示例#1
0
U_NAMESPACE_BEGIN

U_CFUNC UChar U_CALLCONV
uregex_utext_unescape_charAt(int32_t offset, void *ct) {
    struct URegexUTextUnescapeCharContext *context = (struct URegexUTextUnescapeCharContext *)ct;
    UChar32 c;
    if (offset == context->lastOffset + 1) {
        c = UTEXT_NEXT32(context->text);
        context->lastOffset++;
    } else if (offset == context->lastOffset) {
        c = UTEXT_PREVIOUS32(context->text);
        UTEXT_NEXT32(context->text);
    } else {
        utext_moveIndex32(context->text, offset - context->lastOffset - 1);
        c = UTEXT_NEXT32(context->text);
        context->lastOffset = offset;
    }
    
    // !!!: Doesn't handle characters outside BMP
    if (U_IS_BMP(c)) {
        return (UChar)c;
    } else {
        return 0;
    }
}
示例#2
0
//-----------------------------------------------------------------------------------
//
//  handlePrevious()
//
//      Iterate backwards, according to the logic of the reverse rules.
//      This version handles the exact style backwards rules.
//
//      The logic of this function is very similar to handleNext(), above.
//
//-----------------------------------------------------------------------------------
int32_t BreakIterator::handlePrevious(const RBBIStateTable *statetable) {
    int32_t             state;
    int16_t             category        = 0;
    RBBIRunMode         mode;
    RBBIStateTableRow  *row;
    UChar32             c;
    int32_t             lookaheadStatus = 0;
    int32_t             result          = 0;
    int32_t             initialPosition = 0;
    int32_t             lookaheadResult = 0;
    UBool               lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0;

    #ifdef RBBI_DEBUG
        if (fTrace) {
            RBBIDebugPuts("Handle Previous   pos   char  state category");
        }
    #endif

    // handlePrevious() never gets the rule status.
    // Flag the status as invalid; if the user ever asks for status, we will need
    // to back up, then re-find the break position using handleNext(), which does
    // get the status value.
    fLastStatusIndexValid = FALSE;
    fLastRuleStatusIndex = 0;

    // if we're already at the start of the text, return DONE.
    if (fText == NULL || fData == NULL || UTEXT_GETNATIVEINDEX(fText)==0) {
        return BreakIterator::DONE;
    }

    //  Set up the starting char.
    initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
    result          = initialPosition;
    c               = UTEXT_PREVIOUS32(fText);

    //  Set the initial state for the state machine
    state = START_STATE;
    row = (RBBIStateTableRow *)
            (statetable->fTableData + (statetable->fRowLen * state));
    category = 3;
    mode     = RBBI_RUN;
    if (statetable->fFlags & RBBI_BOF_REQUIRED) {
        category = 2;
        mode     = RBBI_START;
    }


    // loop until we reach the start of the text or transition to state 0
    //
    for (;;) {
        if (c == U_SENTINEL) {
            // Reached end of input string.
            if (mode == RBBI_END || 
                *(int32_t *)fHeader->fFormatVersion == 1 ) {
                // We have already run the loop one last time with the 
                //   character set to the psueudo {eof} value.  Now it is time
                //   to unconditionally bail out.
                //  (Or we have an old format binary rule file that does not support {eof}.)
                if (lookaheadResult < result) {
                    // We ran off the end of the string with a pending look-ahead match.
                    // Treat this as if the look-ahead condition had been met, and return
                    //  the match at the / position from the look-ahead rule.
                    result               = lookaheadResult;
                    lookaheadStatus = 0;
                } else if (result == initialPosition) {
                    // Ran off start, no match found.
                    // move one index one (towards the start, since we are doing a previous())
                    UTEXT_SETNATIVEINDEX(fText, initialPosition);
                    UTEXT_PREVIOUS32(fText);   // TODO:  shouldn't be necessary.  We're already at beginning.  Check.
                }
                break;
            }
            // Run the loop one last time with the fake end-of-input character category.
            mode = RBBI_END;
            category = 1;
        }

