示例#1
0
    bool TProtoSerial::operator() (TMatrixD& m, int protoField) {
        CHECK_FIELD();

        switch (Mode) {
            case ESerialMode::IN:
            {
                const NGroundProto::TMatrixD* mat = GetEmbedMessage<NGroundProto::TMatrixD>(protoField);
                m = TMatrixD(mat->n_rows(), mat->n_cols());
                for (size_t rowIdx=0; rowIdx < m.n_rows; ++rowIdx) {
                    const NGroundProto::TVectorD& row = mat->row(rowIdx);
                    for (size_t colIdx=0; colIdx < m.n_cols; ++colIdx) {
                        m(rowIdx, colIdx) = row.x(colIdx);
                    }
                }
            }
            break;
            case ESerialMode::OUT:
            {
                NGroundProto::TMatrixD* mat = GetEmbedMutMessage<NGroundProto::TMatrixD>(protoField);
                mat->set_n_rows(m.n_rows);
                mat->set_n_cols(m.n_cols);
                for (size_t rowIdx=0; rowIdx < m.n_rows; ++rowIdx) {
                    NGroundProto::TVectorD* row = mat->add_row();
                    for (size_t colIdx=0; colIdx < m.n_cols; ++colIdx) {
                        row->add_x(m(rowIdx, colIdx));
                    }
                }
            }
            break;
        }
        return true;
    }
Asymmetry estimateAsymmetry(
    const TH1* hist, const TH2* cov, 
    const char * minName = "Minuit2",
    const char *algoName = "" )
{
    
    TH1* normHist=(TH1*)hist->Clone("normHist");
    TH2* normCov=(TH2*)cov->Clone("normCov");
    
    
    
    normHist->Scale(1.0/hist->Integral());
    normCov->Scale(1.0/hist->Integral()/hist->Integral());

    const int N = hist->GetNbinsX();

    TMatrixD covMatrix(N,N);
    
    for (int i=0; i<N;++i)
    {
        for (int j=0; j<N;++j)
        {
            covMatrix[i][j]=normCov->GetBinContent(i+1,j+1);
        }
    }
    TMatrixD invCovMatrix = TMatrixD(TMatrixD::kInverted,covMatrix);
    
    
    
    ROOT::Math::Minimizer* min = ROOT::Math::Factory::CreateMinimizer(minName, algoName);

    // set tolerance , etc...
    min->SetMaxFunctionCalls(1000000); // for Minuit/Minuit2 
    min->SetMaxIterations(10000);  // for GSL 
    min->SetTolerance(0.001);
    min->SetPrintLevel(1);
    //const double xx[1] = {0.5};
    std::function<double(const TH1*, const TMatrixD*, const double*)> unboundFct = chi2A;
    std::function<double(const double*)> boundFct = std::bind(unboundFct,normHist, &invCovMatrix, std::placeholders::_1);
    
    //boundFct(xx);
    ROOT::Math::Functor fct(boundFct,1); 


    min->SetFunction(fct);

    min->SetVariable(0,"A",0.2, 0.01);
    min->Minimize(); 

    const double *xs = min->X();
    const double *error = min->Errors();
    log(INFO,"min: %f\n",xs[0]);
    log(INFO,"err: %f\n",error[0]);
    Asymmetry res;
    res.mean=xs[0];
    res.uncertainty=error[0];
    return res;
}
示例#3
0
HHV4Vector::HHV4Vector(Double_t e, Double_t eta, Double_t phi, Double_t m)
    : m_e(e), m_eta(eta), m_phi(phi), m_m(m), m_dE(0), m_dEta(0), m_dPhi(0),
      m_id(HHPID::undef), m_id2(HHPID::undef), m_mother(-1), m_nDaughter(0), m_name("init"), m_cov_manually_set(false),
      m_cov_transversal(TMatrixD(2,2))
{
  m_cov_transversal(0,0)=0;
  m_cov_transversal(0,1)=0;
  m_cov_transversal(1,0)=0;
  m_cov_transversal(1,1)=0;
}
void NeutrinoEllipseCalculator::labSystemTransform()
{
  //rotate Htilde to H
  TMatrixD R(3,3);
  R.Zero();
  TMatrixD Rz=rotationMatrix(2,-lepton_.Phi());
  TMatrixD Ry=rotationMatrix(1,0.5*M_PI-lepton_.Theta());
  double bJetP[3]={bJet_.Px(),bJet_.Py(), bJet_.Pz()};
  TMatrixD bJet_xyz(3,1,bJetP);
  TMatrixD rM(Ry,TMatrixD::kMult,TMatrixD(Rz,TMatrixD::kMult,bJet_xyz));
  double* rA=rM.GetMatrixArray();
  double phi=-TMath::ATan2(rA[2],rA[1]);
  TMatrixD Rx=rotationMatrix(0,phi);
  R=TMatrixD(Rz,TMatrixD::kTransposeMult,TMatrixD(Ry,TMatrixD::kTransposeMult,Rx.T()));
  H_=TMatrixD(R,TMatrixD::kMult,Htilde_);

