void StaRateAdaptive87B(_adapter *padapter ) { struct mib_info *_sys_mib = &(padapter->_sys_mib); u64 CurrTxokCnt; u16 CurrRetryCnt; u16 CurrRetryRate; u8 CurrentOperaRate; u64 CurrRxokCnt; u8 bTryUp = _FALSE; u8 bTryDown = _FALSE; u8 TryUpTh = 1; u8 TryDownTh = 2; u32 TxThroughput; s32 CurrSignalStrength; u8 bUpdateInitialGain = _FALSE; CurrRetryCnt = _sys_mib->CurrRetryCnt; CurrTxokCnt = _sys_mib->NumTxOkTotal - _sys_mib->LastTxokCnt; CurrRxokCnt = _sys_mib->NumRxOkTotal - _sys_mib->LastRxokCnt; CurrSignalStrength = _sys_mib->RecvSignalPower; TxThroughput = (u32)(_sys_mib->NumTxOkBytesTotal - _sys_mib->LastTxOKBytes); _sys_mib->LastTxOKBytes = _sys_mib->NumTxOkBytesTotal; CurrentOperaRate = (u8)((_sys_mib->rate/10) * 2); DEBUG_INFO(("CurrentOperaRate = %d \n", CurrentOperaRate)); //2 Compute retry ratio. if (CurrTxokCnt>0) { CurrRetryRate = (u16)((int)CurrRetryCnt*100/(int)CurrTxokCnt); } else { // It may be serious retry. To distinguish serious retry or no packets modified by Bruce CurrRetryRate = (u16)((int)CurrRetryCnt*100/1); } // // For debug information. // DEBUG_INFO(("\n(1) LastRetryRate: %d \n",(int)_sys_mib->LastRetryRate)); DEBUG_INFO(("(2) RetryCnt = %d \n", (int)CurrRetryCnt)); DEBUG_INFO(("(3) TxokCnt = %d \n", (int)CurrTxokCnt)); DEBUG_INFO(("(4) CurrRetryRate = %d \n", (int)CurrRetryRate)); DEBUG_INFO(("(5) SignalStrength = %d \n",(int)_sys_mib->RecvSignalPower)); DEBUG_INFO(("(6) ReceiveSignalPower = %d \n",(int)CurrSignalStrength)); _sys_mib->LastRetryCnt = _sys_mib->CurrRetryCnt; _sys_mib->LastTxokCnt = _sys_mib->NumTxOkTotal; _sys_mib->LastRxokCnt = _sys_mib->NumRxOkTotal; _sys_mib->CurrRetryCnt = 0; //2No Tx packets, return to init_rate or not? if (CurrRetryRate==0 && CurrTxokCnt == 0) { // // 2007.04.09, by Roger. //After 4.5 seconds in this condition, we try to raise rate. // _sys_mib->TryupingCountNoData++; if (_sys_mib->TryupingCountNoData>15) { _sys_mib->TryupingCountNoData = 0; CurrentOperaRate = GetUpgradeTxRate(padapter, CurrentOperaRate); // Reset Fail Record _sys_mib->LastFailTxRate = 0; _sys_mib->LastFailTxRateSS = -200; _sys_mib->FailTxRateCount = 0; } goto SetInitialGain; } else { _sys_mib->TryupingCountNoData=0; //Reset trying up times. } // // Restructure rate adaptive as the following main stages: // (1) Add retry threshold in 54M upgrading condition with signal strength. // (2) Add the mechanism to degrade to CCK rate according to signal strength // and retry rate. // (3) Remove all Initial Gain Updates over OFDM rate. To avoid the complicated // situation, Initial Gain Update is upon on DIG mechanism except CCK rate. // (4) Add the mehanism of trying to upgrade tx rate. // (5) Record the information of upping tx rate to avoid trying upping tx rate constantly. // By Bruce, 2007-06-05. // // // 11Mbps or 36Mbps // Check more times in these rate(key rates). // if(CurrentOperaRate == 22 || CurrentOperaRate == 72) { TryUpTh += 9; } // // Let these rates down more difficult. // if(MgntIsCckRate(CurrentOperaRate) || CurrentOperaRate == 36) { TryDownTh += 1; } //1 Adjust Rate. if (_sys_mib->bTryuping == _TRUE) { //2 For Test Upgrading mechanism // Note: // Sometimes the throughput is upon on the capability bwtween the AP and NIC, // thus the low data rate does not improve the performance. // We randomly