        //
        // Get the char category.  An incoming category of 1 or 2 means that
        //      we are preset for doing the beginning or end of input, and
        //      that we shouldn't get a category from an actual text input character.
        //
        if (mode == RBBI_RUN) {
            // look up the current character's character category, which tells us
            // which column in the state table to look at.
            // Note:  the 16 in UTRIE_GET16 refers to the size of the data being returned,
            //        not the size of the character going in, which is a UChar32.
            //
            UTRIE_GET16(&fTrie, c, category);

            // Check the dictionary bit in the character's category.
            //    Counter is only used by dictionary based iterators (subclasses).
            //    Chars that need to be handled by a dictionary have a flag bit set
            //    in their category values.
            //
            if ((category & 0x4000) != 0)  {
                fDictionaryCharCount++;
                //  And off the dictionary flag bit.
                category &= ~0x4000;
            }
        }

        #ifdef RBBI_DEBUG
            if (fTrace) {
                RBBIDebugPrintf("             %4d   ", (int32_t)utext_getNativeIndex(fText));
                if (0x20<=c && c<0x7f) {
                    RBBIDebugPrintf("\"%c\"  ", c);
                } else {
                    RBBIDebugPrintf("%5x  ", c);
                }
                RBBIDebugPrintf("%3d  %3d\n", state, category);
            }
        #endif

        // State Transition - move machine to its next state
        //
        state = row->fNextState[category];
        row = (RBBIStateTableRow *)
            (statetable->fTableData + (statetable->fRowLen * state));

        if (row->fAccepting == -1) {
            // Match found, common case.
            result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
        }

        if (row->fLookAhead != 0) {
            if (lookaheadStatus != 0
                && row->fAccepting == lookaheadStatus) {
                // Lookahead match is completed.  
                result               = lookaheadResult;
                lookaheadStatus      = 0;
                // TODO:  make a standalone hard break in a rule work.
                if (lookAheadHardBreak) {
                    UTEXT_SETNATIVEINDEX(fText, result);
                    return result;
                }
                // Look-ahead completed, but other rules may match further.  Continue on
                //  TODO:  junk this feature?  I don't think it's used anywhwere.
                goto continueOn;
            }

            int32_t  r = (int32_t)UTEXT_GETNATIVEINDEX(fText);
            lookaheadResult = r;
            lookaheadStatus = row->fLookAhead;
            goto continueOn;
        }


        if (row->fAccepting != 0) {
            // Because this is an accepting state, any in-progress look-ahead match
            //   is no longer relavant.  Clear out the pending lookahead status.
            lookaheadStatus = 0;    
        }

continueOn:
        if (state == STOP_STATE) {
            // This is the normal exit from the lookup state machine.
            // We have advanced through the string until it is certain that no
            //   longer match is possible, no matter what characters follow.
            break;
        }

        // Move (backwards) to the next character to process.  
        // If this is a beginning-of-input loop iteration, don't advance
        //    the input position.  The next iteration will be processing the
        //    first real input character.
        if (mode == RBBI_RUN) {
            c = UTEXT_PREVIOUS32(fText);
        } else {            
            if (mode == RBBI_START) {
                mode = RBBI_RUN;
            }
        }
    }

    // The state machine is done.  Check whether it found a match...

    // If the iterator failed to advance in the match engine, force it ahead by one.
    //   (This really indicates a defect in the break rules.  They should always match
    //    at least one character.)
    if (result == initialPosition) {
        UTEXT_SETNATIVEINDEX(fText, initialPosition);
        UTEXT_PREVIOUS32(fText);
        result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
    }