  //calculate Hperp
  double Hvalues[9]={H_[0][0],H_[0][1],H_[0][2],H_[1][0],H_[1][1],H_[1][2],0,0,1};
  TArrayD Harray(9,Hvalues);
  Hperp_.SetMatrixArray(Harray.GetArray());

  //calculate Nperp
  TMatrixD HperpInv(Hperp_);
  HperpInv.Invert();
  TMatrixD U(3,3);
  U.Zero();
  U[0][0]=1;
  U[1][1]=1;
  U[2][2]=-1;
  Nperp_=TMatrixD(HperpInv,TMatrixD::kTransposeMult,TMatrixD(U,TMatrixD::kMult,HperpInv));
}
HHKinFit2::HHKinFitMasterSingleHiggs::HHKinFitMasterSingleHiggs(TLorentzVector const& tauvis1,
                                                                TLorentzVector const& tauvis2,
                                                                TVector2 const& met, 
                                                                TMatrixD const& met_cov, 
                                                                bool istruth,
                                                                TLorentzVector const& higgsgen)
:m_MET_COV(TMatrixD(4,4))
{
  
  m_tauvis1 = HHLorentzVector(tauvis1.Px(), tauvis1.Py(), tauvis1.Pz(), tauvis1.E());  
  m_tauvis2 = HHLorentzVector(tauvis2.Px(), tauvis2.Py(), tauvis2.Pz(), tauvis2.E());
 
  m_tauvis1.SetMkeepE(1.77682);
  m_tauvis2.SetMkeepE(1.77682);
   
  m_MET = met;
  m_MET_COV = met_cov;

  m_chi2_best = pow(10,10);
  m_bestHypo = 0;

  //  if (istruth){
  //    TRandom3 r(0);
  //
  //    HHLorentzVector recoil;
  //    if(heavyhiggsgen != NULL){
  //       Double_t pxRecoil = r.Gaus(-(heavyhiggsgen->Px() ), 10.0);
  //       Double_t pyRecoil = r.Gaus(-(heavyhiggsgen->Py() ), 10.0);
  //
  //       recoil = HHLorentzVector(pxRecoil, pyRecoil, 0,
  //				sqrt(pxRecoil*pxRecoil+pyRecoil*pyRecoil));
  //    }
  //    else{
  //      recoil = HHLorentzVector(0,0,0,0);
  //      std::cout << "WARNING! Truthinput mode active but no Heavy Higgs gen-information given! Setting Recoil to Zero!" << std::endl;
  //    }
  //
  //    TMatrixD recoilCov(2,2);
  //    recoilCov(0,0)=100;  recoilCov(0,1)=0;
  //    recoilCov(1,0)=0;    recoilCov(1,1)=100;
  //
  //    HHLorentzVector recoHH = m_bjet1 + m_bjet2 + m_tauvis1 + m_tauvis2 + recoil;
  //    m_MET = TVector2(-recoHH.Px(), -recoHH.Py() );
  //
  //    m_MET_COV = TMatrixD(2,2);
  //    m_MET_COV = recoilCov + bjet1Cov + bjet2Cov;
  //
  //  }
}
示例#6
0
文件: Chol.C 项目: wa01/usercode
TMatrixD Chol (TVectorD& covV, TVectorD& newSig)
{
  int nCov = covV.GetNrows();
  int n = newSig.GetNrows();
  std::cout << nCov << " " << n << std::endl;
  if ( nCov != n*(n+1)/2. ) {
    std::cout << "vecTest: mismatch in inputs" << std::endl;
    return TMatrixD();
  }
  //
  // create modified vector (replacing std.dev.s)
  //
  TVectorD newCovV(covV);
  int ind(0);
  for ( int i=0; i<n; ++i ) {
    for ( int j=0; j<=i; ++j ) {
      if ( j==i )  newCovV[ind] = newSig(i);
      ++ind;
    }
  }
  return Chol(newCovV,newSig);
}
示例#7
0
文件: Chol.C 项目: wa01/usercode
TMatrixD Chol (TVectorD& covV)
{
  int nCov = covV.GetNrows();
  int n = int((sqrt(8*nCov+1.)-1.)/2.+0.5);
  if ( nCov != n*(n+1)/2. ) {
    std::cout << "Chol: length of vector " << nCov << " is not n*(n+1)/2" << std::endl;
    return TMatrixD();
  }
  

