/* evaluate user info at current point */ PetscErrorCode IPMEvaluate(Tao tao) { TAO_IPM *ipmP = (TAO_IPM *)tao->data; PetscErrorCode ierr; PetscFunctionBegin; ierr = TaoComputeObjectiveAndGradient(tao,tao->solution,&ipmP->kkt_f,tao->gradient);CHKERRQ(ierr); ierr = TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);CHKERRQ(ierr); if (ipmP->me > 0) { ierr = TaoComputeEqualityConstraints(tao,tao->solution,tao->constraints_equality);CHKERRQ(ierr); ierr = TaoComputeJacobianEquality(tao,tao->solution,tao->jacobian_equality,tao->jacobian_equality_pre);CHKERRQ(ierr); } if (ipmP->mi > 0) { ierr = TaoComputeInequalityConstraints(tao,tao->solution,tao->constraints_inequality);CHKERRQ(ierr); ierr = TaoComputeJacobianInequality(tao,tao->solution,tao->jacobian_inequality,tao->jacobian_inequality_pre);CHKERRQ(ierr); } if (ipmP->nb > 0) { /* Ai' = jac_ineq | I (w/lb) | -I (w/ub) */ ierr = IPMUpdateAi(tao);CHKERRQ(ierr); } PetscFunctionReturn(0); }
static int TaoSolve_BNLS(TAO_SOLVER tao, void*solver){ TAO_BNLS *bnls = (TAO_BNLS *)solver; int info; TaoInt lsflag,iter=0; TaoTerminateReason reason=TAO_CONTINUE_ITERATING; double f,f_full,gnorm,gdx,stepsize=1.0; TaoTruth success; TaoVec *XU, *XL; TaoVec *X, *G=bnls->G, *PG=bnls->PG; TaoVec *R=bnls->R, *DXFree=bnls->DXFree; TaoVec *DX=bnls->DX, *Work=bnls->Work; TaoMat *H, *Hsub=bnls->Hsub; TaoIndexSet *FreeVariables = bnls->FreeVariables; TaoFunctionBegin; /* Check if upper bound greater than lower bound. */ info = TaoGetSolution(tao,&X);CHKERRQ(info); bnls->X=X; info = TaoGetVariableBounds(tao,&XL,&XU);CHKERRQ(info); info = TaoEvaluateVariableBounds(tao,XL,XU); CHKERRQ(info); info = TaoGetHessian(tao,&H);CHKERRQ(info); bnls->H=H; /* Project the current point onto the feasible set */ info = X->Median(XL,X,XU); CHKERRQ(info); TaoLinearSolver *tls; // Modify the linear solver to a conjugate gradient method info = TaoGetLinearSolver(tao, &tls); CHKERRQ(info); TaoLinearSolverPetsc *pls; pls = dynamic_cast <TaoLinearSolverPetsc *> (tls); // set trust radius to zero // PETSc ignores this case and should return the negative curvature direction // at its current default length pls->SetTrustRadius(0.0); if(!bnls->M) bnls->M = new TaoLMVMMat(X); TaoLMVMMat *M = bnls->M; KSP pksp = pls->GetKSP(); // we will want to provide an initial guess in case neg curvature on the first iteration info = KSPSetInitialGuessNonzero(pksp,PETSC_TRUE); CHKERRQ(info); PC ppc; // Modify the preconditioner to use the bfgs approximation info = KSPGetPC(pksp, &ppc); CHKERRQ(info); PetscTruth BFGSPreconditioner=PETSC_FALSE;// debug flag info = PetscOptionsGetTruth(PETSC_NULL,"-bnls_pc_bfgs", &BFGSPreconditioner,PETSC_NULL); CHKERRQ(info); if( BFGSPreconditioner) { info=PetscInfo(tao,"TaoSolve_BNLS: using bfgs preconditioner\n"); info = KSPSetNormType(pksp, KSP_NORM_PRECONDITIONED); CHKERRQ(info); info = PCSetType(ppc, PCSHELL); CHKERRQ(info); info = PCShellSetName(ppc, "bfgs"); CHKERRQ(info); info = PCShellSetContext(ppc, M); CHKERRQ(info); info = PCShellSetApply(ppc, bfgs_apply); CHKERRQ(info); } else {// default to none info=PetscInfo(tao,"TaoSolve_BNLS: using no preconditioner\n"); info = PCSetType(ppc, PCNONE); CHKERRQ(info); } info = TaoComputeMeritFunctionGradient(tao,X,&f,G);CHKERRQ(info); info = PG->BoundGradientProjection(G,XL,X,XU);CHKERRQ(info); info = PG->Norm2(&gnorm); CHKERRQ(info); // Set initial scaling for the function if (f != 0.0) { info = M->SetDelta(2.0 * TaoAbsDouble(f) / (gnorm*gnorm)); CHKERRQ(info); } else { info = M->SetDelta(2.0 / (gnorm*gnorm)); CHKERRQ(info); } while (reason==TAO_CONTINUE_ITERATING){ /* Project the gradient and calculate the norm */ info = PG->BoundGradientProjection(G,XL,X,XU);CHKERRQ(info); info = PG->Norm2(&gnorm); CHKERRQ(info); info = M->Update(X, PG); CHKERRQ(info); PetscScalar ewAtol = PetscMin(0.5,gnorm)*gnorm; info = KSPSetTolerances(pksp,PETSC_DEFAULT,ewAtol, PETSC_DEFAULT, PETSC_DEFAULT); CHKERRQ(info); info=PetscInfo1(tao,"TaoSolve_BNLS: gnorm =%g\n",gnorm); pksp->printreason = PETSC_TRUE; info = KSPView(pksp,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(info); M->View(); info = TaoMonitor(tao,iter++,f,gnorm,0.0,stepsize,&reason); CHKERRQ(info); if (reason!=TAO_CONTINUE_ITERATING) break; info = FreeVariables->WhichEqual(PG,G); CHKERRQ(info); info = TaoComputeHessian(tao,X,H);CHKERRQ(info); /* Create a reduced linear system */ info = R->SetReducedVec(G,FreeVariables);CHKERRQ(info); info = R->Negate();CHKERRQ(info); /* Use gradient as initial guess */ PetscTruth UseGradientIG=PETSC_FALSE;// debug flag info = PetscOptionsGetTruth(PETSC_NULL,"-bnls_use_gradient_ig", &UseGradientIG,PETSC_NULL); CHKERRQ(info); if(UseGradientIG) info = DX->CopyFrom(G); else { info=PetscInfo(tao,"TaoSolve_BNLS: use bfgs init guess \n"); info = M->Solve(G, DX, &success); } CHKERRQ(info); info = DXFree->SetReducedVec(DX,FreeVariables);CHKERRQ(info); info = DXFree->Negate(); CHKERRQ(info); info = Hsub->SetReducedMatrix(H,FreeVariables,FreeVariables);CHKERRQ(info); bnls->gamma_factor /= 2; success = TAO_FALSE; while (success==TAO_FALSE) { /* Approximately solve the reduced linear system */ info = TaoPreLinearSolve(tao,Hsub);CHKERRQ(info); info = TaoLinearSolve(tao,Hsub,R,DXFree,&success);CHKERRQ(info); info = DX->SetToZero(); CHKERRQ(info); info = DX->ReducedXPY(DXFree,FreeVariables);CHKERRQ(info); info = DX->Dot(G,&gdx); CHKERRQ(info); if (gdx>=0 || success==TAO_FALSE) { /* use bfgs direction */ info = M->Solve(G, DX, &success); CHKERRQ(info); info = DX->BoundGradientProjection(DX,XL,X,XU); CHKERRQ(info); info = DX->Negate(); CHKERRQ(info); // Check for success (descent direction) info = DX->Dot(G,&gdx); CHKERRQ(info); if (gdx >= 0) { // Step is not descent or solve was not successful // Use steepest descent direction (scaled) if (f != 0.0) { info = M->SetDelta(2.0 * TaoAbsDouble(f) / (gnorm*gnorm)); CHKERRQ(info); } else { info = M->SetDelta(2.0 / (gnorm*gnorm)); CHKERRQ(info); } info = M->Reset(); CHKERRQ(info); info = M->Update(X, G); CHKERRQ(info); info = DX->CopyFrom(G); info = DX->Negate(); CHKERRQ(info); info = DX->Dot(G,&gdx); CHKERRQ(info); info=PetscInfo1(tao,"LMVM Solve Fail use steepest descent, gdx %22.12e \n",gdx); } else { info=PetscInfo1(tao,"Newton Solve Fail use BFGS direction, gdx %22.12e \n",gdx); } success = TAO_TRUE; // bnls->gamma_factor *= 2; // bnls->gamma = bnls->gamma_factor*(gnorm); //#if !defined(PETSC_USE_COMPLEX) // info=PetscInfo2(tao,"TaoSolve_NLS: modify diagonal (assume same nonzero structure), gamma_factor=%g, gamma=%g\n",bnls->gamma_factor,bnls->gamma); // CHKERRQ(info); //#else // info=PetscInfo3(tao,"TaoSolve_NLS: modify diagonal (asuume same nonzero structure), gamma_factor=%g, gamma=%g, gdx %22.12e \n", // bnls->gamma_factor,PetscReal(bnls->gamma),gdx);CHKERRQ(info); //#endif // info = Hsub->ShiftDiagonal(bnls->gamma);CHKERRQ(info); // if (f != 0.0) { // info = M->SetDelta(2.0 * TaoAbsDouble(f) / (gnorm*gnorm)); CHKERRQ(info); // } // else { // info = M->SetDelta(2.0 / (gnorm*gnorm)); CHKERRQ(info); // } // info = M->Reset(); CHKERRQ(info); // info = M->Update(X, G); CHKERRQ(info); // success = TAO_FALSE; } else { info=PetscInfo1(tao,"Newton Solve is descent direction, gdx %22.12e \n",gdx); success = TAO_TRUE; } } stepsize=1.0; info = TaoLineSearchApply(tao,X,G,DX,Work, &f,&f_full,&stepsize,&lsflag); CHKERRQ(info); } /* END MAIN LOOP */ TaoFunctionReturn(0); }
static int TaoSolve_GPCG(TAO_SOLVER tao, void *solver) { TAO_GPCG *gpcg = (TAO_GPCG *)solver ; int info; TaoInt lsflag,iter=0; TaoTruth optimal_face=TAO_FALSE,success; double actred,f,f_new,f_full,gnorm,gdx,stepsize; double c; TaoVec *XU, *XL; TaoVec *X, *G=gpcg->G , *B=gpcg->B, *PG=gpcg->PG; TaoVec *R=gpcg->R, *DXFree=gpcg->DXFree; TaoVec *G_New=gpcg->G_New; TaoVec *DX=gpcg->DX, *Work=gpcg->Work; TaoMat *H, *Hsub=gpcg->Hsub; TaoIndexSet *Free_Local = gpcg->Free_Local, *TIS=gpcg->TT; TaoTerminateReason reason; TaoFunctionBegin; /* Check if upper bound greater than lower bound. */ info = TaoGetSolution(tao,&X);CHKERRQ(info); info = TaoGetHessian(tao,&H);CHKERRQ(info); info = TaoGetVariableBounds(tao,&XL,&XU);CHKERRQ(info); info = TaoEvaluateVariableBounds(tao,XL,XU); CHKERRQ(info); info = X->Median(XL,X,XU); CHKERRQ(info); info = TaoComputeHessian(tao,X,H); CHKERRQ(info); info = TaoComputeFunctionGradient(tao,X,&f,B); CHKERRQ(info); /* Compute quadratic representation */ info = H->Multiply(X,Work); CHKERRQ(info); info = X->Dot(Work,&c); CHKERRQ(info); info = B->Axpy(-1.0,Work); CHKERRQ(info); info = X->Dot(B,&stepsize); CHKERRQ(info); gpcg->c=f-c/2.0-stepsize; info = Free_Local->WhichBetween(XL,X,XU); CHKERRQ(info); info = TaoGPCGComputeFunctionGradient(tao, X, &gpcg->f , G); /* Project the gradient and calculate the norm */ info = G_New->CopyFrom(G);CHKERRQ(info); info = PG->BoundGradientProjection(G,XL,X,XU);CHKERRQ(info); info = PG->Norm2(&gpcg->gnorm); CHKERRQ(info); gpcg->step=1.0; /* Check Stopping Condition */ info=TaoMonitor(tao,iter++,gpcg->f,gpcg->gnorm,0,gpcg->step,&reason); CHKERRQ(info); while (reason == TAO_CONTINUE_ITERATING){ info = TaoGradProjections(tao, gpcg); CHKERRQ(info); info = Free_Local->WhichBetween(XL,X,XU); CHKERRQ(info); info = Free_Local->GetSize(&gpcg->n_free); CHKERRQ(info); f=gpcg->f; gnorm=gpcg->gnorm; if (gpcg->n_free > 0){ /* Create a reduced linear system */ info = R->SetReducedVec(G,Free_Local);CHKERRQ(info); info = R->Negate(); CHKERRQ(info); info = DXFree->SetReducedVec(DX,Free_Local);CHKERRQ(info); info = DXFree->SetToZero(); CHKERRQ(info); info = Hsub->SetReducedMatrix(H,Free_Local,Free_Local);CHKERRQ(info); info = TaoPreLinearSolve(tao,Hsub);CHKERRQ(info); /* Approximately solve the reduced linear system */ info = TaoLinearSolve(tao,Hsub,R,DXFree,&success);CHKERRQ(info); info=DX->SetToZero(); CHKERRQ(info); info=DX->ReducedXPY(DXFree,Free_Local);CHKERRQ(info); info = G->Dot(DX,&gdx); CHKERRQ(info); stepsize=1.0; f_new=f; info = TaoLineSearchApply(tao,X,G,DX,Work, &f_new,&f_full,&stepsize,&lsflag); CHKERRQ(info); actred = f_new - f; /* Evaluate the function and gradient at the new point */ info = PG->BoundGradientProjection(G,XL,X,XU); CHKERRQ(info); info = PG->Norm2(&gnorm); CHKERRQ(info); f=f_new; info = GPCGCheckOptimalFace(X,XL,XU,PG,Work, Free_Local, TIS, &optimal_face); CHKERRQ(info); } else { actred = 0; stepsize=1.0; /* if there were no free variables, no cg method */ } info = TaoMonitor(tao,iter,f,gnorm,0.0,stepsize,&reason); CHKERRQ(info); gpcg->f=f;gpcg->gnorm=gnorm; gpcg->actred=actred; if (reason!=TAO_CONTINUE_ITERATING) break; iter++; } /* END MAIN LOOP */ TaoFunctionReturn(0); }
PetscErrorCode TaoSolve_Test(Tao tao) { Mat A = tao->hessian,B; Vec x = tao->solution,g1,g2; PetscErrorCode ierr; PetscInt i; PetscReal nrm,gnorm,hcnorm,fdnorm; MPI_Comm comm; Tao_Test *fd = (Tao_Test*)tao->data; PetscFunctionBegin; comm = ((PetscObject)tao)->comm; if (fd->check_gradient) { ierr = VecDuplicate(x,&g1);CHKERRQ(ierr); ierr = VecDuplicate(x,&g2);CHKERRQ(ierr); ierr = PetscPrintf(comm,"Testing hand-coded gradient (hc) against finite difference gradient (fd), if the ratio ||fd - hc|| / ||hc|| is\n");CHKERRQ(ierr); ierr = PetscPrintf(comm,"0 (1.e-8), the hand-coded gradient is probably correct.\n");CHKERRQ(ierr); if (!fd->complete_print) { ierr = PetscPrintf(comm,"Run with -tao_test_display to show difference\n");CHKERRQ(ierr); ierr = PetscPrintf(comm,"between hand-coded and finite difference gradient.