    // Leave the iterator at our result position.
    UTEXT_SETNATIVEINDEX(fText, result);
    #ifdef RBBI_DEBUG
        if (fTrace) {
            RBBIDebugPrintf("result = %d\n\n", result);
        }
    #endif
    return result;
}
示例#3
0
/**
 * Sets the iterator to refer to the last boundary position before the
 * specified position.
 * @offset The position to begin searching for a break from.
 * @return The position of the last boundary before the starting position.
 */
int32_t BreakIterator::preceding(int32_t offset) {
    // if we have cached break positions and offset is in the range
    // covered by them, use them
    if (fCachedBreakPositions != NULL) {
        // TODO: binary search?
        // TODO: What if offset is outside range, but break is not?
        if (offset > fCachedBreakPositions[0]
                && offset <= fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
            fPositionInCache = 0;
            while (fPositionInCache < fNumCachedBreakPositions
                   && offset > fCachedBreakPositions[fPositionInCache])
                ++fPositionInCache;
            --fPositionInCache;
            // If we're at the beginning of the cache, need to reevaluate the
            // rule status
            if (fPositionInCache <= 0) {
                fLastStatusIndexValid = FALSE;
            }
            utext_setNativeIndex(fText, fCachedBreakPositions[fPositionInCache]);
            return fCachedBreakPositions[fPositionInCache];
        }
        else {
            reset();
        }
    }

    // if the offset passed in is already past the end of the text,
    // just return DONE; if it's before the beginning, return the
    // text's starting offset
    if (fText == NULL || offset > utext_nativeLength(fText)) {
        // return BreakIterator::DONE;
        return last();
    }
    else if (offset < 0) {
        return first();
    }

    // if we start by updating the current iteration position to the
    // position specified by the caller, we can just use previous()
    // to carry out this operation

    if (fSafeFwdTable != NULL) {
        // new rule syntax
        utext_setNativeIndex(fText, offset);
        int32_t newOffset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
        if (newOffset != offset) {
            // Will come here if specified offset was not a code point boundary AND
            //   the underlying implmentation is using UText, which snaps any non-code-point-boundary
            //   indices to the containing code point.
            // For breakitereator::preceding only, these non-code-point indices need to be moved
            //   up to refer to the following codepoint.
            UTEXT_NEXT32(fText);
            offset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
        }

        // TODO:  (synwee) would it be better to just check for being in the middle of a surrogate pair,
        //        rather than adjusting the position unconditionally?
        //        (Change would interact with safe rules.)
        // TODO:  change RBBI behavior for off-boundary indices to match that of UText?
        //        affects only preceding(), seems cleaner, but is slightly different.
        UTEXT_PREVIOUS32(fText);
        handleNext(fSafeFwdTable);
        int32_t result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
        while (result >= offset) {
            result = previous();
        }
        return result;
    }
    if (fSafeRevTable != NULL) {
        // backup plan if forward safe table is not available
        //  TODO:  check whether this path can be discarded
        //         It's probably OK to say that rules must supply both safe tables
        //            if they use safe tables at all.  We have certainly never described
        //            to anyone how to work with just one safe table.
        utext_setNativeIndex(fText, offset);
        UTEXT_NEXT32(fText);
        
        // handle previous will give result <= offset
        handlePrevious(fSafeRevTable);

        // next will give result 0 or 1 boundary away from offset,
        // most of the time
        // we have to
        int32_t oldresult = next();
        while (oldresult < offset) {
            int32_t result = next();
            if (result >= offset) {
                return oldresult;
            }
            oldresult = result;
        }
        int32_t result = previous();
        if (result >= offset) {
            return previous();
        }
        return result;
    }

    // old rule syntax
    utext_setNativeIndex(fText, offset);
    return previous();
}
示例#4
0
/**
 * Sets the iterator to refer to the first boundary position following
 * the specified position.
 * @offset The position from which to begin searching for a break position.
 * @return The position of the first break after the current position.
 */
int32_t BreakIterator::following(int32_t offset) {
    // if we have cached break positions and offset is in the range
    // covered by them, use them
    // TODO: could use binary search
    // TODO: what if offset is outside range, but break is not?
    if (fCachedBreakPositions != NULL) {
        if (offset >= fCachedBreakPositions[0]
                && offset < fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
            fPositionInCache = 0;
            // We are guaranteed not to leave the array due to range test above
            while (offset >= fCachedBreakPositions[fPositionInCache]) {
                ++fPositionInCache;
            }
            int32_t pos = fCachedBreakPositions[fPositionInCache];
            utext_setNativeIndex(fText, pos);
            return pos;
        }
        else {
            reset();
        }
    }