upgrade the data rate and check if the retry rate is improved. // Upgrading rate did not improve the retry rate, fallback to the original rate. if ( (CurrRetryRate > 25) && TxThroughput < _sys_mib->LastTxThroughput ) { //Not necessary raising rate, fall back rate. bTryDown = _TRUE; } else { _sys_mib->bTryuping = _FALSE; } } else if (CurrSignalStrength > -51 && (CurrRetryRate < 100)) { //2For High Power // // Added by Roger, 2007.04.09. // Return to highest data rate, if signal strength is good enough. // SignalStrength threshold(-50dbm) is for RTL8186. // Revise SignalStrength threshold to -51dbm. // // Also need to check retry rate for safety, by Bruce, 2007-06-05. if(CurrentOperaRate != 108) { bTryUp = _TRUE; // Upgrade Tx Rate directly. _sys_mib->TryupingCount += TryUpTh; } } else if(CurrTxokCnt< 100 && CurrRetryRate >= 600) { //2 For Serious Retry // // Traffic is not busy but our Tx retry is serious. // bTryDown = _TRUE; // Let Rate Mechanism to degrade tx rate directly. _sys_mib->TryDownCountLowData += TryDownTh; DEBUG_INFO(("RA: Tx Retry is serious. Degrade Tx Rate to %d directly...\n", CurrentOperaRate)); } else if ( CurrentOperaRate == 108 ) { //2For 54Mbps // if ( (CurrRetryRate>38)&&(pHalData->LastRetryRate>35)) if ( (CurrRetryRate>33)&&(_sys_mib->LastRetryRate>32)) { //(30,25) for cable link threshold. (38,35) for air link. //Down to rate 48Mbps. bTryDown = _TRUE; } } else if ( CurrentOperaRate == 96 ) { //2For 48Mbps // if ( ((CurrRetryRate>73) && (pHalData->LastRetryRate>72)) && IncludedInSupportedRates(Adapter, 72) ) if ( ((CurrRetryRate>48) && (_sys_mib->LastRetryRate>47))) { //(73, 72) for temp used. //(25, 23) for cable link, (60,59) for air link. //CurrRetryRate plus 25 and 26 respectively for air link. //Down to rate 36Mbps. bTryDown = _TRUE; } else if ( (CurrRetryRate<8) && (_sys_mib->LastRetryRate<8) ) //TO DO: need to consider (RSSI) { bTryUp = _TRUE; } } else if ( CurrentOperaRate == 72 ) { //2For 36Mbps //if ( (CurrRetryRate>97) && (pHalData->LastRetryRate>97)) if ( (CurrRetryRate>55) && (_sys_mib->LastRetryRate>54)) { //(30,25) for cable link threshold respectively. (103,10) for air link respectively. //CurrRetryRate plus 65 and 69 respectively for air link threshold. //Down to rate 24Mbps. bTryDown = _TRUE; } // else if ( (CurrRetryRate<20) && (pHalData->LastRetryRate<20) && IncludedInSupportedRates(Adapter, 96) )//&& (device->LastRetryRate<15) ) //TO DO: need to consider (RSSI) else if ( (CurrRetryRate<15) && (_sys_mib->LastRetryRate<16))//&& (device->LastRetryRate<15) ) //TO DO: need to consider (RSSI) { bTryUp = _TRUE; } } else if ( CurrentOperaRate == 48 ) { //2For 24Mbps // if ( ((CurrRetryRate>119) && (pHalData->LastRetryRate>119) && IncludedInSupportedRates(Adapter, 36))) if ( ((CurrRetryRate>63) && (_sys_mib->LastRetryRate>62))) { //(15,15) for cable link threshold respectively. (119, 119) for air link threshold. //Plus 84 for air link threshold. //Down to rate 18Mbps. bTryDown = _TRUE; } // else if ( (CurrRetryRate<14) && (pHalData->LastRetryRate<15) && IncludedInSupportedRates(Adapter, 72)) //TO DO: need to consider (RSSI) else if ( (CurrRetryRate<20) && (_sys_mib->LastRetryRate<21)) //TO DO: need to consider (RSSI) { bTryUp = _TRUE; } } else if ( CurrentOperaRate == 36 ) { //2For 18Mbps if ( ((CurrRetryRate>109) && (_sys_mib->LastRetryRate>109))) { //(99,99) for cable link, (109,109) for air link. //Down to rate 11Mbps. bTryDown = _TRUE; } // else if ( (CurrRetryRate<15) && (pHalData->LastRetryRate<16) && IncludedInSupportedRates(Adapter, 48)) //TO DO: need to consider (RSSI) else if ( (CurrRetryRate<25) && (_sys_mib->LastRetryRate<26)) //TO DO: need to consider (RSSI) { bTryUp = _TRUE; } } else if ( CurrentOperaRate == 22 ) { //2For 11Mbps // if (CurrRetryRate>299 && IncludedInSupportedRates(Adapter, 11)) if (CurrRetryRate>95) { bTryDown = _TRUE; } else if (CurrRetryRate<55)//&& (device->LastRetryRate<55) ) //TO DO: need to consider (RSSI) { bTryUp = _TRUE; } } else if ( CurrentOperaRate == 11 ) { //2For 5.5Mbps // if (CurrRetryRate>159 && IncludedInSupportedRates(Adapter, 4) ) if (CurrRetryRate>149) { bTryDown = _TRUE; } // else if ( (CurrRetryRate<30) && (pHalData->LastRetryRate<30) && IncludedInSupportedRates(Adapter, 22) ) else if ( (CurrRetryRate<60) && (_sys_mib->LastRetryRate < 65)) { bTryUp = _TRUE; } } else if ( CurrentOperaRate == 4 ) { //2For 2 Mbps if((CurrRetryRate>99) && (_sys_mib->LastRetryRate>99)) { bTryDown = _TRUE; } // else if ( (CurrRetryRate<50) && (pHalData->LastRetryRate<65) && IncludedInSupportedRates(Adapter, 11) ) else if ( (CurrRetryRate < 65) && (_sys_mib->LastRetryRate < 70)) { bTryUp = _TRUE; } } else if ( CurrentOperaRate == 2 ) { //2For 1 Mbps // if ( (CurrRetryRate<50) && (pHalData->LastRetryRate<65) && IncludedInSupportedRates(Adapter, 4)) if ( (CurrRetryRate<70) && (_sys_mib->LastRetryRate<75)) { bTryUp = _TRUE; } } //1 Test Upgrading Tx Rate // Sometimes the cause of the low throughput (high retry rate) is the compatibility between the AP and NIC. // To test if the upper rate may cause lower retry rate, this mechanism randomly occurs to test upgrading tx rate. if(!bTryUp && !bTryDown && (_sys_mib->TryupingCount == 0) && (_sys_mib->TryDownCountLowData == 0) && CurrentOperaRate != 108 && _sys_mib->FailTxRateCount < 2) { if(jiffies% (CurrRetryRate + 101) == 0) { bTryUp = _TRUE; _sys_mib->bTryuping = _TRUE; DEBUG_INFO(("StaRateAdaptive87B(): Randomly try upgrading...\n")); } } //1 Rate Mechanism if(bTryUp) { _sys_mib->TryupingCount++; _sys_mib->TryDownCountLowData = 0; // // Check more times if we need to upgrade indeed. // Because the largest value of pHalData->TryupingCount is 0xFFFF and // the largest value of pHalData->FailTxRateCount is 0x14, // this condition will be satisfied at most every 2 min. // if((_sys_mib->TryupingCount > (TryUpTh + _sys_mib->FailTxRateCount * _sys_mib->FailTxRateCount)) || (CurrSignalStrength > _sys_mib->LastFailTxRateSS) || _sys_mib->bTryuping) { _sys_mib->TryupingCount = 0; // // When transfering from CCK to OFDM, DIG is an important issue. // if(CurrentOperaRate == 22) bUpdateInitialGain = _TRUE; // (1)To avoid upgrade frequently to the fail tx rate, add the FailTxRateCount into the threshold. // (2)If the signal strength is increased, it may be able to upgrade. CurrentOperaRate = GetUpgradeTxRate(padapter, CurrentOperaRate); DEBUG_INFO(("StaRateAdaptive87B(): Upgrade Tx Rate to %d\n", CurrentOperaRate)); // Update Fail Tx rate and count. if(_sys_mib->LastFailTxRate != CurrentOperaRate) { _sys_mib->LastFailTxRate = CurrentOperaRate; _sys_mib->FailTxRateCount = 