\n");CHKERRQ(ierr); } for (i=0; i<3; i++) { if (i == 1) {ierr = VecSet(x,-1.0);CHKERRQ(ierr);} else if (i == 2) {ierr = VecSet(x,1.0);CHKERRQ(ierr);} /* Compute both version of gradient */ ierr = TaoComputeGradient(tao,x,g1);CHKERRQ(ierr); ierr = TaoDefaultComputeGradient(tao,x,g2,NULL);CHKERRQ(ierr); if (fd->complete_print) { MPI_Comm gcomm; PetscViewer viewer; ierr = PetscPrintf(comm,"Finite difference gradient\n");CHKERRQ(ierr); ierr = PetscObjectGetComm((PetscObject)g2,&gcomm);CHKERRQ(ierr); ierr = PetscViewerASCIIGetStdout(gcomm,&viewer);CHKERRQ(ierr); ierr = VecView(g2,viewer);CHKERRQ(ierr); ierr = PetscPrintf(comm,"Hand-coded gradient\n");CHKERRQ(ierr); ierr = PetscObjectGetComm((PetscObject)g1,&gcomm);CHKERRQ(ierr); ierr = PetscViewerASCIIGetStdout(gcomm,&viewer);CHKERRQ(ierr); ierr = VecView(g1,viewer);CHKERRQ(ierr); ierr = PetscPrintf(comm,"\n");CHKERRQ(ierr); } ierr = VecAXPY(g2,-1.0,g1);CHKERRQ(ierr); ierr = VecNorm(g1,NORM_2,&hcnorm);CHKERRQ(ierr); ierr = VecNorm(g2,NORM_2,&fdnorm);CHKERRQ(ierr); if (!hcnorm) hcnorm=1.0e-20; ierr = PetscPrintf(comm,"ratio ||fd-hc||/||hc|| = %g, difference ||fd-hc|| = %g\n", (double)(fdnorm/hcnorm), (double)fdnorm);CHKERRQ(ierr); } ierr = VecDestroy(&g1);CHKERRQ(ierr); ierr = VecDestroy(&g2);CHKERRQ(ierr); } if (fd->check_hessian) { if (A != tao->hessian_pre) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Cannot test with alternative preconditioner"); ierr = PetscPrintf(comm,"Testing hand-coded Hessian (hc) against finite difference Hessian (fd). If the ratio is\n");CHKERRQ(ierr); ierr = PetscPrintf(comm,"O (1.e-8), the hand-coded Hessian is probably correct.\n");CHKERRQ(ierr); if (!fd->complete_print) { ierr = PetscPrintf(comm,"Run with -tao_test_display to show difference\n");CHKERRQ(ierr); ierr = PetscPrintf(comm,"of hand-coded and finite difference Hessian.\n");CHKERRQ(ierr); } for (i=0;i<3;i++) { /* compute both versions of Hessian */ ierr = TaoComputeHessian(tao,x,A,A);CHKERRQ(ierr); if (!i) {ierr = MatConvert(A,MATSAME,MAT_INITIAL_MATRIX,&B);CHKERRQ(ierr);} ierr = TaoDefaultComputeHessian(tao,x,B,B,tao->user_hessP);CHKERRQ(ierr); if (fd->complete_print) { MPI_Comm bcomm; PetscViewer viewer; ierr = PetscPrintf(comm,"Finite difference Hessian\n");CHKERRQ(ierr); ierr = PetscObjectGetComm((PetscObject)B,&bcomm);CHKERRQ(ierr); ierr = PetscViewerASCIIGetStdout(bcomm,&viewer);CHKERRQ(ierr); ierr = MatView(B,viewer);CHKERRQ(ierr); } /* compare */ ierr = MatAYPX(B,-1.0,A,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr); ierr = MatNorm(B,NORM_FROBENIUS,&nrm);CHKERRQ(ierr); ierr = MatNorm(A,NORM_FROBENIUS,&gnorm);CHKERRQ(ierr); if (fd->complete_print) { MPI_Comm hcomm; PetscViewer viewer; ierr = PetscPrintf(comm,"Hand-coded Hessian\n");CHKERRQ(ierr); ierr = PetscObjectGetComm((PetscObject)B,&hcomm);CHKERRQ(ierr); ierr = PetscViewerASCIIGetStdout(hcomm,&viewer);CHKERRQ(ierr); ierr = MatView(A,viewer);CHKERRQ(ierr); ierr = PetscPrintf(comm,"Hand-coded minus finite difference Hessian\n");CHKERRQ(ierr); ierr = MatView(B,viewer);CHKERRQ(ierr); } if (!gnorm) gnorm = 1.0e-20; ierr = PetscPrintf(comm,"ratio ||fd-hc||/||hc|| = %g, difference ||fd-hc|| = %g\n",(double)(nrm/gnorm),(double)nrm);CHKERRQ(ierr); } ierr = MatDestroy(&B);CHKERRQ(ierr); } tao->reason = TAO_CONVERGED_USER; PetscFunctionReturn(0); }
static PetscErrorCode TaoSolve_TRON(Tao tao) { TAO_TRON *tron = (TAO_TRON *)tao->data; PetscErrorCode ierr; PetscInt its; TaoConvergedReason reason = TAO_CONTINUE_ITERATING; TaoLineSearchConvergedReason ls_reason = TAOLINESEARCH_CONTINUE_ITERATING; PetscReal prered,actred,delta,f,f_new,rhok,gdx,xdiff,stepsize; PetscFunctionBegin; tron->pgstepsize=1.0; tao->trust = tao->trust0; /* Project the current point onto the feasible set */ ierr = TaoComputeVariableBounds(tao);CHKERRQ(ierr); ierr = VecMedian(tao->XL,tao->solution,tao->XU,tao->solution);CHKERRQ(ierr); ierr = TaoLineSearchSetVariableBounds(tao->linesearch,tao->XL,tao->XU);CHKERRQ(ierr); ierr = TaoComputeObjectiveAndGradient(tao,tao->solution,&tron->f,tao->gradient);CHKERRQ(ierr); ierr = ISDestroy(&tron->Free_Local);CHKERRQ(ierr); ierr = VecWhichBetween(tao->XL,tao->solution,tao->XU,&tron->Free_Local);CHKERRQ(ierr); /* Project the gradient and calculate the norm */ ierr = VecBoundGradientProjection(tao->gradient,tao->solution, tao->XL, tao->XU, tao->gradient);CHKERRQ(ierr); ierr = VecNorm(tao->gradient,NORM_2,&tron->gnorm);CHKERRQ(ierr); if (PetscIsInfOrNanReal(tron->f) || PetscIsInfOrNanReal(tron->gnorm)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute function generated Inf pr NaN"); if (tao->trust <= 0) { tao->trust=PetscMax(tron->gnorm*tron->gnorm,1.0); } tron->stepsize=tao->trust; ierr = TaoMonitor(tao, tao->niter, tron->f, tron->gnorm, 0.0, tron->stepsize, &reason);CHKERRQ(ierr); while (reason==TAO_CONTINUE_ITERATING){ tao->ksp_its=0; ierr = TronGradientProjections(tao,tron);CHKERRQ(ierr); f=tron->f; delta=tao->trust; tron->n_free_last = tron->n_free; ierr = TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);CHKERRQ(ierr); ierr = ISGetSize(tron->Free_Local, &tron->n_free);CHKERRQ(ierr); /* If no free variables */ if (tron->n_free == 0) { actred=0; ierr = PetscInfo(tao,"No free variables in tron iteration.\n");CHKERRQ(ierr); ierr = VecNorm(tao->gradient,NORM_2,&tron->gnorm);CHKERRQ(ierr); ierr = TaoMonitor(tao, tao->niter, tron->f, tron->gnorm, 0.0, delta, &reason);CHKERRQ(ierr); if (!reason) { reason = TAO_CONVERGED_STEPTOL; ierr = TaoSetConvergedReason(tao,reason);CHKERRQ(ierr); } break; } /* use free_local to mask/submat gradient, hessian, stepdirection */ ierr = TaoVecGetSubVec(tao->gradient,tron->Free_Local,tao->subset_type,0.0,&tron->R);CHKERRQ(ierr); ierr = TaoVecGetSubVec(tao->gradient,tron->Free_Local,tao->subset_type,0.0,&tron->DXFree);CHKERRQ(ierr); ierr = VecSet(tron->DXFree,0.0);CHKERRQ(ierr); ierr = VecScale(tron->R, -1.0);CHKERRQ(ierr); ierr = TaoMatGetSubMat(tao->hessian, tron->Free_Local, tron->diag, tao->subset_type, &tron->H_sub);CHKERRQ(ierr); if (tao->hessian == tao->hessian_pre) { ierr = MatDestroy(&tron->Hpre_sub);CHKERRQ(ierr); ierr = PetscObjectReference((PetscObject)(tron->H_sub));CHKERRQ(ierr); tron->Hpre_sub = tron->H_sub; } else { ierr = TaoMatGetSubMat(tao->hessian_pre, tron->Free_Local, tron->diag, tao->subset_type,&tron->Hpre_sub);CHKERRQ(ierr); } ierr = KSPReset(tao->ksp);CHKERRQ(ierr); ierr = KSPSetOperators(tao->ksp, tron->H_sub, tron->Hpre_sub);CHKERRQ(ierr); while (1) { /* Approximately solve the reduced linear system */ ierr = KSPSTCGSetRadius(tao->ksp,delta);CHKERRQ(ierr); ierr = KSPSolve(tao->ksp, tron->R, tron->DXFree);CHKERRQ(ierr); ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr); tao->ksp_its+=its; tao->ksp_tot_its+=its; ierr = VecSet(tao->stepdirection,0.0);CHKERRQ(ierr); /* Add dxfree matrix to compute step direction vector */ ierr = VecISAXPY(tao->stepdirection,tron->Free_Local,1.0,tron->DXFree);CHKERRQ(ierr); if (0) { PetscReal rhs,stepnorm; ierr = VecNorm(tron->R,NORM_2,&rhs);CHKERRQ(ierr); ierr = VecNorm(tron->DXFree,NORM_2,&stepnorm);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"|rhs|=%g\t|s|=%g\n",(double)rhs,(double)stepnorm);CHKERRQ(ierr); } ierr = VecDot(tao->gradient, tao->stepdirection, &gdx);CHKERRQ(ierr); ierr = PetscInfo1(tao,"Expected decrease in function value: %14.12e\n",(double)gdx);CHKERRQ(ierr); ierr = VecCopy(tao->solution, tron->X_New);CHKERRQ(ierr); ierr = VecCopy(tao->gradient, tron->G_New);CHKERRQ(ierr); stepsize=1.0;f_new=f; ierr = TaoLineSearchSetInitialStepLength(tao->linesearch,1.0);CHKERRQ(ierr); ierr = TaoLineSearchApply(tao->linesearch, tron->X_New, &f_new, tron->G_New, tao->stepdirection,&stepsize,&ls_reason);CHKERRQ(ierr);CHKERRQ(ierr); ierr = TaoAddLineSearchCounts(tao);CHKERRQ(ierr); ierr = MatMult(tao->hessian, tao->stepdirection, tron->Work);CHKERRQ(ierr); ierr = VecAYPX(tron->Work, 0.5, tao->gradient);CHKERRQ(ierr); ierr = VecDot(tao->stepdirection, tron->Work, &prered);CHKERRQ(ierr); actred = f_new - f; if (actred<0) { rhok=PetscAbs(-actred/prered); } else { rhok=0.0; } /* Compare actual improvement to the quadratic model */ if (rhok > tron->eta1) { /* Accept the point */ /* d = x_new - x */ ierr = VecCopy(tron->X_New, tao->stepdirection);CHKERRQ(ierr); ierr = VecAXPY(tao->stepdirection, -1.0, tao->solution);CHKERRQ(ierr); ierr = VecNorm(tao->stepdirection, NORM_2, &xdiff);CHKERRQ(ierr); xdiff *= stepsize; /* Adjust trust region size */ if (rhok < tron->eta2 ){ delta = PetscMin(xdiff,delta)*tron->sigma1; } else if (rhok > tron->eta4 ){ delta= PetscMin(xdiff,delta)*tron->sigma3; } else if (rhok > tron->eta3 ){ delta=PetscMin(xdiff,delta)*tron->sigma2; } ierr = VecBoundGradientProjection(tron->G_New,tron->X_New, tao->XL, tao->XU, tao->gradient);CHKERRQ(ierr); if (tron->Free_Local) { ierr = ISDestroy(&tron->Free_Local);CHKERRQ(ierr); } ierr = VecWhichBetween(tao->XL, tron->X_New, tao->XU, &tron->Free_Local);CHKERRQ(ierr); f=f_new; ierr = VecNorm(tao->gradient,NORM_2,&tron->gnorm);CHKERRQ(ierr); ierr = VecCopy(tron->X_New, tao->solution);CHKERRQ(ierr); ierr = VecCopy(tron->G_New, tao->gradient);CHKERRQ(ierr); break; } else if (delta <= 1e-30) { break; } else { delta /= 4.0; } } /* end linear solve loop */ tron->f=f; tron->actred=actred; tao->trust=delta; tao->niter++; ierr = TaoMonitor(tao, tao->niter, tron->f, tron->gnorm, 0.0, delta, &reason);CHKERRQ(ierr); } /* END MAIN LOOP */ PetscFunctionReturn(0); }
static PetscErrorCode TaoSolve_NTR(Tao tao) { TAO_NTR *tr = (TAO_NTR *)tao->data; PC pc; KSPConvergedReason ksp_reason; TaoConvergedReason reason; PetscReal fmin, ftrial, prered, actred, kappa, sigma, beta; PetscReal tau, tau_1, tau_2, tau_max, tau_min, max_radius; PetscReal f, gnorm; PetscReal delta; PetscReal norm_d; PetscErrorCode ierr; PetscInt iter = 0; PetscInt bfgsUpdates = 0; PetscInt needH; PetscInt i_max = 5; PetscInt j_max = 1; PetscInt i, j, N, n, its; PetscFunctionBegin; if (tao->XL || tao->XU || tao->ops->computebounds) { ierr = PetscPrintf(((PetscObject)tao)->comm,"WARNING: Variable bounds have been set but will be ignored by ntr algorithm\n");CHKERRQ(ierr); } tao->trust = tao->trust0; /* Modify the radius if it is too large or small */ tao->trust = PetscMax(tao->trust, tr->min_radius); tao->trust = PetscMin(tao->trust, tr->max_radius); if (NTR_PC_BFGS == tr->pc_type && !tr->M) { ierr = VecGetLocalSize(tao->solution,&n);CHKERRQ(ierr); ierr = VecGetSize(tao->solution,&N);CHKERRQ(ierr); ierr = MatCreateLMVM(((PetscObject)tao)->comm,n,N,&tr->M);CHKERRQ(ierr); ierr = MatLMVMAllocateVectors(tr->M,tao->solution);CHKERRQ(ierr); } /* Check convergence criteria */ ierr = TaoComputeObjectiveAndGradient(tao, tao->solution, &f, tao->gradient);CHKERRQ(ierr); ierr = VecNorm(tao->gradient,NORM_2,&gnorm);CHKERRQ(ierr); if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute function generated Inf or NaN"); needH = 1; ierr = TaoMonitor(tao, iter, f, gnorm, 0.0, 1.0, &reason);CHKERRQ(ierr); if (reason != TAO_CONTINUE_ITERATING) PetscFunctionReturn(0); /* Create vectors for the limited memory preconditioner */ if ((NTR_PC_BFGS == tr->pc_type) && (BFGS_SCALE_BFGS != tr->bfgs_scale_type)) { if (!tr->Diag) { ierr = VecDuplicate(tao->solution, &tr->Diag);CHKERRQ(ierr); } } switch(tr->ksp_type) { case NTR_KSP_NASH: ierr = KSPSetType(tao->ksp, KSPNASH);CHKERRQ(ierr); if (tao->ksp->ops->setfromoptions) { (*tao->ksp->ops->setfromoptions)(tao->ksp); } break; case NTR_KSP_STCG: ierr = KSPSetType(tao->ksp, KSPSTCG);CHKERRQ(ierr); if (tao->ksp->ops->setfromoptions) { (*tao->ksp->ops->setfromoptions)(tao->ksp); } break; default: ierr = KSPSetType(tao->ksp, KSPGLTR);CHKERRQ(ierr); if (tao->ksp->ops->setfromoptions) { (*tao->ksp->ops->setfromoptions)(tao->ksp); } break; } /* Modify the preconditioner to use the bfgs approximation */ ierr = KSPGetPC(tao->ksp, &pc);CHKERRQ(ierr); switch(tr->pc_type) { case NTR_PC_NONE: ierr = PCSetType(pc, PCNONE);CHKERRQ(ierr); if (pc->ops->setfromoptions) { (*pc->ops->setfromoptions)(pc); } break; case NTR_PC_AHESS: ierr = PCSetType(pc, PCJACOBI);CHKERRQ(ierr); if (pc->ops->setfromoptions) { (*pc->ops->setfromoptions)(pc); } ierr = PCJacobiSetUseAbs(pc);CHKERRQ(ierr); break; case NTR_PC_BFGS: ierr = PCSetType(pc, PCSHELL);CHKERRQ(ierr); if (pc->ops->setfromoptions) { (*pc->ops->setfromoptions)(pc); } ierr = PCShellSetName(pc, "bfgs");CHKERRQ(ierr); ierr = PCShellSetContext(pc, tr->M);CHKERRQ(ierr); ierr = PCShellSetApply(pc, MatLMVMSolveShell);CHKERRQ(ierr); break; default: /* Use the pc method