  // get diagonal elements
  int ind(0);
  TVectorD sigmas(n);
  for ( int i=0; i<n; ++i ) {
    for ( int j=0; j<=i; ++j ) {
      if ( j == i )  sigmas[i] = covV(ind);
      ++ind;
    }
  }
  // fill cov matrix (could be more elegant ...)
  ind = 0;
  TMatrixDSym covMatrix(n);
  for ( int i=0; i<n; ++i ) {
    for ( int j=0; j<=i; ++j ) {
      if ( j == i )
	covMatrix(i,i) = sigmas(i)*sigmas(i);
      else
	covMatrix(i,j) = covMatrix(j,i) = covV(ind)*sigmas(i)*sigmas(j);
      ++ind;
    }
  }
  covMatrix.Print();
  
  TDecompChol tdc(covMatrix);
  bool worked = tdc.Decompose();
  if ( !worked ) {
    std::cout << "Decomposition failed" << std::endl;
    return TMatrixD();
  }
  
  TMatrixD matU = tdc.GetU();
  return matU;

//   //
//   // cross check with random generation
//   //  
//   double sum0(0.);
//   TVectorD sum1(n);
//   TMatrixDSym sum2(n);


//   TRandom2 rgen;
//   TVectorD xrnd(n);
//   TVectorD xrndRot(n);
//   for ( unsigned int i=0; i<1000000; ++i ) {
//     for ( unsigned int j=0; j<n; ++j )  xrnd(j) = 0.;
//     for ( unsigned int j=0; j<n; ++j ) {
//       TVectorD aux(n);
//       for ( int k=0; k<n; ++k )  aux(k) = matU(j,k);
//       xrnd += rgen.Gaus(0.,1.)*aux;
//     }
// //       xrnd *= matUT;
//     sum0 += 1.;
//     for ( unsigned int j0=0; j0<n; ++j0 ) {
//       sum1(j0) += xrnd(j0);
//       for ( unsigned int j1=0; j1<n; ++j1 ) {
// 	sum2(j0,j1) += xrnd(j0)*xrnd(j1);
//       }
//     }
//   }
//   for ( unsigned int j0=0; j0<n; ++j0 ) {
//     printf("%10.3g",sum1(j0)/sum0);
//   }
//   printf("  sum1 \n");
//   printf("\n");
//   for ( unsigned int j0=0; j0<n; ++j0 ) {
//     for ( unsigned int j1=0; j1<n; ++j1 ) {
//       printf("%10.3g",sum2(j0,j1)/sum0);
//     }
//     printf(" sum2 \n");
//   }
//   return matU;

}
示例#8
0
ScanResult scanTau(TH2* responseMatrix, TH1* input, bool writeCanvas=true)
{
    const int N = 2000;
    const int NBINS = responseMatrix->GetNbinsX();
    
    double* tau = new double[N];
    double* pmean = new double[N];
    double pmean_min=1.0;
    double pmean_min_tau=0.0;
    double* pmax = new double[N];
    double pmax_min=1.0;
    double pmax_min_tau=0.0;

    double** rho_avg = new double*[NBINS];
    for (int i = 0; i < NBINS; ++i)
    {
        rho_avg[i]=new double[N];
    }
    
    TH2D error("errorMatrixTauScan","",NBINS,0,NBINS,NBINS,0,NBINS);
    TUnfoldSys tunfold(responseMatrix,TUnfold::kHistMapOutputHoriz,TUnfold::kRegModeCurvature);
    for (int iscan=0;iscan< N;++iscan) 
    {
        tau[iscan]=TMath::Power(10.0,1.0*(iscan/(1.0*N)*5.0-7.0));
        tunfold.DoUnfold(tau[iscan],input);
        error.Scale(0.0);
        tunfold.GetEmatrix(&error);
        
        TMatrixD cov_matrix = convertHistToMatrix(error);
        TMatrixD inv_cov_matrix=TMatrixD(TMatrixD::kInverted,cov_matrix);
        TMatrixD diag_cov_halfs(NBINS,NBINS);
        for (int i=0; i<NBINS; ++i) {
            for (int j=0; j<NBINS; ++j) {
                if (i==j)
                {
                    diag_cov_halfs[i][j]=1.0/TMath::Sqrt((cov_matrix)[i][j]);
                }
                else
                {
                    diag_cov_halfs[i][j]=0.0;
                }
            }
        }
        //correlations of the unfolded dist
        TMatrixD rho = diag_cov_halfs*(cov_matrix)*diag_cov_halfs;
        