    // if the offset passed in is already past the end of the text,
    // just return DONE; if it's before the beginning, return the
    // text's starting offset
    fLastRuleStatusIndex  = 0;
    fLastStatusIndexValid = TRUE;
    if (fText == NULL || offset >= utext_nativeLength(fText)) {
        last();
        return next();
    }
    else if (offset < 0) {
        return first();
    }

    // otherwise, set our internal iteration position (temporarily)
    // to the position passed in.  If this is the _beginning_ position,
    // then we can just use next() to get our return value

    int32_t result = 0;

    if (fSafeRevTable != NULL) {
        // new rule syntax
        utext_setNativeIndex(fText, offset);
        // move forward one codepoint to prepare for moving back to a
        // safe point.
        // this handles offset being between a supplementary character
        UTEXT_NEXT32(fText);
        // handlePrevious will move most of the time to < 1 boundary away
        handlePrevious(fSafeRevTable);
        int32_t result = next();
        while (result <= offset) {
            result = next();
        }
        return result;
    }
    if (fSafeFwdTable != NULL) {
        // backup plan if forward safe table is not available
        utext_setNativeIndex(fText, offset);
        UTEXT_PREVIOUS32(fText);
        // handle next will give result >= offset
        handleNext(fSafeFwdTable);
        // previous will give result 0 or 1 boundary away from offset,
        // most of the time
        // we have to
        int32_t oldresult = previous();
        while (oldresult > offset) {
            int32_t result = previous();
            if (result <= offset) {
                return oldresult;
            }
            oldresult = result;
        }
        int32_t result = next();
        if (result <= offset) {
            return next();
        }
        return result;
    }
    // otherwise, we have to sync up first.  Use handlePrevious() to back
    // up to a known break position before the specified position (if
    // we can determine that the specified position is a break position,
    // we don't back up at all).  This may or may not be the last break
    // position at or before our starting position.  Advance forward
    // from here until we've passed the starting position.  The position
    // we stop on will be the first break position after the specified one.
    // old rule syntax

    utext_setNativeIndex(fText, offset);
    if (offset==0 || 
        offset==1  && utext_getNativeIndex(fText)==0) {
        return next();
    }
    result = previous();

    while (result != BreakIterator::DONE && result <= offset) {
        result = next();
    }

    return result;
}
示例#5
0
/**
 * Advances the iterator backwards, to the last boundary preceding this one.
 * @return The position of the last boundary position preceding this one.
 */
int32_t BreakIterator::previous(void) {
    int32_t result;
    int32_t startPos;

    // if we have cached break positions and we're still in the range
    // covered by them, just move one step backward in the cache
    if (fCachedBreakPositions != NULL) {
        if (fPositionInCache > 0) {
            --fPositionInCache;
            // If we're at the beginning of the cache, need to reevaluate the
            // rule status
            if (fPositionInCache <= 0) {
                fLastStatusIndexValid = FALSE;
            }
            int32_t pos = fCachedBreakPositions[fPositionInCache];
            utext_setNativeIndex(fText, pos);
            return pos;
        }
        else {
            reset();
        }
    }

    // if we're already sitting at the beginning of the text, return DONE
    if (fText == NULL || (startPos = current()) == 0) {
        fLastRuleStatusIndex  = 0;
        fLastStatusIndexValid = TRUE;
        return BreakIterator::DONE;
    }

    if (fSafeRevTable != NULL || fSafeFwdTable != NULL) {
        result = handlePrevious(fReverseTable);
        if (fDictionaryCharCount > 0) {
            result = checkDictionary(result, startPos, TRUE);
        }
        return result;
    }