set by pc_type */ break; } /* Initialize trust-region radius */ switch(tr->init_type) { case NTR_INIT_CONSTANT: /* Use the initial radius specified */ break; case NTR_INIT_INTERPOLATION: /* Use the initial radius specified */ max_radius = 0.0; for (j = 0; j < j_max; ++j) { fmin = f; sigma = 0.0; if (needH) { ierr = TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);CHKERRQ(ierr); needH = 0; } for (i = 0; i < i_max; ++i) { ierr = VecCopy(tao->solution, tr->W);CHKERRQ(ierr); ierr = VecAXPY(tr->W, -tao->trust/gnorm, tao->gradient);CHKERRQ(ierr); ierr = TaoComputeObjective(tao, tr->W, &ftrial);CHKERRQ(ierr); if (PetscIsInfOrNanReal(ftrial)) { tau = tr->gamma1_i; } else { if (ftrial < fmin) { fmin = ftrial; sigma = -tao->trust / gnorm; } ierr = MatMult(tao->hessian, tao->gradient, tao->stepdirection);CHKERRQ(ierr); ierr = VecDot(tao->gradient, tao->stepdirection, &prered);CHKERRQ(ierr); prered = tao->trust * (gnorm - 0.5 * tao->trust * prered / (gnorm * gnorm)); actred = f - ftrial; if ((PetscAbsScalar(actred) <= tr->epsilon) && (PetscAbsScalar(prered) <= tr->epsilon)) { kappa = 1.0; } else { kappa = actred / prered; } tau_1 = tr->theta_i * gnorm * tao->trust / (tr->theta_i * gnorm * tao->trust + (1.0 - tr->theta_i) * prered - actred); tau_2 = tr->theta_i * gnorm * tao->trust / (tr->theta_i * gnorm * tao->trust - (1.0 + tr->theta_i) * prered + actred); tau_min = PetscMin(tau_1, tau_2); tau_max = PetscMax(tau_1, tau_2); if (PetscAbsScalar(kappa - 1.0) <= tr->mu1_i) { /* Great agreement */ max_radius = PetscMax(max_radius, tao->trust); if (tau_max < 1.0) { tau = tr->gamma3_i; } else if (tau_max > tr->gamma4_i) { tau = tr->gamma4_i; } else { tau = tau_max; } } else if (PetscAbsScalar(kappa - 1.0) <= tr->mu2_i) { /* Good agreement */ max_radius = PetscMax(max_radius, tao->trust); if (tau_max < tr->gamma2_i) { tau = tr->gamma2_i; } else if (tau_max > tr->gamma3_i) { tau = tr->gamma3_i; } else { tau = tau_max; } } else { /* Not good agreement */ if (tau_min > 1.0) { tau = tr->gamma2_i; } else if (tau_max < tr->gamma1_i) { tau = tr->gamma1_i; } else if ((tau_min < tr->gamma1_i) && (tau_max >= 1.0)) { tau = tr->gamma1_i; } else if ((tau_1 >= tr->gamma1_i) && (tau_1 < 1.0) && ((tau_2 < tr->gamma1_i) || (tau_2 >= 1.0))) { tau = tau_1; } else if ((tau_2 >= tr->gamma1_i) && (tau_2 < 1.0) && ((tau_1 < tr->gamma1_i) || (tau_2 >= 1.0))) { tau = tau_2; } else { tau = tau_max; } } } tao->trust = tau * tao->trust; } if (fmin < f) { f = fmin; ierr = VecAXPY(tao->solution, sigma, tao->gradient);CHKERRQ(ierr); ierr = TaoComputeGradient(tao,tao->solution, tao->gradient);CHKERRQ(ierr); ierr = VecNorm(tao->gradient, NORM_2, &gnorm);CHKERRQ(ierr); if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute function generated Inf or NaN"); needH = 1; ierr = TaoMonitor(tao, iter, f, gnorm, 0.0, 1.0, &reason);CHKERRQ(ierr); if (reason != TAO_CONTINUE_ITERATING) { PetscFunctionReturn(0); } } } tao->trust = PetscMax(tao->trust, max_radius); /* Modify the radius if it is too large or small */ tao->trust = PetscMax(tao->trust, tr->min_radius); tao->trust = PetscMin(tao->trust, tr->max_radius); break; default: /* Norm of the first direction will initialize radius */ tao->trust = 0.0; break; } /* Set initial scaling for the BFGS preconditioner This step is done after computing the initial trust-region radius since the function value may have decreased */ if (NTR_PC_BFGS == tr->pc_type) { if (f != 0.0) { delta = 2.0 * PetscAbsScalar(f) / (gnorm*gnorm); } else { delta = 2.0 / (gnorm*gnorm); } ierr = MatLMVMSetDelta(tr->M,delta);CHKERRQ(ierr); } /* Have not converged; continue with Newton method */ while (reason == TAO_CONTINUE_ITERATING) { ++iter; tao->ksp_its=0; /* Compute the Hessian */ if (needH) { ierr = TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);CHKERRQ(ierr); needH = 0; } if (NTR_PC_BFGS == tr->pc_type) { if (BFGS_SCALE_AHESS == tr->bfgs_scale_type) { /* Obtain diagonal for the bfgs preconditioner */ ierr = MatGetDiagonal(tao->hessian, tr->Diag);CHKERRQ(ierr); ierr = VecAbs(tr->Diag);CHKERRQ(ierr); ierr = VecReciprocal(tr->Diag);CHKERRQ(ierr); ierr = MatLMVMSetScale(tr->M,tr->Diag);CHKERRQ(ierr); } /* Update the limited memory preconditioner */ ierr = MatLMVMUpdate(tr->M, tao->solution, tao->gradient);CHKERRQ(ierr); ++bfgsUpdates; } while (reason == TAO_CONTINUE_ITERATING) { ierr = KSPSetOperators(tao->ksp, tao->hessian, tao->hessian_pre);CHKERRQ(ierr); /* Solve the trust region subproblem */ if (NTR_KSP_NASH == tr->ksp_type) { ierr = KSPNASHSetRadius(tao->ksp,tao->trust);CHKERRQ(ierr); ierr = KSPSolve(tao->ksp, tao->gradient, tao->stepdirection);CHKERRQ(ierr); ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr); tao->ksp_its+=its; tao->ksp_tot_its+=its; ierr = KSPNASHGetNormD(tao->ksp, &norm_d);CHKERRQ(ierr); } else if (NTR_KSP_STCG == tr->ksp_type) { ierr = KSPSTCGSetRadius(tao->ksp,tao->trust);CHKERRQ(ierr); ierr = KSPSolve(tao->ksp, tao->gradient, tao->stepdirection);CHKERRQ(ierr); ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr); tao->ksp_its+=its; tao->ksp_tot_its+=its; ierr = KSPSTCGGetNormD(tao->ksp, &norm_d);CHKERRQ(ierr); } else { /* NTR_KSP_GLTR */ ierr = KSPGLTRSetRadius(tao->ksp,tao->trust);CHKERRQ(ierr); ierr = KSPSolve(tao->ksp, tao->gradient, tao->stepdirection);CHKERRQ(ierr); ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr); tao->ksp_its+=its; tao->ksp_tot_its+=its; ierr = KSPGLTRGetNormD(tao->ksp, &norm_d);CHKERRQ(ierr); } if (0.0 == tao->trust) { /* Radius was uninitialized; use the norm of the direction */ if (norm_d > 0.0) { tao->trust = norm_d; /* Modify the radius if it is too large or small */ tao->trust = PetscMax(tao->trust, tr->min_radius); tao->trust = PetscMin(tao->trust, tr->max_radius); } else { /* The direction was bad; set radius to default value and re-solve the trust-region subproblem to get a direction */ tao->trust = tao->trust0; /* Modify the radius if it is too large or small */ tao->trust = PetscMax(tao->trust, tr->min_radius); tao->trust = PetscMin(tao->trust, tr->max_radius); if (NTR_KSP_NASH == tr->ksp_type) { ierr = KSPNASHSetRadius(tao->ksp,tao->trust);CHKERRQ(ierr); ierr = KSPSolve(tao->ksp, tao->gradient, tao->stepdirection);CHKERRQ(ierr); ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr); tao->ksp_its+=its; tao->ksp_tot_its+=its; ierr = KSPNASHGetNormD(tao->ksp, &norm_d);CHKERRQ(ierr); } else if (NTR_KSP_STCG == tr->ksp_type) { ierr = KSPSTCGSetRadius(tao->ksp,tao->trust);CHKERRQ(ierr); ierr = KSPSolve(tao->ksp, tao->gradient, tao->stepdirection);CHKERRQ(ierr); ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr); tao->ksp_its+=its; tao->ksp_tot_its+=its; ierr = KSPSTCGGetNormD(tao->ksp, &norm_d);CHKERRQ(ierr); } else { /* NTR_KSP_GLTR */ ierr = KSPGLTRSetRadius(tao->ksp,tao->trust);CHKERRQ(ierr); ierr = KSPSolve(tao->ksp, tao->gradient, tao->stepdirection);CHKERRQ(ierr); ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr); tao->ksp_its+=its; tao->ksp_tot_its+=its; ierr = KSPGLTRGetNormD(tao->ksp, &norm_d);CHKERRQ(ierr); } if (norm_d == 0.0) SETERRQ(PETSC_COMM_SELF,1, "Initial direction zero"); } } ierr = VecScale(tao->stepdirection, -1.0);CHKERRQ(ierr); ierr = KSPGetConvergedReason(tao->ksp, &ksp_reason);CHKERRQ(ierr); if ((KSP_DIVERGED_INDEFINITE_PC == ksp_reason) && (NTR_PC_BFGS == tr->pc_type) && (bfgsUpdates > 1)) { /* Preconditioner is numerically indefinite; reset the approximate if using BFGS preconditioning. */ if (f != 0.0) { delta = 2.0 * PetscAbsScalar(f) / (gnorm*gnorm); } else { delta = 2.0 / (gnorm*gnorm); } ierr = MatLMVMSetDelta(tr->M, delta);CHKERRQ(ierr); ierr = MatLMVMReset(tr->M);CHKERRQ(ierr); ierr = MatLMVMUpdate(tr->M, tao->solution, tao->gradient);CHKERRQ(ierr); bfgsUpdates = 1; } if (NTR_UPDATE_REDUCTION == tr->update_type) { /* Get predicted reduction */ if (NTR_KSP_NASH == tr->ksp_type) { ierr = KSPNASHGetObjFcn(tao->ksp,&prered);CHKERRQ(ierr); } else if (NTR_KSP_STCG == tr->ksp_type) { ierr = KSPSTCGGetObjFcn(tao->ksp,&prered);CHKERRQ(ierr); } else { /* gltr */ ierr = KSPGLTRGetObjFcn(tao->ksp,&prered);CHKERRQ(ierr); } if (prered >= 0.0) { /* The predicted reduction has the wrong sign. This cannot happen in infinite precision arithmetic. Step should be rejected! */ tao->trust = tr->alpha1 * PetscMin(tao->trust, norm_d); } else { /* Compute trial step and function value */ ierr = VecCopy(tao->solution,tr->W);CHKERRQ(ierr); ierr = VecAXPY(tr->W, 1.0, tao->stepdirection);CHKERRQ(ierr); ierr = TaoComputeObjective(tao, tr->W, &ftrial);CHKERRQ(ierr); if (PetscIsInfOrNanReal(ftrial)) { tao->trust = tr->alpha1 * PetscMin(tao->trust, norm_d); } else { /* Compute and actual reduction */ actred = f - ftrial; prered = -prered; if ((PetscAbsScalar(actred) <= tr->epsilon) && (PetscAbsScalar(prered) <= tr->epsilon)) { kappa = 1.0; } else { kappa = actred / prered; } /* Accept or reject the step and update radius */ if (kappa < tr->eta1) { /* Reject the step */ tao->trust = tr->alpha1 * PetscMin(tao->trust, norm_d); } else { /* Accept the step */ if (kappa < tr->eta2) { /* Marginal bad step */ tao->trust = tr->alpha2 * PetscMin(tao->trust, norm_d); } else if (kappa < tr->eta3) { /* Reasonable step */ tao->trust = tr->alpha3 * tao->trust; } else if (kappa < tr->eta4) { /* Good step */ tao->trust = PetscMax(tr->alpha4 * norm_d, tao->trust); } else { /* Very good step */ tao->trust = PetscMax(tr->alpha5 * norm_d, tao->trust); } break; } } } } else { /* Get predicted reduction */ if (NTR_KSP_NASH == tr->ksp_type) { ierr = KSPNASHGetObjFcn(tao->ksp,&prered);CHKERRQ(ierr); } else if (NTR_KSP_STCG == tr->ksp_type) { ierr = KSPSTCGGetObjFcn(tao->ksp,&prered);CHKERRQ(ierr); } else { /* gltr */ ierr = KSPGLTRGetObjFcn(tao->ksp,&prered);CHKERRQ(ierr); } if (prered >= 0.0) { /* The predicted reduction has the wrong sign. This cannot happen in infinite precision arithmetic. Step should be rejected! */ tao->trust = tr->gamma1 * PetscMin(tao->trust, norm_d); } else { ierr = VecCopy(tao->solution, tr->W);CHKERRQ(ierr); ierr = VecAXPY(tr->W, 1.0, tao->stepdirection);CHKERRQ(ierr); ierr = TaoComputeObjective(tao, tr->W, &ftrial);CHKERRQ(ierr); if (PetscIsInfOrNanReal(ftrial)) { tao->trust = tr->gamma1 * PetscMin(tao->trust, norm_d); } else { ierr = VecDot(tao->gradient, tao->stepdirection, &beta);CHKERRQ(ierr); actred = f - ftrial; prered = -prered; if ((PetscAbsScalar(actred) <= tr->epsilon) && (PetscAbsScalar(prered) <= tr->epsilon)) { kappa = 1.0; } else { kappa = actred / prered; } tau_1 = tr->theta * beta / (tr->theta * beta - (1.0 - tr->theta) * prered + actred); tau_2 = tr->theta * beta / (tr->theta * beta + (1.0 + tr->theta) * prered - actred); tau_min = PetscMin(tau_1, tau_2); tau_max = PetscMax(tau_1, tau_2); if (kappa >= 1.0 - tr->mu1) { /* Great agreement; accept step and update radius */ if (tau_max < 1.0) { tao->trust = PetscMax(tao->trust, tr->gamma3 * norm_d); } else if (tau_max > tr->gamma4) { tao->trust = PetscMax(tao->trust, tr->gamma4 * norm_d); } else { tao->trust = PetscMax(tao->trust, tau_max * norm_d); } break; } else if (kappa >= 1.0 - tr->mu2) { /* Good agreement */ if (tau_max < tr->gamma2) { tao->trust = tr->gamma2 * PetscMin(tao->trust, norm_d); } else if (tau_max > tr->gamma3) { tao->trust = PetscMax(tao->trust, tr->gamma3 * norm_d); } else if (tau_max < 1.0) { tao->trust = tau_max * PetscMin(tao->trust, norm_d); } else { tao->trust = PetscMax(tao->trust, tau_max * norm_d); } break; } else { /* Not good agreement */ if (tau_min > 1.0) { tao->trust = tr->gamma2 * PetscMin(tao->trust, norm_d); } else if (tau_max < tr->gamma1) { tao->trust = tr->gamma1 * PetscMin(tao->trust, norm_d); } else if ((tau_min < tr->gamma1) && (tau_max >= 1.0)) { tao->trust = tr->gamma1 * PetscMin(tao->trust, norm_d); } else if ((tau_1 >= tr->gamma1) && (tau_1 < 1.0) && ((tau_2 < tr->gamma1) || (tau_2 >= 1.0))) { tao->trust = tau_1 * PetscMin(tao->trust, norm_d); } else if ((tau_2 >= tr->gamma1) && (tau_2 < 1.0) && ((tau_1 < tr->gamma1) || (tau_2 >= 1.0))) { tao->trust = tau_2 * PetscMin(tao->trust, norm_d); } else { tao->trust = tau_max * PetscMin(tao->trust, norm_d); } } } } } /* The step computed was not good and the radius was decreased. Monitor the radius to terminate. */ ierr = TaoMonitor(tao, iter, f, gnorm, 0.0, tao->trust, &reason);CHKERRQ(ierr); } /* The radius may have been increased; modify if it is too large */ tao->trust = PetscMin(tao->trust, tr->max_radius); if (reason == TAO_CONTINUE_ITERATING) { ierr = VecCopy(tr->W, tao->solution);CHKERRQ(ierr); f = ftrial; ierr = TaoComputeGradient(tao, tao->solution, tao->gradient); ierr = VecNorm(tao->gradient, NORM_2, &gnorm);CHKERRQ(ierr); if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute function generated Inf or NaN"); needH = 1; ierr = TaoMonitor(tao, iter, f, gnorm, 0.0, tao->trust, &reason);CHKERRQ(ierr); } } PetscFunctionReturn(0); }