        //calculate the average per bin correlation; will be used in the "subway" plot
        for (int offrow = 1; offrow<NBINS; ++offrow)
        {
            double sum=0.0;
            for (int entry = 0; entry < NBINS-offrow; ++entry)
            {
                sum+=rho[offrow+entry][entry];
            }
            rho_avg[offrow][iscan]=sum/(NBINS-offrow);
        }
       
        double* p = new double[NBINS];
        pmean[iscan]=0.0; //will store the average global correlation over bins
        pmax[iscan]=0.0; //will store the max global correlation over bins
        for (int i=0; i<NBINS; ++i) 
        {
            //calculate the global correlations
            p[i]=sqrt(1.0-1.0/(inv_cov_matrix[i][i]*(cov_matrix)[i][i]));
            pmean[iscan]+=p[i];
            if (p[i]>pmax[iscan]) 
            {
                pmax[iscan]=p[i];
            }
        }
        pmean[iscan]=pmean[iscan]/(1.0*NBINS);
        
        //check if this is the minimum
        if (pmean[iscan]<pmean_min) 
        {
            pmean_min=pmean[iscan];
            pmean_min_tau=tau[iscan];
        }
        //check if this is the minimum
        if (pmax[iscan]<pmax_min) 
        {
            pmax_min=pmax[iscan];
            pmax_min_tau=tau[iscan];
        }
    }
    TCanvas cv_subway("cv_subway","",800,600);
    cv_subway.SetRightMargin(0.27);
    TH2F axes("axes",";#tau;#rho",50,tau[0],tau[N-1],50,-1.1,1.1);
    axes.Draw("AXIS");
    cv_subway.SetLogx(1);
    
    double Red[5]   = {0.00, 0.00, 0.83, 0.90, 0.65};
    double Green[5] = { 0.00, 0.71, 0.90, 0.15, 0.00};
    double Blue[5]   ={  0.71, 1.00, 0.12, 0.00, 0.00};
    double Length[5] = { 0.00, 0.34, 0.61, 0.84, 1.00 };
    int start = TColor::CreateGradientColorTable(5,Length,Red,Green,Blue,(NBINS)*2);

    TLegend legend(0.74,0.9,0.99,0.2);
    legend.SetFillColor(kWhite);
    legend.SetBorderSize(0);
    legend.SetTextFont(42);
    
    for (int i=1; i<NBINS; ++i) 
    {
       
        TGraph* graph = new TGraph(N,tau,rho_avg[i]);
        graph->SetLineColor(start+(i-1)*2+1);
        graph->SetLineWidth(2);
        graph->Draw("SameL"); 
        
        char* graphName= new char[50];
        sprintf(graphName,"#LT #rho(i,i+%i) #GT",i);
        legend.AddEntry(graph,graphName,"L");
    }
    legend.AddEntry("","","");
    TGraph* graph_globalrho_avg = new TGraph(N,tau,pmean);
    graph_globalrho_avg->SetLineColor(kBlack);
    graph_globalrho_avg->SetLineStyle(2);
    graph_globalrho_avg->SetLineWidth(3);
    graph_globalrho_avg->Draw("SameL"); 
    legend.AddEntry(graph_globalrho_avg,"avg. global #rho","L");
    
    char* globalrho_mean= new char[50];
    sprintf(globalrho_mean,"#rho|min=%4.3f",pmean_min);
    legend.AddEntry("",globalrho_mean,"");
    char* globalrho_mean_tau= new char[50];
    sprintf(globalrho_mean_tau,"#tau|min=%3.2e",pmean_min_tau);
    legend.AddEntry("",globalrho_mean_tau,"");
    
    
    legend.AddEntry("","","");
    TGraph* graph_globalrho_max = new TGraph(N,tau,pmax);
    graph_globalrho_max->SetLineColor(kBlack);
    graph_globalrho_max->SetLineWidth(3);
    graph_globalrho_max->SetLineStyle(3);
    graph_globalrho_max->Draw("SameL"); 
    legend.AddEntry(graph_globalrho_max,"max. global #rho","L");
    
    char* globalrho_max= new char[50];
    sprintf(globalrho_max,"#rho|min=%4.3f",pmax_min);
    legend.AddEntry("",globalrho_max,"");
    char* globalrho_max_tau= new char[50];
    sprintf(globalrho_max_tau,"#tau|min=%3.2e",pmax_min_tau);
    legend.AddEntry("",globalrho_max_tau,"");
    