0; _sys_mib->LastFailTxRateSS = -200; // Set lowest power. } } } else { if(_sys_mib->TryupingCount > 0) _sys_mib->TryupingCount --; } if(bTryDown) { _sys_mib->TryDownCountLowData++; _sys_mib->TryupingCount = 0; //Check if Tx rate can be degraded or Test trying upgrading should fallback. if(_sys_mib->TryDownCountLowData > TryDownTh || _sys_mib->bTryuping) { _sys_mib->TryDownCountLowData = 0; _sys_mib->bTryuping = _FALSE; // Update fail information. if(_sys_mib->LastFailTxRate == CurrentOperaRate) { _sys_mib->FailTxRateCount ++; // Record the Tx fail rate signal strength. if(CurrSignalStrength > _sys_mib->LastFailTxRateSS) { _sys_mib->LastFailTxRateSS = CurrSignalStrength; } } else { _sys_mib->LastFailTxRate = CurrentOperaRate; _sys_mib->FailTxRateCount = 1; _sys_mib->LastFailTxRateSS = CurrSignalStrength; } CurrentOperaRate = GetDegradeTxRate(padapter, CurrentOperaRate); // // When it is CCK rate, it may need to update initial gain to receive lower power packets. // if(MgntIsCckRate(CurrentOperaRate)) { bUpdateInitialGain = _TRUE; } DEBUG_INFO(("StaRateAdaptive87B(): Degrade Tx Rate to %d\n", CurrentOperaRate)); } } else { if(_sys_mib->TryDownCountLowData > 0) _sys_mib->TryDownCountLowData --; } // Keep the Tx fail rate count to equal to 0x15 at most. // Reduce the fail count at least to 10 sec if tx rate is tending stable. if(_sys_mib->FailTxRateCount >= 0x15 || (!bTryUp && !bTryDown && _sys_mib->TryDownCountLowData == 0 && _sys_mib->TryupingCount && _sys_mib->FailTxRateCount > 0x6)) { _sys_mib->FailTxRateCount --; } // // We need update initial gain when we set tx rate "from OFDM to CCK" or // "from CCK to OFDM". // SetInitialGain: if(bUpdateInitialGain) { if(MgntIsCckRate(CurrentOperaRate)) // CCK { if(_sys_mib->InitialGain > _sys_mib->RegBModeGainStage) { if(CurrSignalStrength < -85) // Low power, OFDM [0x17] = 26. { _sys_mib->InitialGain = _sys_mib->RegBModeGainStage; } else if(_sys_mib->InitialGain > _sys_mib->RegBModeGainStage + 1) { _sys_mib->InitialGain -= 2; } else { _sys_mib->InitialGain --; } DEBUG_INFO(("StaRateAdaptive87B(): update init_gain to index %d for date rate %d\n",_sys_mib->InitialGain, CurrentOperaRate)); UpdateInitialGain(padapter); } } else // OFDM { if(_sys_mib->InitialGain < 4) { _sys_mib->InitialGain ++; DEBUG_INFO(("StaRateAdaptive87B(): update init_gain to index %d for date rate %d\n",_sys_mib->InitialGain, CurrentOperaRate)); UpdateInitialGain(padapter); } } } //Record the related info _sys_mib->rate = ((int)CurrentOperaRate/2) *10; _sys_mib->LastRetryRate = CurrRetryRate; _sys_mib->LastTxThroughput = TxThroughput; }
void DynamicInitGain(_adapter *padapter) { struct mib_info *_sys_mib = &(padapter->_sys_mib); u16 CCKFalseAlarm, OFDMFalseAlarm; u16 OfdmFA1, OfdmFA2; u16 CCK_Up_Th, CCK_Lw_Th; int InitialGainStep = 7; // The number of initial gain stages. int LowestGainStage = 4; // The capable lowest stage of performing dig workitem. set_current_state(TASK_INTERRUPTIBLE); #ifdef TODO _sys_mib->FalseAlarmRegValue = read32(padapter, CCK_FALSE_ALARM); #endif CCKFalseAlarm = (u16)(_sys_mib->FalseAlarmRegValue & 0x0000ffff); OFDMFalseAlarm = (u16)( (_sys_mib->FalseAlarmRegValue>>16) & 0x0000ffff); OfdmFA1 = 0x15; OfdmFA2 = ((u16)(_sys_mib->RegDigOfdmFaUpTh)) << 8; //OfdmFA2 = 0xC00; DEBUG_INFO(("\n