /* Close the file */
          f_close(&fsrc); 
        }
        
        // Reset DATA2_BUF
        memset(DATA2_BUF, 0, sizeof(DATA2_BUF));
      }
    }
    
#endif
    
    if(ParseUSART1) {
      ParseUSART1 = false;
      
      // run some test on SDIO
      //SDIO_TEST();

#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
      
      /* Print WIZ820io configuration */
      printSysCfg();

      printf("\r\n");
      printf("\r\nBKP_DR1 = %d", BKP_ReadBackupRegister(BKP_DR1));
      printf("\r\nBKP_DR2 = %d", BKP_ReadBackupRegister(BKP_DR2));
      printf("\r\nBKP_DR3 = %d", BKP_ReadBackupRegister(BKP_DR3));
      printf("\r\nBKP_DR4 = %d", BKP_ReadBackupRegister(BKP_DR4));
      printf("\r\nBKP_DR5 = %d", BKP_ReadBackupRegister(BKP_DR5));
      printf("\r\nBKP_DR6 = %d", BKP_ReadBackupRegister(BKP_DR6));
      printf("\r\nBKP_DR7 = %d", BKP_ReadBackupRegister(BKP_DR7));
      printf("\r\nBKP_DR8 = %d", BKP_ReadBackupRegister(BKP_DR8));
      printf("\r\nBKP_DR9 = %d", BKP_ReadBackupRegister(BKP_DR9));
      printf("\r\nBKP_DR10 = %d", BKP_ReadBackupRegister(BKP_DR10));
      printf("\r\nBKP_DR11 = %d", BKP_ReadBackupRegister(BKP_DR11));
      printf("\r\nBKP_DR12 = %d", BKP_ReadBackupRegister(BKP_DR12));
      printf("\r\nBKP_DR13 = %d", BKP_ReadBackupRegister(BKP_DR13));
      printf("\r\nBKP_DR14 = %d", BKP_ReadBackupRegister(BKP_DR14));
      printf("\r\nBKP_DR15 = %d", BKP_ReadBackupRegister(BKP_DR15));
      printf("\r\nBKP_DR16 = %d", BKP_ReadBackupRegister(BKP_DR16));
      
#elif (defined) USE_EQDAS_SERVER
      
      char buffer[37];
      sprintf(buffer, "%s_%s_%s_%s_%s\r\n",
                DAQBoardOne[arrIdx].Date,
                DAQBoardOne[arrIdx].Time,
                DAQBoardOne[arrIdx].AxisX,
                DAQBoardOne[arrIdx].AxisY,
                DAQBoardOne[arrIdx].AxisZ);
      printf("\r\nRX_BUF : %s, strlen(RX_BUF) : %d", (char*)RX_BUF, strlen((char*)RX_BUF));
      printf("\r\nstrlen(buffer) = %d\n%s", strlen(buffer), buffer);
      
      /*
      char *original = "-3843,+4095,+2069";
      char target[20];
      strncpy(target, original, strlen(original));
      
      char *one, *two, *three;
      char *AfterToken;
      AfterToken = strtok(target, ",");
      one = AfterToken;
      AfterToken = strtok(NULL, ",");
      two = AfterToken;
      AfterToken = strtok(NULL, ",");
      three = AfterToken;
      AfterToken = strtok(NULL, ",");
      if(AfterToken != NULL) printf("AfterToken is not empty");
      
      printf("\r\none : %s, two : %s, three : %s", one, two, three);*/
      
#endif
    
    }
    
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
    
    /*
    for(i=0; i<100; i++) {
      if(flag_uart) {
      // Make a copy from raw collected data to temporary array
      CopyToTmpArray(i);
        
      // Copy to Temporary GAL array
      CopyToTmpGalArray(i);
      
      // Calculate GAL and copy to single temporary GAL value
      CalculateGalAndCopyToGal(i);
      
      // Determine KMA scale
      DetermineKMA(i);

      // Check sign bit and apply to int container
      CheckSignAndToInt(i); // this function also cuts surplus 1G 
      }
    }
    */
    
// following routine is only necessary when the board works as server
#elif defined USE_EQDAS_SERVER
    
    /* EQ-DAQ-01 Parsing routine ------------------------------------------------- */
    /* Set E1Flag indicate that we have valid connection from EQ-DAQ-01(port 5050) */
    if(E1Flag) {
      E1Flag = false; // clear flag since this routine excutes ceaselessly over time
      