    legend.Draw("Same");
    if (writeCanvas)
    {
        cv_subway.Write();
    }
    ScanResult scanResult;
    scanResult.taumean=pmean_min_tau;
    scanResult.pmean=pmean_min;
    scanResult.taumax=pmax_min_tau;
    scanResult.pmax=pmax_min;
    return scanResult;
}
HHKinFitMaster::HHKinFitMaster(TLorentzVector* bjet1, TLorentzVector* bjet2, TLorentzVector* tauvis1, TLorentzVector* tauvis2, Bool_t truthinput, TLorentzVector* heavyhiggsgen):
    m_mh1(std::vector<Int_t>()),
    m_mh2(std::vector<Int_t>()),

    m_bjet1(bjet1),
    m_bjet2(bjet2),
    m_tauvis1(tauvis1),
    m_tauvis2(tauvis2),

    m_MET(NULL),
    m_MET_COV(TMatrixD(2,2)),

    m_truthInput(truthinput),
    m_advancedBalance(false),
    m_simpleBalancePt(0.0),
    m_simpleBalanceUncert(10.0),
    m_fullFitResultChi2(std::map< std::pair<Int_t,Int_t> , Double_t>()),
    m_fullFitResultMH(std::map< std::pair<Int_t,Int_t> , Double_t>()),
    m_bestChi2FullFit(999),
    m_bestMHFullFit(-1),
    m_bestHypoFullFit(std::pair<Int_t, Int_t>(-1,-1) )
{
  if (m_truthInput){
    TRandom3 r(0);   
    
    m_bjet1Smear = GetBjetResolution(bjet1->Eta(), bjet1->Et());
    Double_t bjet1_E  = r.Gaus(bjet1->E(), m_bjet1Smear);
    Double_t bjet1_P  = sqrt(pow(bjet1_E,2) - pow(bjet1->M(),2));
    Double_t bjet1_Pt = sin(bjet1->Theta())*bjet1_P;

    std::cout << "Jet1 smeared by: " <<   (bjet1_E - bjet1->E())/m_bjet1Smear << std::endl;

    bjet1->SetPtEtaPhiE(bjet1_Pt, bjet1->Eta(), bjet1->Phi(), bjet1_E);
    
    TMatrixD bjet1Cov(2,2);
    Double_t bjet1_dpt = sin(bjet1->Theta())*bjet1->E()/bjet1->P()*m_bjet1Smear;  // error propagation p=sqrt(e^2-m^2)
    bjet1Cov(0,0) = pow(cos(bjet1->Phi())*bjet1_dpt,2);                           bjet1Cov(0,1) = sin(bjet1->Phi())*cos(bjet1->Phi())*bjet1_dpt*bjet1_dpt;
    bjet1Cov(1,0) = sin(bjet1->Phi())*cos(bjet1->Phi())*bjet1_dpt*bjet1_dpt;      bjet1Cov(1,1) = pow(sin(bjet1->Phi())*bjet1_dpt,2);
   
    Double_t bjet2_res = GetBjetResolution(bjet2->Eta(), bjet2->Et());
    m_bjet2Smear = GetBjetResolution(bjet2->Eta(), bjet2->Et());
    Double_t bjet2_E  = r.Gaus(bjet2->E(), m_bjet2Smear);
    Double_t bjet2_P  = sqrt(pow(bjet2_E,2) - pow(bjet2->M(),2));
    Double_t bjet2_Pt = sin(bjet2->Theta())*bjet2_P;

    std::cout << "Jet1 smeared by: " <<   (bjet2_E - bjet2->E())/m_bjet2Smear << std::endl;

    bjet2->SetPtEtaPhiE(bjet2_Pt, bjet2->Eta(), bjet2->Phi(), bjet2_E);
    
    TMatrixD bjet2Cov(2,2);
    Double_t bjet2_dpt = sin(bjet2->Theta())*bjet2->E()/bjet2->P()*m_bjet2Smear;  // error propagation p=sqrt(e^2-m^2)
    bjet2Cov(0,0) = pow(cos(bjet2->Phi())*bjet2_dpt,2);                           bjet2Cov(0,1) = sin(bjet2->Phi())*cos(bjet2->Phi())*bjet2_dpt*bjet2_dpt;
    bjet2Cov(1,0) = sin(bjet2->Phi())*cos(bjet2->Phi())*bjet2_dpt*bjet2_dpt;      bjet2Cov(1,1) = pow(sin(bjet2->Phi())*bjet2_dpt,2);