    // old rule syntax
    // set things up.  handlePrevious() will back us up to some valid
    // break position before the current position (we back our internal
    // iterator up one step to prevent handlePrevious() from returning
    // the current position), but not necessarily the last one before

    // where we started

    int32_t start = current();

    UTEXT_PREVIOUS32(fText);
    int32_t lastResult    = handlePrevious(fReverseTable);
    if (lastResult == UBRK_DONE) {
        lastResult = 0;
        utext_setNativeIndex(fText, 0);
    }
    result = lastResult;
    int32_t lastTag       = 0;
    UBool   breakTagValid = FALSE;

    // iterate forward from the known break position until we pass our
    // starting point.  The last break position before the starting
    // point is our return value

    for (;;) {
        result         = next();
        if (result == BreakIterator::DONE || result >= start) {
            break;
        }
        lastResult     = result;
        lastTag        = fLastRuleStatusIndex;
        breakTagValid  = TRUE;
    }

    // fLastBreakTag wants to have the value for section of text preceding
    // the result position that we are to return (in lastResult.)  If
    // the backwards rules overshot and the above loop had to do two or more
    // next()s to move up to the desired return position, we will have a valid
    // tag value. But, if handlePrevious() took us to exactly the correct result positon,
    // we wont have a tag value for that position, which is only set by handleNext().

    // set the current iteration position to be the last break position
    // before where we started, and then return that value
    utext_setNativeIndex(fText, lastResult);
    fLastRuleStatusIndex  = lastTag;       // for use by getRuleStatus()
    fLastStatusIndexValid = breakTagValid;

    // No need to check the dictionary; it will have been handled by
    // next()

    return lastResult;
}
示例#6
0
//-------------------------------------------------------------------------------
//
//  checkDictionary       This function handles all processing of characters in
//                        the "dictionary" set. It will determine the appropriate
//                        course of action, and possibly set up a cache in the
//                        process.
//
//-------------------------------------------------------------------------------
int32_t BreakIterator::checkDictionary(int32_t startPos,
                            int32_t endPos,
                            UBool reverse) {
#if 1
	return reverse ? startPos : endPos;
#else
    // Reset the old break cache first.
    uint32_t dictionaryCount = fDictionaryCharCount;
    reset();

    if (dictionaryCount <= 1 || (endPos - startPos) <= 1) {
        return (reverse ? startPos : endPos);
    }
    
    // Starting from the starting point, scan towards the proposed result,
    // looking for the first dictionary character (which may be the one
    // we're on, if we're starting in the middle of a range).
    utext_setNativeIndex(fText, reverse ? endPos : startPos);
    if (reverse) {
        UTEXT_PREVIOUS32(fText);
    }
    
    int32_t rangeStart = startPos;
    int32_t rangeEnd = endPos;

    uint16_t    category;
    int32_t     current;
    UErrorCode  status = U_ZERO_ERROR;
    UStack      breaks(status);
    int32_t     foundBreakCount = 0;
    UChar32     c = utext_current32(fText);

    UTRIE_GET16(&fData->fTrie, c, category);
    