      ProcessTextStream(EQ_ONE, (char*)RX_BUF, E1Order);
      
      /* PC Client Parsing routine ------------------------------------------------- */
      /* Set PCFlag indicate that we have valid connection from PC Client(port 7070) */
      if(PCFlag) {        
        // Send directly to PC
        SendToPC(E1Order);
      }
      
      if(E1Order < 99) E1Order++;
      else E1Order = 0;
    }
    
    /* EQ-DAQ-02 Parsing routine ------------------------------------------------- */
    /* Set E2Flag indicate that we have valid connection from EQ-DAQ-02(port 6060) */
    if(E2Flag) {
      E2Flag = false;
      
      ProcessTextStream(EQ_TWO, (char*)RX_BUF, E2Order);
      
      /* PC Client Parsing routine ------------------------------------------------- */
      /* Set PCFlag indicate that we have valid connection from PC Client(port 7070) */
      if(PCFlag) {        
        // Send directly to PC
        SendToPC(E2Order);
      }
      
      if(E2Order < 99) E2Order++;
      else E2Order = 0;
    }

#endif

/* Setup TCP Client or Server -----------------------------------------------------*/
/* Please open config.h file to choose a proper board you wish to use */    
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)    

      /* Start TCP Client process */
      ProcessTcpClient(SOCK_ZERO);  // TCP Client
    
      /* Parameter setting Server side with port 5050 in default */
      ATFCTcpServer(SOCK_TWO, EQDAS_Conf_PORT);  // SOCK_TWO because of flag conformity
    
#elif defined USE_EQDAS_SERVER
    
      /* Process server socket with each port */
      ProcessTcpServer(SOCK_ZERO, 5050);  // designated as for EQM-DAQ-01 with port 5050
      ProcessTcpServer(SOCK_ONE, 6060);   // designated as for EQM-DAQ-02 with port 6060
      ProcessTcpServer(SOCK_TWO, 7070);   // designated as for PC-CLIENT  with port 7070
      ProcessTcpServer(SOCK_THREE, 8080); // designated as for PC_DUMP    with port 8080
      
      /*
      ProcessTcpServer(SOCK_FOUR, 9090);   // designated as for TOBEUSED with port 9090
      ProcessTcpServer(SOCK_FIVE, 10010);   // designated as for TOBEUSED with port 10010
      ProcessTcpServer(SOCK_SIX, 10020);    // designated as for TOBEUSED with port 10020
      ProcessTcpServer(SOCK_SEVEN, 10030);  // designated as for TOBEUSED with port 10030
      */
      
#endif
      
  }
}
示例#22
0
// INIT ADC
void InitADC(void){
  ADC_InitTypeDef       ADC_InitStructure;
  ADC_CommonInitTypeDef ADC_CommonInitStructure;
  DMA_InitTypeDef       DMA_InitStructure;
  GPIO_InitTypeDef      GPIO_InitStructure;
  
  // Enable GPIO Clocks, ADC1, ADC2, ADC3, DMA2
  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2 | RCC_AHB1Periph_GPIOA | 
                         RCC_AHB1Periph_GPIOC, ENABLE);
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2 | 
                         RCC_APB2Periph_ADC3, ENABLE);
  
 
  DMANvicInterruptConfig();
  TIM2_Configuration();
  // See DMA2 request mapping [STM32F407 reference Manual table 43
  // DMA2 Stream0 channel0 configuration DMAStream ADC1  
  DMA_InitStructure.DMA_Channel = DMA_Channel_0;  
  DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)ADC_CDR_ADDRESS;
  DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&ADCConvertedValue;
  DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
  DMA_InitStructure.DMA_BufferSize = 6;
  DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
  DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
  DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
  DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
  DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
  DMA_InitStructure.DMA_Priority = DMA_Priority_High;
  DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Enable;         
  DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull;
  DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
  DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
  DMA_Init(DMA2_Stream0, &DMA_InitStructure);
  
  
  //Enable DMA Stream Half / Transfer Complete interrupt 
  DMA_ITConfig(DMA2_Stream0, DMA_IT_TC | DMA_IT_HT, ENABLE);
  DMA_Cmd(DMA2_Stream0, ENABLE);
  // GPIO Init ADC1 --> PA3; PA4; PA5; PA6
  