    TLorentzVector* recoil;
    if(heavyhiggsgen != NULL){
       Double_t pxRecoil = r.Gaus(-(heavyhiggsgen->Px() ), 10.0);
       Double_t pyRecoil = r.Gaus(-(heavyhiggsgen->Py() ), 10.0);
       std::cout << "Higgs Recoil X smeared by: " << pxRecoil + heavyhiggsgen->Px() << std::endl;
       std::cout << "Higgs Recoil Y smeared by: " << pyRecoil + heavyhiggsgen->Py() << std::endl;
       recoil = new TLorentzVector(pxRecoil,pyRecoil,0,sqrt(pxRecoil*pxRecoil+pyRecoil*pyRecoil));
    }
    else{
      recoil = new TLorentzVector(0,0,0,0);
      std::cout << "WARNING! Truthinput mode active but no Heavy Higgs gen-information given! Setting Recoil to Zero!" << std::endl;  
    }
    
    TMatrixD recoilCov(2,2);
    recoilCov(0,0)=100;  recoilCov(0,1)=0;
    recoilCov(1,0)=0;    recoilCov(1,1)=100;

    TLorentzVector* met = new TLorentzVector(-(*bjet1 + *bjet2 + *tauvis1 + *tauvis2 + *recoil));
    
    TMatrixD metCov(2,2);
    metCov = recoilCov + bjet1Cov + bjet2Cov;
    
    setAdvancedBalance(met, metCov);

    m_bjet1_smeared = *bjet1;
    m_bjet2_smeared = *bjet2;
    m_met_smeared = *met;

    delete recoil;
  }
}
示例#10
0
文件: tracking.C 项目: krafczyk/AMS
//#############################################################################
double* TrTrackA::PredictionStraightLine(int index){

    static double pred[7];
#pragma omp threadprivate (pred)

    int _Nhit = _Hit.size();

  // Consistency check on the number of hits
    if (_Nhit<3) return NULL;

  // Get hit positions and uncertainties
  // Scale errors (we will use sigmas in microns)
    double hits[_Nhit][3];
    double sigma[_Nhit][3];
    for (int i=0;i<_Nhit;i++){
      for (int j=0;j<3;j++){
          hits[i][j] = _Hit[i].Coo[j];
          sigma[i][j] = 1.e4*_Hit[i].ECoo[j];
          if (i==index) sigma[i][j] *= 1.e2;
      }
    }

  // Lenghts
    double lenz[_Nhit];
    for (int i=0;i<_Nhit;i++) lenz[i] = hits[i][2] - _Hit[0].Coo[2];

  // F and G matrices
    const int idim = 4;
    double d[2*_Nhit][idim];
    for (int i=0;i<_Nhit;i++) {
      int ix = i;
      int iy = i+_Nhit;
      for (int j=0;j<idim;j++) { d[ix][j] = 0; d[iy][j] = 0;}
      d[ix][0] = 1.;
      d[iy][1] = 1.;
      d[ix][2] = lenz[i];
      d[iy][3] = lenz[i];
    }

  // F*S_x*x + G*S_y*y
    double dx[idim];
    for (int j=0;j<idim;j++) {
      dx[j] = 0.;
      for (int l=0;l<_Nhit;l++) {
        dx[j] += d[l][j]/sigma[l][0]/sigma[l][0]*hits[l][0];
        dx[j] += d[l+_Nhit][j]/sigma[l][1]/sigma[l][1]*hits[l][1];
      }
    }

  // (F*S_x*F + G*S_y*G)
    double Param[idim];
    double InvCov[idim][idim];
    for (int j=0;j<idim;j++) {
      for (int k=0;k<idim;k++) {
        InvCov[j][k] = 0.;
        for (int l=0;l<_Nhit;l++) {
          InvCov[j][k] += d[l][j]/sigma[l][0]/sigma[l][0]*d[l][k];
          InvCov[j][k] += d[l+_Nhit][j]/sigma[l][1]/sigma[l][1]*d[l+_Nhit][k];
        } 
      }
    }
      
  // (F*S_x*F + G*S_y*G)**{-1}
    double determ = 0.0;
    TMatrixD ParaCovariance = TMatrixD(idim,idim,(Double_t*)InvCov," ");
    ParaCovariance = ParaCovariance.Invert(&determ);
    if (determ<=0) return NULL;

  // Solution
    for (int k=0;k<idim;k++) {
      Param[k] = 0.;
      for (int i=0;i<idim;i++) {
        Param[k] += ParaCovariance(k,i)*dx[i];
      }
    }