static PetscErrorCode TaoSolve_GPCG(Tao tao) { TAO_GPCG *gpcg = (TAO_GPCG *)tao->data; PetscErrorCode ierr; PetscInt its; PetscReal actred,f,f_new,gnorm,gdx,stepsize,xtb; PetscReal xtHx; TaoConvergedReason reason = TAO_CONTINUE_ITERATING; TaoLineSearchConvergedReason ls_status = TAOLINESEARCH_CONTINUE_ITERATING; PetscFunctionBegin; ierr = TaoComputeVariableBounds(tao);CHKERRQ(ierr); ierr = VecMedian(tao->XL,tao->solution,tao->XU,tao->solution);CHKERRQ(ierr); ierr = TaoLineSearchSetVariableBounds(tao->linesearch,tao->XL,tao->XU);CHKERRQ(ierr); /* Using f = .5*x'Hx + x'b + c and g=Hx + b, compute b,c */ ierr = TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);CHKERRQ(ierr); ierr = TaoComputeObjectiveAndGradient(tao,tao->solution,&f,tao->gradient);CHKERRQ(ierr); ierr = VecCopy(tao->gradient, gpcg->B);CHKERRQ(ierr); ierr = MatMult(tao->hessian,tao->solution,gpcg->Work);CHKERRQ(ierr); ierr = VecDot(gpcg->Work, tao->solution, &xtHx);CHKERRQ(ierr); ierr = VecAXPY(gpcg->B,-1.0,gpcg->Work);CHKERRQ(ierr); ierr = VecDot(gpcg->B,tao->solution,&xtb);CHKERRQ(ierr); gpcg->c=f-xtHx/2.0-xtb; if (gpcg->Free_Local) { ierr = ISDestroy(&gpcg->Free_Local);CHKERRQ(ierr); } ierr = VecWhichBetween(tao->XL,tao->solution,tao->XU,&gpcg->Free_Local);CHKERRQ(ierr); /* Project the gradient and calculate the norm */ ierr = VecCopy(tao->gradient,gpcg->G_New);CHKERRQ(ierr); ierr = VecBoundGradientProjection(tao->gradient,tao->solution,tao->XL,tao->XU,gpcg->PG);CHKERRQ(ierr); ierr = VecNorm(gpcg->PG,NORM_2,&gpcg->gnorm);CHKERRQ(ierr); tao->step=1.0; gpcg->f = f; /* Check Stopping Condition */ ierr=TaoMonitor(tao,tao->niter,f,gpcg->gnorm,0.0,tao->step,&reason);CHKERRQ(ierr); while (reason == TAO_CONTINUE_ITERATING){ tao->ksp_its=0; ierr = GPCGGradProjections(tao);CHKERRQ(ierr); ierr = ISGetSize(gpcg->Free_Local,&gpcg->n_free);CHKERRQ(ierr); f=gpcg->f; gnorm=gpcg->gnorm; ierr = KSPReset(tao->ksp);CHKERRQ(ierr); if (gpcg->n_free > 0){ /* Create a reduced linear system */ ierr = VecDestroy(&gpcg->R);CHKERRQ(ierr); ierr = VecDestroy(&gpcg->DXFree);CHKERRQ(ierr); ierr = TaoVecGetSubVec(tao->gradient,gpcg->Free_Local, tao->subset_type, 0.0, &gpcg->R);CHKERRQ(ierr); ierr = VecScale(gpcg->R, -1.0);CHKERRQ(ierr); ierr = TaoVecGetSubVec(tao->stepdirection,gpcg->Free_Local,tao->subset_type, 0.0, &gpcg->DXFree);CHKERRQ(ierr); ierr = VecSet(gpcg->DXFree,0.0);CHKERRQ(ierr); ierr = TaoMatGetSubMat(tao->hessian, gpcg->Free_Local, gpcg->Work, tao->subset_type, &gpcg->Hsub);CHKERRQ(ierr); if (tao->hessian_pre == tao->hessian) { ierr = MatDestroy(&gpcg->Hsub_pre);CHKERRQ(ierr); ierr = PetscObjectReference((PetscObject)gpcg->Hsub);CHKERRQ(ierr); gpcg->Hsub_pre = gpcg->Hsub; } else { ierr = TaoMatGetSubMat(tao->hessian, gpcg->Free_Local, gpcg->Work, tao->subset_type, &gpcg->Hsub_pre);CHKERRQ(ierr); } ierr = KSPReset(tao->ksp);CHKERRQ(ierr); ierr = KSPSetOperators(tao->ksp,gpcg->Hsub,gpcg->Hsub_pre);CHKERRQ(ierr); ierr = KSPSolve(tao->ksp,gpcg->R,gpcg->DXFree);CHKERRQ(ierr); ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr); tao->ksp_its+=its; tao->ksp_tot_its+=its; ierr = VecSet(tao->stepdirection,0.0);CHKERRQ(ierr); ierr = VecISAXPY(tao->stepdirection,gpcg->Free_Local,1.0,gpcg->DXFree);CHKERRQ(ierr); ierr = VecDot(tao->stepdirection,tao->gradient,&gdx);CHKERRQ(ierr); ierr = TaoLineSearchSetInitialStepLength(tao->linesearch,1.0);CHKERRQ(ierr); f_new=f; ierr = TaoLineSearchApply(tao->linesearch,tao->solution,&f_new,tao->gradient,tao->stepdirection,&stepsize,&ls_status);CHKERRQ(ierr); actred = f_new - f; /* Evaluate the function and gradient at the new point */ ierr = VecBoundGradientProjection(tao->gradient,tao->solution,tao->XL,tao->XU, gpcg->PG);CHKERRQ(ierr); ierr = VecNorm(gpcg->PG, NORM_2, &gnorm);CHKERRQ(ierr); f=f_new; ierr = ISDestroy(&gpcg->Free_Local);CHKERRQ(ierr); ierr = VecWhichBetween(tao->XL,tao->solution,tao->XU,&gpcg->Free_Local);CHKERRQ(ierr); } else { actred = 0; gpcg->step=1.0; /* if there were no free variables, no cg method */ } tao->niter++; ierr = TaoMonitor(tao,tao->niter,f,gnorm,0.0,gpcg->step,&reason);CHKERRQ(ierr); gpcg->f=f;gpcg->gnorm=gnorm; gpcg->actred=actred; if (reason!=TAO_CONTINUE_ITERATING) break; } /* END MAIN LOOP */ PetscFunctionReturn(0); }