r8187_dig_thread:FalseAlarmRegValue = %8x \n", _sys_mib->FalseAlarmRegValue)); // The number of initial gain steps is different, by Bruce, 2007-04-13. if(_sys_mib->InitialGain == 0) //autoDIG {// Advised from SD3 DZ, by Bruce, 2007-06-05. _sys_mib->InitialGain = 4; // In 87B, m74dBm means State 4 (m82dBm) } #ifdef TODO if(padapter->registrypriv.chip_version != VERSION_8187B_B) { // Advised from SD3 DZ, by Bruce, 2007-06-05. OfdmFA1 = 0x20; } #endif InitialGainStep = 8; LowestGainStage = 1; if (OFDMFalseAlarm > OfdmFA1) { if (OFDMFalseAlarm > OfdmFA2) { _sys_mib->DIG_NumberFallbackVote++; if (_sys_mib->DIG_NumberFallbackVote >1) { // serious OFDM False Alarm, need fallback // By Bruce, 2007-03-29. // if (priv->InitialGain < 7) // In 87B, m66dBm means State 7 (m74dBm) if (_sys_mib->InitialGain < InitialGainStep) { _sys_mib->InitialGain = (_sys_mib->InitialGain + 1); UpdateInitialGain(padapter); // 2005.01.06, by rcnjko. } _sys_mib->DIG_NumberFallbackVote = 0; _sys_mib->DIG_NumberUpgradeVote = 0; } } else { if (_sys_mib->DIG_NumberFallbackVote) _sys_mib->DIG_NumberFallbackVote--; } _sys_mib->DIG_NumberUpgradeVote=0; } else //OFDM False Alarm < 0x15 { if (_sys_mib->DIG_NumberFallbackVote) _sys_mib->DIG_NumberFallbackVote--; _sys_mib->DIG_NumberUpgradeVote++; if (_sys_mib->DIG_NumberUpgradeVote>9) { if (_sys_mib->InitialGain > LowestGainStage) // In 87B, m78dBm means State 4 (m864dBm) { _sys_mib->InitialGain = (_sys_mib->InitialGain - 1); UpdateInitialGain(padapter); // 2005.01.06, by rcnjko. } _sys_mib->DIG_NumberFallbackVote = 0; _sys_mib->DIG_NumberUpgradeVote = 0; } } // By Bruce, 2007-03-29. // Dynamically update CCK Power Detection Threshold. CCK_Up_Th = _sys_mib->CCKUpperTh; CCK_Lw_Th = _sys_mib->CCKLowerTh; CCKFalseAlarm = (u16)((_sys_mib->FalseAlarmRegValue & 0x0000ffff) >> 8); // We only care about the higher byte. if( _sys_mib->StageCCKTh < 3 && CCKFalseAlarm >= CCK_Up_Th) { _sys_mib->StageCCKTh ++; UpdateCCKThreshold(padapter); } else if(_sys_mib->StageCCKTh > 0 && CCKFalseAlarm <= CCK_Lw_Th) { _sys_mib->StageCCKTh --; UpdateCCKThreshold(padapter); } }
void DIG_Zebra(struct net_device *dev) { struct r8180_priv *priv = ieee80211_priv(dev); u16 CCKFalseAlarm, OFDMFalseAlarm; u16 OfdmFA1, OfdmFA2; int InitialGainStep = 7; int LowestGainStage = 4; u32 AwakePeriodIn2Sec = 0; CCKFalseAlarm = (u16)(priv->FalseAlarmRegValue & 0x0000ffff); OFDMFalseAlarm = (u16)((priv->FalseAlarmRegValue >> 16) & 0x0000ffff); OfdmFA1 = 0x15; OfdmFA2 = ((u16)(priv->RegDigOfdmFaUpTh)) << 8; if (priv->InitialGain == 0) { priv->InitialGain = 4; } OfdmFA1 = 0x20; #if 1 AwakePeriodIn2Sec = (2000 - priv->DozePeriodInPast2Sec); priv ->DozePeriodInPast2Sec = 0; if (AwakePeriodIn2Sec) { OfdmFA1 = (u16)((OfdmFA1 * AwakePeriodIn2Sec) / 2000) ; OfdmFA2 = (u16)((OfdmFA2 * AwakePeriodIn2Sec) / 2000) ; } else { ; } #endif InitialGainStep = 8; LowestGainStage = priv->RegBModeGainStage; if (OFDMFalseAlarm > OfdmFA1) { if (OFDMFalseAlarm > OfdmFA2) { priv->DIG_NumberFallbackVote++; if (priv->DIG_NumberFallbackVote > 1) { if (priv->InitialGain < InitialGainStep) { priv->InitialGainBackUp = priv->InitialGain; priv->InitialGain = (priv->InitialGain + 1); UpdateInitialGain(dev); } priv->DIG_NumberFallbackVote = 0; priv->DIG_NumberUpgradeVote = 0; } } else { if (priv->DIG_NumberFallbackVote) priv->DIG_NumberFallbackVote--; } priv->DIG_NumberUpgradeVote = 0; } else { if (priv->DIG_NumberFallbackVote) priv->DIG_NumberFallbackVote--; priv->DIG_NumberUpgradeVote++; if (priv->DIG_NumberUpgradeVote > 9) { if (priv->InitialGain > LowestGainStage) { priv->InitialGainBackUp = priv->InitialGain; priv->InitialGain = (priv->InitialGain - 1); UpdateInitialGain(dev); } priv->DIG_NumberFallbackVote = 0; priv->DIG_NumberUpgradeVote = 0; } } }