    // Is the character we're starting on a dictionary character? If so, we
    // need to back up to include the entire run; otherwise the results of
    // the break algorithm will differ depending on where we start. Since
    // the result is cached and there is typically a non-dictionary break
    // within a small number of words, there should be little performance impact.
    if (category & 0x4000) {
        if (reverse) {
            do {
                utext_next32(fText);          // TODO:  recast to work directly with postincrement.
                c = utext_current32(fText);
                UTRIE_GET16(&fData->fTrie, c, category);
            } while (c != U_SENTINEL && (category & 0x4000));
            // Back up to the last dictionary character
            rangeEnd = (int32_t)UTEXT_GETNATIVEINDEX(fText);
            if (c == U_SENTINEL) {
                // c = fText->last32();
                //   TODO:  why was this if needed?
                c = UTEXT_PREVIOUS32(fText);
            }
            else {
                c = UTEXT_PREVIOUS32(fText);
            }
        }
        else {
            do {
                c = UTEXT_PREVIOUS32(fText);
                UTRIE_GET16(&fData->fTrie, c, category);
            }
            while (c != U_SENTINEL && (category & 0x4000));
            // Back up to the last dictionary character
            if (c == U_SENTINEL) {
                // c = fText->first32();
                c = utext_current32(fText);
            }
            else {
                utext_next32(fText);
                c = utext_current32(fText);
            }
            rangeStart = (int32_t)UTEXT_GETNATIVEINDEX(fText);;
        }
        UTRIE_GET16(&fData->fTrie, c, category);
    }
    
    // Loop through the text, looking for ranges of dictionary characters.
    // For each span, find the appropriate break engine, and ask it to find
    // any breaks within the span.
    // Note: we always do this in the forward direction, so that the break
    // cache is built in the right order.
    if (reverse) {
        utext_setNativeIndex(fText, rangeStart);
        c = utext_current32(fText);
        UTRIE_GET16(&fData->fTrie, c, category);
    }
    while(U_SUCCESS(status)) {
        while((current = (int32_t)UTEXT_GETNATIVEINDEX(fText)) < rangeEnd && (category & 0x4000) == 0) {
            utext_next32(fText);           // TODO:  tweak for post-increment operation
            c = utext_current32(fText);
            UTRIE_GET16(&fData->fTrie, c, category);
        }
        if (current >= rangeEnd) {
            break;
        }
        
        // We now have a dictionary character. Get the appropriate language object
        // to deal with it.
        const LanguageBreakEngine *lbe = getLanguageBreakEngine(c);
        
        // Ask the language object if there are any breaks. It will leave the text
        // pointer on the other side of its range, ready to search for the next one.
        if (lbe != NULL) {
            foundBreakCount += lbe->findBreaks(fText, rangeStart, rangeEnd, FALSE, fBreakType, breaks);
        }
        
        // Reload the loop variables for the next go-round
        c = utext_current32(fText);
        UTRIE_GET16(&fData->fTrie, c, category);
    }
    
    // If we found breaks, build a new break cache. The first and last entries must
    // be the original starting and ending position.
    if (foundBreakCount > 0) {
        int32_t totalBreaks = foundBreakCount;
        if (startPos < breaks.elementAti(0)) {
            totalBreaks += 1;
        }
        if (endPos > breaks.peeki()) {
            totalBreaks += 1;
        }
        fCachedBreakPositions = (int32_t *)uprv_malloc(totalBreaks * sizeof(int32_t));
        if (fCachedBreakPositions != NULL) {
            int32_t out = 0;
            fNumCachedBreakPositions = totalBreaks;
            if (startPos < breaks.elementAti(0)) {
                fCachedBreakPositions[out++] = startPos;
            }
            for (int32_t i = 0; i < foundBreakCount; ++i) {
                fCachedBreakPositions[out++] = breaks.elementAti(i);
            }
            if (endPos > fCachedBreakPositions[out-1]) {
                fCachedBreakPositions[out] = endPos;
            }
            // If there are breaks, then by definition, we are replacing the original
            // proposed break by one of the breaks we found. Use following() and
            // preceding() to do the work. They should never recurse in this case.
            if (reverse) {
                return preceding(endPos - 1);
            }
            else {
                return following(startPos);
            }
        }
        // If the allocation failed, just fall through to the "no breaks found" case.
    }

    // If we get here, there were no language-based breaks. Set the text pointer
    // to the original proposed break.
    utext_setNativeIndex(fText, reverse ? startPos : endPos);
    return (reverse ? startPos : endPos);
#endif
}
示例#7
0
static void TestAPI(void) {
    UErrorCode      status = U_ZERO_ERROR;
    UBool           gFailed = FALSE;
    (void)gFailed;   /* Suppress set but not used warning. */