  // Chi2 (xl and yl in microns, since sigmas are in microns too)
    pred[0] = 0;
    pred[1] = 0;
    pred[2] = _Hit[index].Coo[2];
    pred[3] = acos(-sqrt(1-Param[2]*Param[2]-Param[3]*Param[3]));
    pred[4] = atan2(Param[3],Param[2]);
    pred[5] = 0.;
    pred[6] = 0.;
    for (int k=0;k<idim;k++) {
      pred[0] += d[index][k]*Param[k];
      pred[1] += d[index+_Nhit][k]*Param[k];
      for (int l=0;l<idim;l++) {
        pred[5] += d[index][k]*d[index][l]*ParaCovariance(k,l);
        pred[6] += d[index+_Nhit][k]*d[index+_Nhit][l]*ParaCovariance(k,l);
      }
    }
    if (pred[5]>0.) pred[5] = 1.e-4*sqrt(pred[5]); else pred[5]=0.;
    if (pred[6]>0.) pred[6] = 1.e-4*sqrt(pred[6]); else pred[6]=0.;

    return pred;

}
示例#11
0
文件: tracking.C 项目: krafczyk/AMS
//#############################################################################
double* TrTrackA::Prediction(int index){

    static double pred[7];
#pragma omp threadprivate (pred)
    int _Nhit = _Hit.size();

  // Consistency check on the number of hits
    if (_Nhit<4) return NULL;

  // Scale errors (we will use sigmas in microns)
    double hits[_Nhit][3];
    double sigma[_Nhit][3];
    for (int i=0;i<_Nhit;i++){
      for (int j=0;j<3;j++){
          hits[i][j] = _Hit[i].Coo[j];
          sigma[i][j] = 1.e4*_Hit[i].ECoo[j];
          if (i==index) sigma[i][j] *= 1.e2;
      }
    }

    if (!_PathIntExist) SetPathInt();


  // F and G matrices
    const int idim = 5;
    double d[2*_Nhit][idim];
    for (int i=0;i<_Nhit;i++) {
      int ix = i;
      int iy = i+_Nhit;
      for (int j=0;j<idim;j++) { d[ix][j] = 0; d[iy][j] = 0;}
      d[ix][0] = 1.;
      d[iy][1] = 1.;
      for (int k=0;k<=i;k++) {
        d[ix][2] += _PathLength[k];
        d[iy][3] += _PathLength[k];
        d[ix][4] += _PathLength[k]*_PathLength[k]*_PathIntegral_x[0][k];
        d[iy][4] += _PathLength[k]*_PathLength[k]*_PathIntegral_x[1][k];
        for (int l=k+1;l<=i;l++) {
            d[ix][4] += _PathLength[k]*_PathLength[l]*_PathIntegral_u[0][k];
            d[iy][4] += _PathLength[k]*_PathLength[l]*_PathIntegral_u[1][k];
        }
      }
    }

  // F*S_x*x + G*S_y*y
    double dx[idim];
    for (int j=0;j<idim;j++) {
      dx[j] = 0.;
      for (int l=0;l<_Nhit;l++) {
        dx[j] += d[l][j]/sigma[l][0]/sigma[l][0]*hits[l][0];
        dx[j] += d[l+_Nhit][j]/sigma[l][1]/sigma[l][1]*hits[l][1];
      }
    }

  // (F*S_x*F + G*S_y*G)

    double Param[idim];
    double InvCov[idim][idim];
    for (int j=0;j<idim;j++) {
      for (int k=0;k<idim;k++) {
        InvCov[j][k] = 0.;
        for (int l=0;l<_Nhit;l++) {
          InvCov[j][k] += d[l][j]/sigma[l][0]/sigma[l][0]*d[l][k];
          InvCov[j][k] += d[l+_Nhit][j]/sigma[l][1]/sigma[l][1]*d[l+_Nhit][k];
        } 
      }
    }
      
  // (F*S_x*F + G*S_y*G)**{-1}
    double determ = 0.0;
    TMatrixD ParaCovariance = TMatrixD(idim,idim,(Double_t*)InvCov," ");
    ParaCovariance = ParaCovariance.Invert(&determ);
    if (determ<=0) return NULL;

  // Solution
    //printf(">>>>>>>>>>>>> Cov AFTER:\n");
    for (int k=0;k<idim;k++) {
      Param[k] = 0.;
      for (int i=0;i<idim;i++) {
        Param[k] += ParaCovariance[k][i]*dx[i];
        //printf(" %f", ParaCovariance[k][i]);
      }
      //printf("\n");
    }

  // Chi2 (xl and yl in microns, since sigmas are in microns too)
    pred[0] = 0;
    pred[1] = 0;
    pred[2] = hits[index][2];
    pred[3] = acos(-sqrt(1-Param[2]*Param[2]-Param[3]*Param[3]));
    pred[4] = atan2(Param[3],Param[2]);
    pred[5] = 0.;
    pred[6] = 0.;
    for (int k=0;k<idim;k++) {
      pred[0] += d[index][k]*Param[k];
      pred[1] += d[index+_Nhit][k]*Param[k];
      for (int l=0;l<idim;l++) {
        pred[5] += d[index][k]*d[index][l]*ParaCovariance(k,l);
        pred[6] += d[index+_Nhit][k]*d[index+_Nhit][l]*ParaCovariance(k,l);
      }
    }
    if (pred[5]>0.) pred[5] = 1.e-4*sqrt(pred[5]); else pred[5]=0.;
    if (pred[6]>0.) pred[6] = 1.e-4*sqrt(pred[6]); else pred[6]=0.;

    return pred;
    