  GPIO_InitStructure.GPIO_Pin = ADCSENSOR1_PIN|ADCSENSOR2_PIN | ADCSENSOR3_PIN|ADCSENSOR4_PIN;;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;  // Set PA3 and PA4 as Analog Input
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
  GPIO_Init(GPIOA, &GPIO_InitStructure);
  
  // GPIO Init ADC3 --> PC0; PC2;
  GPIO_InitStructure.GPIO_Pin = ADCSENSOR5_PIN|ADCSENSOR6_PIN;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
  GPIO_Init(GPIOC, &GPIO_InitStructure);
  
  // Common ADC Init
  ADC_CommonInitStructure.ADC_Mode = ADC_TripleMode_RegSimult;//;
  ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2;
  ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1; //DMA mode 1 enabled (2 / 3 half-words one by one - 1 then 2 then 3)
  ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
  ADC_CommonInit(&ADC_CommonInitStructure);
  
  // Config the Master ADC
  ADC_InitStructure.ADC_Resolution = ADC_Resolution_8b;
  ADC_InitStructure.ADC_ScanConvMode = DISABLE;//DISABLE
  ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
  ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising;
  ADC_InitStructure.ADC_ExternalTrigConv =ADC_ExternalTrigConv_T2_TRGO; // Trigger Event
  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
  ADC_InitStructure.ADC_NbrOfConversion = 2;//2
  // Init ADC1  
  ADC_Init(ADC1, &ADC_InitStructure);
  // Config the slave ADC
  ADC_InitStructure.ADC_Resolution = ADC_Resolution_8b;
  ADC_InitStructure.ADC_ScanConvMode = DISABLE;//DISABLE
  ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
  ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
  ADC_InitStructure.ADC_NbrOfConversion = 2;//2
  // Init ADC2  
  ADC_Init(ADC2, &ADC_InitStructure);
  // Init ADC3  
  ADC_Init(ADC3, &ADC_InitStructure);

  
  // ADC regular channel configuration 
  ADC_RegularChannelConfig(ADCSENSOR1_ADC, ADCSENSOR1_CHANNEL, 1, ADDCSENSORSampeTime);
  ADC_RegularChannelConfig(ADCSENSOR2_ADC, ADCSENSOR2_CHANNEL, 2, ADDCSENSORSampeTime);
  ADC_RegularChannelConfig(ADCSENSOR3_ADC, ADCSENSOR3_CHANNEL, 1, ADDCSENSORSampeTime);
  ADC_RegularChannelConfig(ADCSENSOR4_ADC, ADCSENSOR4_CHANNEL, 2, ADDCSENSORSampeTime);
  ADC_RegularChannelConfig(ADCSENSOR5_ADC, ADCSENSOR5_CHANNEL, 1, ADDCSENSORSampeTime);
  ADC_RegularChannelConfig(ADCSENSOR6_ADC, ADCSENSOR6_CHANNEL, 2, ADDCSENSORSampeTime);

 // Enable DMA request after last transfer (Single-ADC mode) 

  ADC_MultiModeDMARequestAfterLastTransferCmd(ENABLE);
  /*// Enable ADC DMA 
  ADC_DMACmd(ADC1, ENABLE);*/
  
  // Enable ADC3 
  ADC_Cmd(ADC1, ENABLE);
  ADC_Cmd(ADC2, ENABLE);
  ADC_Cmd(ADC3, ENABLE);
  
  // Start the ADC Software Conversion
  ADC_SoftwareStartConv(ADC1);

}
示例#23
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void) {
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */
  
  /* System Clocks Configuration */
  RCC_Configuration();
  
  /* System Tick Configuration at 1us */
  SysTick_Config(SystemCoreClock / 1000000);
  
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
  
  /* TIM2 Configuration */
  TIM2_Configuration();
  
  /* TIM3 Configuration (10ms for Network Transmission)*/
  TIM3_Configuration();
  
  /* TIM5 Configuration (GLCD Time Share)*/
  TIM5_Configuration();
  
  /* TIM6 Configuration (RTC load) */
  TIM6_Configuration();
  
#elif defined USE_EQDAS_SERVER
  
  /* TIM4 Configuration */
  TIM4_Configuration();
  
#endif
  
  /* CLCD Configuration */
  CLCD_Configuration();
  
  /* GLCD Configuration */
  GLCD_Configuration();
  
  /* UART1 Configuration */
  UART_Configuration();
  
  /* GPS-UART3 Configuration */
  //GPS_Configuration();
  