static PetscErrorCode TaoSolve_BQPIP(Tao tao) { TAO_BQPIP *qp = (TAO_BQPIP*)tao->data; PetscErrorCode ierr; PetscInt iter=0,its; PetscReal d1,d2,ksptol,sigma; PetscReal sigmamu; PetscReal dstep,pstep,step=0; PetscReal gap[4]; TaoConvergedReason reason; PetscFunctionBegin; qp->dobj = 0.0; qp->pobj = 1.0; qp->gap = 10.0; qp->rgap = 1.0; qp->mu = 1.0; qp->sigma = 1.0; qp->dinfeas = 1.0; qp->psteplength = 0.0; qp->dsteplength = 0.0; /* Tighten infinite bounds, things break when we don't do this -- see test_bqpip.c */ ierr = VecSet(qp->XU,1.0e20);CHKERRQ(ierr); ierr = VecSet(qp->XL,-1.0e20);CHKERRQ(ierr); ierr = VecPointwiseMax(qp->XL,qp->XL,tao->XL);CHKERRQ(ierr); ierr = VecPointwiseMin(qp->XU,qp->XU,tao->XU);CHKERRQ(ierr); ierr = TaoComputeObjectiveAndGradient(tao,tao->solution,&qp->c,qp->C0);CHKERRQ(ierr); ierr = TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);CHKERRQ(ierr); ierr = MatMult(tao->hessian, tao->solution, qp->Work);CHKERRQ(ierr); ierr = VecDot(tao->solution, qp->Work, &d1);CHKERRQ(ierr); ierr = VecAXPY(qp->C0, -1.0, qp->Work);CHKERRQ(ierr); ierr = VecDot(qp->C0, tao->solution, &d2);CHKERRQ(ierr); qp->c -= (d1/2.0+d2); ierr = MatGetDiagonal(tao->hessian, qp->HDiag);CHKERRQ(ierr); ierr = QPIPSetInitialPoint(qp,tao);CHKERRQ(ierr); ierr = QPIPComputeResidual(qp,tao);CHKERRQ(ierr); /* Enter main loop */ while (1){ /* Check Stopping Condition */ ierr = TaoMonitor(tao,iter++,qp->pobj,PetscSqrtScalar(qp->gap + qp->dinfeas), qp->pinfeas, step, &reason);CHKERRQ(ierr); if (reason != TAO_CONTINUE_ITERATING) break; /* Dual Infeasibility Direction should already be in the right hand side from computing the residuals */ ierr = QPIPComputeNormFromCentralPath(qp,&d1);CHKERRQ(ierr); if (iter > 0 && (qp->rnorm>5*qp->mu || d1*d1>qp->m*qp->mu*qp->mu) ) { sigma=1.0;sigmamu=qp->mu; sigma=0.0;sigmamu=0; } else { sigma=0.0;sigmamu=0; } ierr = VecSet(qp->DZ, sigmamu);CHKERRQ(ierr); ierr = VecSet(qp->DS, sigmamu);CHKERRQ(ierr); if (sigmamu !=0){ ierr = VecPointwiseDivide(qp->DZ, qp->DZ, qp->G);CHKERRQ(ierr); ierr = VecPointwiseDivide(qp->DS, qp->DS, qp->T);CHKERRQ(ierr); ierr = VecCopy(qp->DZ,qp->RHS2);CHKERRQ(ierr); ierr = VecAXPY(qp->RHS2, 1.0, qp->DS);CHKERRQ(ierr); } else { ierr = VecZeroEntries(qp->RHS2);CHKERRQ(ierr); } /* Compute the Primal Infeasiblitiy RHS and the Diagonal Matrix to be added to H and store in Work */ ierr = VecPointwiseDivide(qp->DiagAxpy, qp->Z, qp->G);CHKERRQ(ierr); ierr = VecPointwiseMult(qp->GZwork, qp->DiagAxpy, qp->R3);CHKERRQ(ierr); ierr = VecAXPY(qp->RHS, -1.0, qp->GZwork);CHKERRQ(ierr); ierr = VecPointwiseDivide(qp->TSwork, qp->S, qp->T);CHKERRQ(ierr); ierr = VecAXPY(qp->DiagAxpy, 1.0, qp->TSwork);CHKERRQ(ierr); ierr = VecPointwiseMult(qp->TSwork, qp->TSwork, qp->R5);CHKERRQ(ierr); ierr = VecAXPY(qp->RHS, -1.0, qp->TSwork);CHKERRQ(ierr); ierr = VecAXPY(qp->RHS2, 1.0, qp->RHS);CHKERRQ(ierr); /* Determine the solving tolerance */ ksptol = qp->mu/10.0; ksptol = PetscMin(ksptol,0.001); ierr = MatDiagonalSet(tao->hessian, qp->DiagAxpy, ADD_VALUES);CHKERRQ(ierr); ierr = MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = KSPSetOperators(tao->ksp, tao->hessian, tao->hessian_pre);CHKERRQ(ierr); ierr = KSPSolve(tao->ksp, qp->RHS, tao->stepdirection);CHKERRQ(ierr); ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr); tao->ksp_its+=its; ierr = VecScale(qp->DiagAxpy, -1.0);CHKERRQ(ierr); ierr = MatDiagonalSet(tao->hessian, qp->DiagAxpy, ADD_VALUES);CHKERRQ(ierr); ierr = MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = VecScale(qp->DiagAxpy, -1.0);CHKERRQ(ierr); ierr = QPComputeStepDirection(qp,tao);CHKERRQ(ierr); ierr = QPStepLength(qp); CHKERRQ(ierr); /* Calculate New Residual R1 in Work vector */ ierr = MatMult(tao->hessian, tao->stepdirection, qp->RHS2);CHKERRQ(ierr); ierr = VecAXPY(qp->RHS2, 1.0, qp->DS);CHKERRQ(ierr); ierr = VecAXPY(qp->RHS2, -1.0, qp->DZ);CHKERRQ(ierr); ierr = VecAYPX(qp->RHS2, qp->dsteplength, tao->gradient);CHKERRQ(ierr); ierr = VecNorm(qp->RHS2, NORM_2, &qp->dinfeas);CHKERRQ(ierr); ierr = VecDot(qp->DZ, qp->DG, gap);CHKERRQ(ierr); ierr = VecDot(qp->DS, qp->DT, gap+1);CHKERRQ(ierr); qp->rnorm=(qp->dinfeas+qp->psteplength*qp->pinfeas)/(qp->m+qp->n); pstep = qp->psteplength; dstep = qp->dsteplength; step = PetscMin(qp->psteplength,qp->dsteplength); sigmamu= ( pstep*pstep*(gap[0]+gap[1]) + (1 - pstep + pstep*sigma)*qp->gap )/qp->m; if (qp->predcorr && step < 0.9){ if (sigmamu < qp->mu){ sigmamu=sigmamu/qp->mu; sigmamu=sigmamu*sigmamu*sigmamu; } else {sigmamu = 1.0;} sigmamu = sigmamu*qp->mu; /* Compute Corrector Step */ ierr = VecPointwiseMult(qp->DZ, qp->DG, qp->DZ);CHKERRQ(ierr); ierr = VecScale(qp->DZ, -1.0);CHKERRQ(ierr); ierr = VecShift(qp->DZ, sigmamu);CHKERRQ(ierr); ierr = VecPointwiseDivide(qp->DZ, qp->DZ, qp->G);CHKERRQ(ierr); ierr = VecPointwiseMult(qp->DS, qp->DS, qp->DT);CHKERRQ(ierr); ierr = VecScale(qp->DS, -1.0);CHKERRQ(ierr); ierr = VecShift(qp->DS, sigmamu);CHKERRQ(ierr); ierr = VecPointwiseDivide(qp->DS, qp->DS, qp->T);CHKERRQ(ierr); ierr = VecCopy(qp->DZ, qp->RHS2);CHKERRQ(ierr); ierr = VecAXPY(qp->RHS2, -1.0, qp->DS);CHKERRQ(ierr); ierr = VecAXPY(qp->RHS2, 1.0, qp->RHS);CHKERRQ(ierr); /* Approximately solve the linear system */ ierr = MatDiagonalSet(tao->hessian, qp->DiagAxpy, ADD_VALUES);CHKERRQ(ierr); ierr = MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = KSPSolve(tao->ksp, qp->RHS2, tao->stepdirection);CHKERRQ(ierr); ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr); tao->ksp_its+=its; ierr = MatDiagonalSet(tao->hessian, qp->HDiag, INSERT_VALUES);CHKERRQ(ierr); ierr = MatAssemblyBegin(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(tao->hessian,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = QPComputeStepDirection(qp,tao);CHKERRQ(ierr); ierr = QPStepLength(qp);CHKERRQ(ierr); } /* End Corrector step */ /* Take the step */ pstep = qp->psteplength; dstep = qp->dsteplength; ierr = VecAXPY(qp->Z, dstep, qp->DZ);CHKERRQ(ierr); ierr = VecAXPY(qp->S, dstep, qp->DS);CHKERRQ(ierr); ierr = VecAXPY(tao->solution, dstep, tao->stepdirection);CHKERRQ(ierr); ierr = VecAXPY(qp->G, dstep, qp->DG);CHKERRQ(ierr); ierr = VecAXPY(qp->T, dstep, qp->DT);CHKERRQ(ierr); /* Compute Residuals */ ierr = QPIPComputeResidual(qp,tao);CHKERRQ(ierr); /* Evaluate quadratic function */ ierr = MatMult(tao->hessian, tao->solution, qp->Work);CHKERRQ(ierr); ierr = VecDot(tao->solution, qp->Work, &d1);CHKERRQ(ierr); ierr = VecDot(tao->solution, qp->C0, &d2);CHKERRQ(ierr); ierr = VecDot(qp->G, qp->Z, gap);CHKERRQ(ierr); ierr = VecDot(qp->T, qp->S, gap+1);CHKERRQ(ierr); qp->pobj=d1/2.0 + d2+qp->c; /* Compute the duality gap */ qp->gap = (gap[0]+gap[1]); qp->dobj = qp->pobj - qp->gap; if (qp->m>0) qp->mu=qp->gap/(qp->m); qp->rgap=qp->gap/( PetscAbsReal(qp->dobj) + PetscAbsReal(qp->pobj) + 1.0 ); } /* END MAIN LOOP */ PetscFunctionReturn(0); }