    /* Open    */
    {
        UText           utLoc = UTEXT_INITIALIZER;
        const char *    cString = "\x61\x62\x63\x64";
        UChar           uString[]  = {0x41, 0x42, 0x43, 0};
        UText          *uta;
        UText          *utb;
        UChar           c;

        uta = utext_openUChars(NULL, uString, -1, &status);
        TEST_SUCCESS(status);
        c = utext_next32(uta);
        TEST_ASSERT(c == 0x41);
        utb = utext_close(uta); 
        TEST_ASSERT(utb == NULL);

        uta = utext_openUTF8(&utLoc, cString, -1, &status);
        TEST_SUCCESS(status);
        TEST_ASSERT(uta == &utLoc);

        uta = utext_close(&utLoc);
        TEST_ASSERT(uta == &utLoc);
    }

    /* utext_clone()  */
    {
        UChar   uString[]  = {0x41, 0x42, 0x43, 0};
        int64_t len;
        UText   *uta;
        UText   *utb;

        status = U_ZERO_ERROR;
        uta = utext_openUChars(NULL, uString, -1, &status);
        TEST_SUCCESS(status);
        utb = utext_clone(NULL, uta, FALSE, FALSE, &status);
        TEST_SUCCESS(status);
        TEST_ASSERT(utb != NULL);
        TEST_ASSERT(utb != uta);
        len = utext_nativeLength(uta);
        TEST_ASSERT(len == u_strlen(uString));
        utext_close(uta);
        utext_close(utb);
    }

    /* basic access functions  */
    {
        UChar     uString[]  = {0x41, 0x42, 0x43, 0};
        UText     *uta;
        UChar32   c;
        int64_t   len;
        UBool     b;
        int64_t   i;

        status = U_ZERO_ERROR;
        uta = utext_openUChars(NULL, uString, -1, &status);
        TEST_ASSERT(uta!=NULL);
        TEST_SUCCESS(status);
        b = utext_isLengthExpensive(uta);
        TEST_ASSERT(b==TRUE);
        len = utext_nativeLength(uta);
        TEST_ASSERT(len == u_strlen(uString));
        b = utext_isLengthExpensive(uta);
        TEST_ASSERT(b==FALSE);

        c = utext_char32At(uta, 0);
        TEST_ASSERT(c==uString[0]);
        
        c = utext_current32(uta);
        TEST_ASSERT(c==uString[0]);

        c = utext_next32(uta);
        TEST_ASSERT(c==uString[0]);
        c = utext_current32(uta);
        TEST_ASSERT(c==uString[1]);

        c = utext_previous32(uta);
        TEST_ASSERT(c==uString[0]);
        c = utext_current32(uta);
        TEST_ASSERT(c==uString[0]);

        c = utext_next32From(uta, 1);
        TEST_ASSERT(c==uString[1]);
        c = utext_next32From(uta, u_strlen(uString));
        TEST_ASSERT(c==U_SENTINEL);

        c = utext_previous32From(uta, 2);
        TEST_ASSERT(c==uString[1]);
        i = utext_getNativeIndex(uta);
        TEST_ASSERT(i == 1);

        utext_setNativeIndex(uta, 0);
        b = utext_moveIndex32(uta, 1);
        TEST_ASSERT(b==TRUE);
        i = utext_getNativeIndex(uta);
        TEST_ASSERT(i==1);

        b = utext_moveIndex32(uta, u_strlen(uString)-1);
        TEST_ASSERT(b==TRUE);
        i = utext_getNativeIndex(uta);
        TEST_ASSERT(i==u_strlen(uString));

        b = utext_moveIndex32(uta, 1);
        TEST_ASSERT(b==FALSE);
        i = utext_getNativeIndex(uta);
        TEST_ASSERT(i==u_strlen(uString));