  /* RTC configuration by setting the time by Serial USART1 */
  RTC_SetTimeBySerial();
  
  /* Forcefully let user set the IP through terminal */
  //ForceIPSetBySerial();

  /* WIZ820io SPI1 configuration */
  WIZ820io_SPI1_Configuration();
  
  /* W5200 Configuration */
  Set_network();
  
  /* Print WIZ820io configuration */
  printSysCfg();
  
  /* EXTI Configuration */
  EXTI_Configuration();
  
  /* FatFS configuration */
  f_mount(0, &fs);  // mSD
  //f_mount(1, &fs);  // NAND
  
  /* Display Total size of SD card in MB scale */
  SD_TotalSize();
  
  /* Scan all files in mSD card */
  scan_files(path);
  
  /* MAL configuration */
  //Set_System();
  
  /* UMS configuration */
  //Set_USBClock();
  //USB_Interrupts_Config();
  //USB_Init();
  
  /* loop upon completion of USB Enumeration */
  //while (bDeviceState != CONFIGURED);
  
  /* ATFC Algorithm GPIO */
  ATFC_GPIO_Configuration();
  
  /* ATFC Parameter Initialization */
  ATFCAlgorithmParameterSetup();
  
  // For TCP client's connection request delay
  presentTime = my_time;
  
  /* Clear CLCD before branch into main */
  CLCD_Clear();

  /* Create directory and sub directory in accordance with current date */
  filePath = CreateDirectoryAccordingly(GetYearAndMergeToInt(), GetMonthAndMergeToInt(), 
                                        GetDayAndMergeToInt(), RTC_GetCounter() / 3600);
  
  /* Create file in append mode in accordance with current minute */
  CreateFileAppendModeAccordingly(filePath, (RTC_GetCounter() % 3600) / 60);
  
  // When everything is set, print message
  printf("\r\n\n - System is ready - ");
  
  while (1) {
    
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
    
    if(TimerCount > 1000) { // 0 ~ 999 (1000) = 1 sec
      TimerCount = 0;
      
      /*
      int x, y, z;
      x = mAxisBuf.tmp_data_x_lcd[index];
      y = mAxisBuf.tmp_data_y_lcd[index];
      z = mAxisBuf.tmp_data_z_lcd[index];
    
      char Serial_Buf[37];
      int hour, minute, second, tmsecond;
      hour = THH; minute = TMM; second = TSS; tmsecond = 0;
      sprintf(Serial_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d\r\n", 
                year, month, day, hour, minute, second, tmsecond, x, y, z);
      printf(Serial_Buf);
      */
      
      //my_time++;  // uncomment when tcp connection is needed
      
      /* Process Parameter Text Stream */
      /*
      if(PCFlag) {  // EQDAS Client System and ATFC Algorithm Setting
        PCFlag = false;
        
        ProcessParameterStream();
      }
      */
    }
    
    /* GLCD Time Share */
    if(TIM5GLCDCount > 95) {  // Allocate proper time to share mcu resource with network
      TIM5GLCDCount = 0;
      
      /* Graphic LCD Copy and Process Routine -------------------------------------- */
      if(SyncFlag) { // prevent unpleasant impuse
        // Index synchronization dedicate to GLCD
        arrGLCDIdx = index;
        
        // Make a copy from raw collected data to temporary array
        CopyToTmpArray(arrGLCDIdx);
          
        // Copy to Temporary GAL array
        //CopyToTmpGalArray(arrIdx);
        
        // Calculate GAL and copy to single temporary GAL value
        //CalculateGalAndCopyToGal(arrIdx);
        
        // Determine KMA scale
        KMAGrade = DetermineKMA(arrGLCDIdx);
    
        // Check sign bit and apply to int container
        CheckSignAndToInt(arrGLCDIdx); // this function also cuts surplus 1G
      }
      
      int mATFCBit_lcd;
      mATFCBit_lcd = mAxisBuf.ATFCBit_lcd[arrGLCDIdx];
      
      /* Switch menu & waveform display through graphic lcd */
      GLCD_AxisViewWithWaveform(mode, arrGLCDIdx);
      
      /* Display KMA Intensity on Graphic LCD */
      GLCD_DisplayKMAIntensity(KMAGrade, mATFCBit_lcd);
    }
    