}
示例#12
0
文件: tracking.C 项目: krafczyk/AMS
//#############################################################################
int TrTrackA::StraightLineFit(){

    int _Nhit = _Hit.size();

  // Reset fit values
    Chi2 = FLT_MAX;
    Ndof = 2*_Nhit-4;
    Theta = 0.0;
    Phi = 0.0;
    U[0] = 0.0;
    U[1] = 0.0;
    U[2] = 1.0;
    P0[0] = 0.0;
    P0[1] = 0.0;
    P0[2] = 0.0;
    Rigidity = FLT_MAX;

  // Consistency check on the number of hits
    if (_Nhit<3) return -2;
    P0[2] = _Hit[0].Coo[2];

  // Get hit positions and uncertainties
  // Scale errors (we will use sigmas in microns)
    double hits[_Nhit][3];
    double sigma[_Nhit][3];
    for (int i=0;i<_Nhit;i++){
      for (int j=0;j<3;j++){
          hits[i][j] = _Hit[i].Coo[j];
          sigma[i][j] = 1.e4*_Hit[i].ECoo[j];
      }
    }

  // Lenghts
    double lenz[_Nhit];
    for (int i=0;i<_Nhit;i++) lenz[i] = hits[i][2] - P0[2];

  // F and G matrices
    const int idim = 4;
    double d[2*_Nhit][idim];
    for (int i=0;i<_Nhit;i++) {
      int ix = i;
      int iy = i+_Nhit;
      for (int j=0;j<idim;j++) { d[ix][j] = 0; d[iy][j] = 0;}
      d[ix][0] = 1.;
      d[iy][1] = 1.;
      d[ix][2] = lenz[i];
      d[iy][3] = lenz[i];
    }

  // F*S_x*x + G*S_y*y
    double dx[idim];
    for (int j=0;j<idim;j++) {
      dx[j] = 0.;
      for (int l=0;l<_Nhit;l++) {
        dx[j] += d[l][j]/sigma[l][0]/sigma[l][0]*hits[l][0];
        dx[j] += d[l+_Nhit][j]/sigma[l][1]/sigma[l][1]*hits[l][1];
      }
    }

  // (F*S_x*F + G*S_y*G)
    double Param[idim];
    double InvCov[idim][idim];
    for (int j=0;j<idim;j++) {
      for (int k=0;k<idim;k++) {
        InvCov[j][k] = 0.;
        for (int l=0;l<_Nhit;l++) {
          InvCov[j][k] += d[l][j]/sigma[l][0]/sigma[l][0]*d[l][k];
          InvCov[j][k] += d[l+_Nhit][j]/sigma[l][1]/sigma[l][1]*d[l+_Nhit][k];
        } 
      }
    }
      
  // (F*S_x*F + G*S_y*G)**{-1}
    double determ = 0.0;
    TMatrixD ParaCovariance = TMatrixD(idim,idim,(Double_t*)InvCov," ");
    ParaCovariance = ParaCovariance.Invert(&determ);
    if (determ<=0) return -1;

  // Solution
    for (int k=0;k<idim;k++) {
      Param[k] = 0.;
      for (int i=0;i<idim;i++) {
        Param[k] += ParaCovariance(k,i)*dx[i];
      }
    }

  // Chi2 (xl and yl in microns, since sigmas are in microns too)
    Chi2 = 0.;
    for (int l=0;l<_Nhit;l++) {
      double xl = hits[l][0]*1.e4;
      double yl = hits[l][1]*1.e4;
      for (int k=0;k<idim;k++) {
        xl -= d[l][k]*Param[k]*1.e4;
        yl -= d[l+_Nhit][k]*Param[k]*1.e4;
      }
      Chi2 += xl/sigma[l][0]/sigma[l][0]*xl + yl/sigma[l][1]/sigma[l][1]*yl;
    }

  // Final result
    P0[0] = Param[0];
    P0[1] = Param[1];
    Phi = atan2(Param[3],Param[2]);
    Theta = acos(-sqrt(1-Param[2]*Param[2]-Param[3]*Param[3]));
    U[0] = sin(Theta)*cos(Phi);
    U[1] = sin(Theta)*sin(Phi);
    U[2] = cos(Theta);

    return 0;

}