        utext_setNativeIndex(uta, 0);
        c = UTEXT_NEXT32(uta);
        TEST_ASSERT(c==uString[0]);
        c = utext_current32(uta);
        TEST_ASSERT(c==uString[1]);

        c = UTEXT_PREVIOUS32(uta);
        TEST_ASSERT(c==uString[0]);
        c = UTEXT_PREVIOUS32(uta);
        TEST_ASSERT(c==U_SENTINEL);


        utext_close(uta);
    }

    {
        /*
         * UText opened on a NULL string with zero length
         */
        UText    *uta;
        UChar32   c;

        status = U_ZERO_ERROR;
        uta = utext_openUChars(NULL, NULL, 0, &status);
        TEST_SUCCESS(status);
        c = UTEXT_NEXT32(uta);
        TEST_ASSERT(c == U_SENTINEL);
        utext_close(uta);

        uta = utext_openUTF8(NULL, NULL, 0, &status);
        TEST_SUCCESS(status);
        c = UTEXT_NEXT32(uta);
        TEST_ASSERT(c == U_SENTINEL);
        utext_close(uta);
    }


    {
        /*
         * extract
         */
        UText     *uta;
        UChar     uString[]  = {0x41, 0x42, 0x43, 0};
        UChar     buf[100];
        int32_t   i;
        /* Test pinning of input bounds */
        UChar     uString2[]  = {0x41, 0x42, 0x43, 0x44, 0x45,
                                 0x46, 0x47, 0x48, 0x49, 0x4A, 0};
        UChar *   uString2Ptr = uString2 + 5;

        status = U_ZERO_ERROR;
        uta = utext_openUChars(NULL, uString, -1, &status);
        TEST_SUCCESS(status);

        status = U_ZERO_ERROR;
        i = utext_extract(uta, 0, 100, NULL, 0, &status);
        TEST_ASSERT(status==U_BUFFER_OVERFLOW_ERROR);
        TEST_ASSERT(i == u_strlen(uString));

        status = U_ZERO_ERROR;
        memset(buf, 0, sizeof(buf));
        i = utext_extract(uta, 0, 100, buf, 100, &status);
        TEST_SUCCESS(status);
        TEST_ASSERT(i == u_strlen(uString));
        i = u_strcmp(uString, buf);
        TEST_ASSERT(i == 0);
        utext_close(uta);

        /* Test pinning of input bounds */
        status = U_ZERO_ERROR;
        uta = utext_openUChars(NULL, uString2Ptr, -1, &status);
        TEST_SUCCESS(status);

        status = U_ZERO_ERROR;
        memset(buf, 0, sizeof(buf));
        i = utext_extract(uta, -3, 20, buf, 100, &status);
        TEST_SUCCESS(status);
        TEST_ASSERT(i == u_strlen(uString2Ptr));
        i = u_strcmp(uString2Ptr, buf);
        TEST_ASSERT(i == 0);
        utext_close(uta);
    }

    {
        /*
         *  Copy, Replace, isWritable
         *    Can't create an editable UText from plain C, so all we
         *    can easily do is check that errors returned.
         */
        UText     *uta;
        UChar     uString[]  = {0x41, 0x42, 0x43, 0};
        UBool     b;

        status = U_ZERO_ERROR;
        uta = utext_openUChars(NULL, uString, -1, &status);
        TEST_SUCCESS(status);

        b = utext_isWritable(uta);
        TEST_ASSERT(b == FALSE);

        b = utext_hasMetaData(uta);
        TEST_ASSERT(b == FALSE);

        utext_replace(uta,
                      0, 1,     /* start, limit */
                      uString, -1,  /* replacement, replacement length */
                      &status);
        TEST_ASSERT(status == U_NO_WRITE_PERMISSION);


        utext_copy(uta,
                   0, 1,         /* start, limit      */
                   2,            /* destination index */
                   FALSE,        /* move flag         */
                   &status);
        TEST_ASSERT(status == U_NO_WRITE_PERMISSION);

        utext_close(uta);
    }


}