    /* Clock generated by TIM3 */
    if(ClientTimerCounter > 10) {  // 0 ~ 999 (1000) = 1 sec
      ClientTimerCounter = 0;
      
      year = GetYearAndMergeToInt();
      month = GetMonthAndMergeToInt();
      day = GetDayAndMergeToInt();
      hour = THH; minute = TMM; second = TSS; tmsecond = 0;
      
      int mYear, mMonth, mDay, mHour, mMin, mSec, mTMSec;
      mYear = year; mMonth = month; mDay = day;
      mHour = hour; mMin = minute; mSec = second; mTMSec = tmsecond;

      if(SyncFlag) {
        // Index synchronization
        arrIdx = index;
      
        // Make a copy from raw collected data to temporary net array
        CopyToNetArray(arrIdx);
        
        // Check sign bit and apply to int container
        CheckSignAndToIntForNet(arrIdx); // this function also cuts surplus 1G
      }
      
      /* Prevent access to volatile variable warning */
      /* This have to be here in order to correct data to be used in ATFC */
      int mX, mY, mZ, mATFCBit;
      mX = mAxisNetBuf.axis_x_for_net[arrIdx];
      mY = mAxisNetBuf.axis_y_for_net[arrIdx];
      mZ = mAxisNetBuf.axis_z_for_net[arrIdx];
      mATFCBit = mAxisNetBuf.ATFCBit_net[arrIdx];
      
      /* EQDAQ01, 02 Client Routine ---------------------------------------------*/
      /* E1Flag or E2Flag set when client board successfully connect to server --*/
      /* Refer to wiz820.c line no. 406 for which flag to be set */
      if(E1Flag) {
        char E1_Buf[45];
        sprintf(E1_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d_%d\r\n", 
                mYear, mMonth, mDay, mHour, mMin, mSec, mTMSec,
                mX, mY, mZ, mATFCBit);
        // Only when socket is established, allow send data
        if(getSn_SR(SOCK_ZERO) == SOCK_ESTABLISHED) {
          /* send selected data */
          CountSendByte = send(SOCK_ZERO, (uint8_t*)E1_Buf, strlen(E1_Buf), (bool)false);
        }
      }
      
      if(E2Flag) {
        char E2_Buf[45];
        sprintf(E2_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d_%d\r\n", 
                mYear, mMonth, mDay, mHour, mMin, mSec, mTMSec,
                mX, mY, mZ, mATFCBit);
        // Only when socket is established, allow send data
        if(getSn_SR(SOCK_ZERO) == SOCK_ESTABLISHED) {
          /* send selected data */
          send(SOCK_ZERO, (uint8_t*)E2_Buf, strlen(E2_Buf), (bool)false);
        }
      }
    }
    
    /* do RTC work on every second */
    if(RTCTIM6Count > 1000) {
      RTCTIM6Count = 0;
      
      if(InitialThirteenSeconds == 12) {
         InitialThirteenSeconds = 0;
         GoATFCFlag = true;
      } else {
        if(!GoATFCFlag) {
           InitialThirteenSeconds++;
        }
      }
      
      /* RTC 1Hz interrupt */
      if(RTCTimeDisplay) { // 1Hz calibrated by RTC
        RTCTimeDisplay = false;
        
        /* Adjust realtime clock deviation */
        if(hour > 23) {
          int i, currentDay, mDay, mHour, mMin, mSec;
          mDay = hour / 24;
          
          for(i=0; i<mDay; i++) {
            IncreaseSingleDay();
            if(i == mDay - 1) {
              currentDay = (GetMonthAndMergeToInt() * 100) + GetDayAndMergeToInt();
              BKP_WriteBackupRegister(BKP_DR3, currentDay); // Save Month and Date
            }
          }
          
          mHour = THH % 24;
          mMin = TMM;
          mSec = TSS;
          
          /* Change the current time */
          RTC_SetCounter(mHour*3600 + mMin*60 + mSec);
        }
        
        /* Display current time */
        Time_Display(RTC_GetCounter());
        
        int OrderCount;
        for(OrderCount = 0; OrderCount < 100; OrderCount++) {
          // Copy to data buffer to be written through FATFS
          CopyToFatFsDataBuffer(OrderCount); 
        }
      }
      
      /* RTC Alarm interrupt */
      if(RTCAlarmFlag) {
        RTCAlarmFlag = false;
        
        printf("\r\nRTC Alarm Actviated!");
      } 
    }
    
#endif
    
    if(ParseGPS) {
      ParseGPS = false;
      
      printf("%s", GPS_Buffer);
    }
    
    if(ParseUSART1) {
      ParseUSART1 = false;
      
      // run some test on SDIO
      //SDIO_TEST();

#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
      
      /* Print WIZ820io configuration */
      printSysCfg();

      printf("\r\n");
      printf("\r\nBKP_DR1 = %d", BKP_ReadBackupRegister(BKP_DR1));
      printf("\r\nBKP_DR2 = %d", BKP_ReadBackupRegister(BKP_DR2));
      printf("\r\nBKP_DR3 = %d", BKP_ReadBackupRegister(BKP_DR3));
      printf("\r\nBKP_DR4 = %d", BKP_ReadBackupRegister(BKP_DR4));
      printf("\r\nBKP_DR5 = %d", BKP_ReadBackupRegister(BKP_DR5));
      printf("\r\nBKP_DR6 = %d", BKP_ReadBackupRegister(BKP_DR6));
      printf("\r\nBKP_DR7 = %d", BKP_ReadBackupRegister(BKP_DR7));
      printf("\r\nBKP_DR8 = %d", BKP_ReadBackupRegister(BKP_DR8));
      printf("\r\nBKP_DR9 = %d", BKP_ReadBackupRegister(BKP_DR9));
      printf("\r\nBKP_DR10 = %d", BKP_ReadBackupRegister(BKP_DR10));
      printf("\r\nBKP_DR11 = %d", BKP_ReadBackupRegister(BKP_DR11));
      printf("\r\nBKP_DR12 = %d", BKP_ReadBackupRegister(BKP_DR12));
      printf("\r\nBKP_DR13 = %d", BKP_ReadBackupRegister(BKP_DR13));
      printf("\r\nBKP_DR14 = %d", BKP_ReadBackupRegister(BKP_DR14));
      printf("\r\nBKP_DR15 = %d", BKP_ReadBackupRegister(BKP_DR15));
      printf("\r\nBKP_DR16 = %d", BKP_ReadBackupRegister(BKP_DR16));
      
      /*
      printf("\r\nstrlen(HEADER) : %d %s", strlen(HEADER), HEADER);
      
      printf("\r\nf_mkdir1 : ");
      char *dirPath = "0:/20130517";
      res = f_mkdir(dirPath);
      FPrintFatResult(res);
      
      printf("\r\nf_mkdir2 : ");
      dirPath = "0:/20130517/22H-23H";
      res = f_mkdir(dirPath);
      FPrintFatResult(res);
      
      char *filePath = "0:/20130517/2-23H/test.txt";
      // Create log file on the drive 0
      res = open_append(&fsrc, filePath);
      FPrintFatResult(res);
      
      if(res == FR_OK) {
        printf("test.txt successfully created\r\n");
        
        // Write buffer to file
        int bytesWritten;
        bytesWritten = f_printf(&fsrc, HEADER);
        printf("\r\n%d of bytesWritten", bytesWritten);
        
        // Close file
        f_close(&fsrc);
        
      } else if ( res == FR_EXIST ) {
        printf("\r\ntest.txt already exist");
      }
      */
      
      
#elif (defined) USE_EQDAS_SERVER
      
      char buffer[37];
      sprintf(buffer, "%s_%s_%s_%s_%s\r\n",
                DAQBoardOne[arrIdx].Date,
                DAQBoardOne[arrIdx].Time,
                DAQBoardOne[arrIdx].AxisX,
                DAQBoardOne[arrIdx].AxisY,
                DAQBoardOne[arrIdx].AxisZ);
      printf("\r\nRX_BUF : %s, strlen(RX_BUF) : %d", (char*)RX_BUF, strlen((char*)RX_BUF));
      printf("\r\nstrlen(buffer) = %d\n%s", strlen(buffer), buffer);
      
      /*
      char *original = "-3843,+4095,+2069";
      char target[20];
      strncpy(target, original, strlen(original));
      
      char *one, *two, *three;
      char *AfterToken;
      AfterToken = strtok(target, ",");
      one = AfterToken;
      AfterToken = strtok(NULL, ",");
      two = AfterToken;
      AfterToken = strtok(NULL, ",");
      three = AfterToken;
      AfterToken = strtok(NULL, ",");
      if(AfterToken != NULL) printf("AfterToken is not empty");
      
      printf("\r\none : %s, two : %s, three : %s", one, two, three);*/
      
#endif
    
    }
    
// following routine is only necessary when the board works as server
#if defined USE_EQDAS_SERVER
    
    /* Server also needs to have get CLCD going while running */
    /* RTC 1Hz interrupt */
    if(RTCTimeDisplay) { // 1Hz calibrated by RTC
      RTCTimeDisplay = false;
      
      /* Adjust realtime clock deviation */
      if(hour > 23) {
        int i, currentDay, mDay, mHour, mMin, mSec;
        mDay = hour / 24;
        
        for(i=0; i<mDay; i++) {
          IncreaseSingleDay();
          if(i == mDay - 1) {
            currentDay = (GetMonthAndMergeToInt() * 100) + GetDayAndMergeToInt();
            BKP_WriteBackupRegister(BKP_DR3, currentDay); // Save Month and Date
          }
        }
        
        mHour = THH % 24;
        mMin = TMM;
        mSec = TSS;
        
        /* Change the current time */
        RTC_SetCounter(mHour*3600 + mMin*60 + mSec);
      }
      
      /* Display current time */
      Time_Display(RTC_GetCounter());
    }
    
    /* EQ-DAQ-01 Parsing routine ------------------------------------------------- */
    /* Set E1Flag indicate that we have valid connection from EQ-DAQ-01(port 5050) */
    if(E1Flag) {
      E1Flag = false; // clear flag since this routine excutes ceaselessly over time
      
      ProcessTextStream(EQ_ONE, (char*)RX_BUF, E1Order);
      
      /* PC Client Parsing routine ------------------------------------------------- */
      /* Set PCFlag indicate that we have valid connection from PC Client(port 7070) */
      if(PCFlag && !E2Flag) { // only when PC is connected and EQ-DAQ-02 is not connected
        // Send directly to PC
        //SendToPC(EQ_ONE, E1Order);
      }
      
      if(E1Order < 99) E1Order++;
      else E1Order = 0;
    } 
    
    /* EQ-DAQ-02 Parsing routine ------------------------------------------------- */
    /* Set E2Flag indicate that we have valid connection from EQ-DAQ-02(port 6060) */
    if(E2Flag) {
      E2Flag = false;
      
      ProcessTextStream(EQ_TWO, (char*)RX_BUF, E2Order);
      
      /* PC Client Parsing routine ------------------------------------------------- */
      /* Set PCFlag indicate that we have valid connection from PC Client(port 7070) */
      if(PCFlag && !E1Flag) { // only when PC is connected and EQ-DAQ-01 is not connected
        // Send directly to PC
        //SendToPC(EQ_TWO, E2Order);
      }
      
      if(E2Order < 99) E2Order++;
      else E2Order = 0;
      
      /* PC Client Parsing routine ------------------------------------------------- */
      /* Set PCFlag indicate that we have valid connection from PC Client(port 7070) */
      if(PCFlag) {
        // Send directly to PC
        MultipleBoardDataToSendToPC(EQ_BOTH, E1Order, E2Order);
      }
    }

#endif

/* Setup TCP Client or Server -----------------------------------------------------*/
/* Please open config.h file to choose a proper board you wish to use -------------*/    
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
      
      /* Start TCP Client process */
      ProcessTcpClient(SOCK_ZERO);  // TCP Client
      
      /* Parameter setting Server side with port 5050 in default */
      ATFCTcpServer(SOCK_TWO, EQDAS_Conf_PORT);  // SOCK_TWO because of flag conformity
      
#elif defined USE_EQDAS_SERVER
      
      /* Process server socket with each port */
      ProcessTcpServer(SOCK_ZERO, 5050);  // designated as for EQM-DAQ-01 with port 5050
      ProcessTcpServer(SOCK_ONE, 6060);   // designated as for EQM-DAQ-02 with port 6060
      ProcessTcpServer(SOCK_TWO, 7070);   // designated as for PC-CLIENT  with port 7070
      ProcessTcpServer(SOCK_THREE, 8080); // designated as for PC_DUMP    with port 8080
      
      /*
      ProcessTcpServer(SOCK_FOUR, 9090);   // designated as for TOBEUSED with port 9090
      ProcessTcpServer(SOCK_FIVE, 10010);   // designated as for TOBEUSED with port 10010
      ProcessTcpServer(SOCK_SIX, 10020);    // designated as for TOBEUSED with port 10020
      ProcessTcpServer(SOCK_SEVEN, 10030);  // designated as for TOBEUSED with port 10030
      */
      
#endif
      
  }
}