void StaRateAdaptive87SE(struct net_device *dev) { struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); unsigned long CurrTxokCnt; u16 CurrRetryCnt; u16 CurrRetryRate; unsigned long CurrRxokCnt; bool bTryUp = false; bool bTryDown = false; u8 TryUpTh = 1; u8 TryDownTh = 2; u32 TxThroughput; long CurrSignalStrength; bool bUpdateInitialGain = false; u8 u1bOfdm = 0, u1bCck = 0; char OfdmTxPwrIdx, CckTxPwrIdx; priv->RateAdaptivePeriod = RATE_ADAPTIVE_TIMER_PERIOD; CurrRetryCnt = priv->CurrRetryCnt; CurrTxokCnt = priv->NumTxOkTotal - priv->LastTxokCnt; CurrRxokCnt = priv->ieee80211->NumRxOkTotal - priv->LastRxokCnt; CurrSignalStrength = priv->Stats_RecvSignalPower; TxThroughput = (u32)(priv->NumTxOkBytesTotal - priv->LastTxOKBytes); priv->LastTxOKBytes = priv->NumTxOkBytesTotal; priv->CurrentOperaRate = priv->ieee80211->rate / 5; if (CurrTxokCnt > 0) { CurrRetryRate = (u16)(CurrRetryCnt * 100 / CurrTxokCnt); } else { CurrRetryRate = (u16)(CurrRetryCnt * 100 / 1); } priv->LastRetryCnt = priv->CurrRetryCnt; priv->LastTxokCnt = priv->NumTxOkTotal; priv->LastRxokCnt = priv->ieee80211->NumRxOkTotal; priv->CurrRetryCnt = 0; if (CurrRetryRate == 0 && CurrTxokCnt == 0) { priv->TryupingCountNoData++; if (priv->TryupingCountNoData > 30) { priv->TryupingCountNoData = 0; priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate); priv->LastFailTxRate = 0; priv->LastFailTxRateSS = -200; priv->FailTxRateCount = 0; } goto SetInitialGain; } else { priv->TryupingCountNoData = 0; } if (priv->CurrentOperaRate == 22 || priv->CurrentOperaRate == 72) TryUpTh += 9; if (MgntIsCckRate(priv->CurrentOperaRate) || priv->CurrentOperaRate == 36) TryDownTh += 1; if (priv->bTryuping == true) { if ((CurrRetryRate > 25) && TxThroughput < priv->LastTxThroughput) { bTryDown = true; } else { priv->bTryuping = false; } } else if (CurrSignalStrength > -47 && (CurrRetryRate < 50)) { if (priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate) { bTryUp = true; priv->TryupingCount += TryUpTh; } } else if (CurrTxokCnt > 9 && CurrTxokCnt < 100 && CurrRetryRate >= 600) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 108) { if ((CurrRetryRate > 26) && (priv->LastRetryRate > 25)) { bTryDown = true; } else if ((CurrRetryRate > 17) && (priv->LastRetryRate > 16) && (CurrSignalStrength > -72)) { bTryDown = true; } if (bTryDown && (CurrSignalStrength < -75)) priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 96) { if (((CurrRetryRate > 48) && (priv->LastRetryRate > 47))) { bTryDown = true; } else if (((CurrRetryRate > 21) && (priv->LastRetryRate > 20)) && (CurrSignalStrength > -74)) { bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 8) && (priv->LastRetryRate < 8)) { bTryUp = true; } if (bTryDown && (CurrSignalStrength < -75)){ priv->TryDownCountLowData += TryDownTh; } } else if (priv->CurrentOperaRate == 72) { if ((CurrRetryRate > 43) && (priv->LastRetryRate > 41)) { bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 15) && (priv->LastRetryRate < 16)) { bTryUp = true; } if (bTryDown && (CurrSignalStrength < -80)) priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 48) { if (((CurrRetryRate > 63) && (priv->LastRetryRate > 62))) { bTryDown = true; } else if (((CurrRetryRate > 33) && (priv->LastRetryRate > 32)) && (CurrSignalStrength > -82)) { bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2 )) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 20) && (priv->LastRetryRate < 21)) { bTryUp = true; } if (bTryDown && (CurrSignalStrength < -82)) priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 36) { if (((CurrRetryRate > 85) && (priv->LastRetryRate > 86))) { bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 22) && (priv->LastRetryRate < 23)) { bTryUp = true; } } else if (priv->CurrentOperaRate == 22) { if (CurrRetryRate > 95) { bTryDown = true; } else if ((CurrRetryRate < 29) && (priv->LastRetryRate < 30)) { bTryUp = true; } } else if (priv->CurrentOperaRate == 11) { if (CurrRetryRate > 149) { bTryDown = true; } else if ((CurrRetryRate < 60) && (priv->LastRetryRate < 65)) { bTryUp = true; } } else if (priv->CurrentOperaRate == 4) { if ((CurrRetryRate > 99) && (priv->LastRetryRate > 99)) { bTryDown = true; } else if ((CurrRetryRate < 65) && (priv->LastRetryRate < 70)) { bTryUp = true; } } else if (priv->CurrentOperaRate == 2) { if ((CurrRetryRate < 70) && (priv->LastRetryRate < 75)) { bTryUp = true; } } if (bTryUp && bTryDown) printk("StaRateAdaptive87B(): Tx Rate tried upping and downing simultaneously!\n"); if (!bTryUp && !bTryDown && (priv->TryupingCount == 0) && (priv->TryDownCountLowData == 0) && priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate && priv->FailTxRateCount < 2) { if (jiffies % (CurrRetryRate + 101) == 0) { bTryUp = true; priv->bTryuping = true; } } if (bTryUp) { priv->TryupingCount++; priv->TryDownCountLowData = 0; if ((priv->TryupingCount > (TryUpTh + priv->FailTxRateCount * priv->FailTxRateCount)) || (CurrSignalStrength > priv->LastFailTxRateSS) || priv->bTryuping) { priv->TryupingCount = 0; if (priv->CurrentOperaRate == 22) bUpdateInitialGain = true; if (((priv->CurrentOperaRate == 72) || (priv->CurrentOperaRate == 48) || (priv->CurrentOperaRate == 36)) && (priv->FailTxRateCount > 2)) priv->RateAdaptivePeriod = (RATE_ADAPTIVE_TIMER_PERIOD / 2); priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate); if (priv->CurrentOperaRate == 36) { priv->bUpdateARFR = true; write_nic_word(dev, ARFR, 0x0F8F); } else if(priv->bUpdateARFR) { priv->bUpdateARFR = false; write_nic_word(dev, ARFR, 0x0FFF); } if (priv->LastFailTxRate != priv->CurrentOperaRate) { priv->LastFailTxRate = priv->CurrentOperaRate; priv->FailTxRateCount = 0; priv->LastFailTxRateSS = -200; } } } else { if (priv->TryupingCount > 0) priv->TryupingCount --; } if (bTryDown) { priv->TryDownCountLowData++; priv->TryupingCount = 0; if (priv->TryDownCountLowData > TryDownTh || priv->bTryuping) { priv->TryDownCountLowData = 0; priv->bTryuping = false; if (priv->LastFailTxRate == priv->CurrentOperaRate) { priv->FailTxRateCount++; if (CurrSignalStrength > priv->LastFailTxRateSS) priv->LastFailTxRateSS = CurrSignalStrength; } else { priv->LastFailTxRate = priv->CurrentOperaRate; priv->FailTxRateCount = 1; priv->LastFailTxRateSS = CurrSignalStrength; } priv->CurrentOperaRate = GetDegradeTxRate(dev, priv->CurrentOperaRate); if ((CurrSignalStrength < -80) && (priv->CurrentOperaRate > 72 )) { priv->CurrentOperaRate = 72; } if (priv->CurrentOperaRate == 36) { priv->bUpdateARFR = true; write_nic_word(dev, ARFR, 0x0F8F); } else if (priv->bUpdateARFR) { priv->bUpdateARFR = false; write_nic_word(dev, ARFR, 0x0FFF); } if (MgntIsCckRate(priv->CurrentOperaRate)) { bUpdateInitialGain = true; } } } else { if (priv->TryDownCountLowData > 0) priv->TryDownCountLowData--; } if (priv->FailTxRateCount >= 0x15 || (!bTryUp && !bTryDown && priv->TryDownCountLowData == 0 && priv->TryupingCount && priv->FailTxRateCount > 0x6)) { priv->FailTxRateCount--; } OfdmTxPwrIdx = priv->chtxpwr_ofdm[priv->ieee80211->current_network.channel]; CckTxPwrIdx = priv->chtxpwr[priv->ieee80211->current_network.channel]; if ((priv->CurrentOperaRate < 96) && (priv->CurrentOperaRate > 22)) { u1bCck = read_nic_byte(dev, CCK_TXAGC); u1bOfdm = read_nic_byte(dev, OFDM_TXAGC); if (u1bCck == CckTxPwrIdx) { if (u1bOfdm != (OfdmTxPwrIdx + 2)) { priv->bEnhanceTxPwr = true; u1bOfdm = ((u1bOfdm + 2) > 35) ? 35: (u1bOfdm + 2); write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); } } else if (u1bCck < CckTxPwrIdx) { if (!priv->bEnhanceTxPwr) { priv->bEnhanceTxPwr = true; u1bOfdm = ((u1bOfdm + 2) > 35) ? 35: (u1bOfdm + 2); write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); } } } else if (priv->bEnhanceTxPwr) { u1bCck = read_nic_byte(dev, CCK_TXAGC); u1bOfdm = read_nic_byte(dev, OFDM_TXAGC); if (u1bCck == CckTxPwrIdx) { priv->bEnhanceTxPwr = false; write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx); } else if (u1bCck < CckTxPwrIdx) { priv->bEnhanceTxPwr = false; u1bOfdm = ((u1bOfdm - 2) > 0) ? (u1bOfdm - 2): 0; write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); } } SetInitialGain: if (bUpdateInitialGain) { if (MgntIsCckRate(priv->CurrentOperaRate)) { if (priv->InitialGain > priv->RegBModeGainStage) { priv->InitialGainBackUp = priv->InitialGain; if (CurrSignalStrength < -85) priv->InitialGain = priv->RegBModeGainStage; else if (priv->InitialGain > priv->RegBModeGainStage + 1) priv->InitialGain -= 2; else priv->InitialGain--; printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n",priv->InitialGain, priv->CurrentOperaRate); UpdateInitialGain(dev); } } else { if (priv->InitialGain < 4) { priv->InitialGainBackUp = priv->InitialGain; priv->InitialGain++; printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n",priv->InitialGain, priv->CurrentOperaRate); UpdateInitialGain(dev); } } } priv->LastRetryRate = CurrRetryRate; priv->LastTxThroughput = TxThroughput; priv->ieee80211->rate = priv->CurrentOperaRate * 5; }
static void StaRateAdaptive87SE(struct net_device *dev) { struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); unsigned long CurrTxokCnt; u16 CurrRetryCnt; u16 CurrRetryRate; unsigned long CurrRxokCnt; bool bTryUp = false; bool bTryDown = false; u8 TryUpTh = 1; u8 TryDownTh = 2; u32 TxThroughput; long CurrSignalStrength; bool bUpdateInitialGain = false; u8 u1bOfdm = 0, u1bCck = 0; char OfdmTxPwrIdx, CckTxPwrIdx; priv->RateAdaptivePeriod = RATE_ADAPTIVE_TIMER_PERIOD; CurrRetryCnt = priv->CurrRetryCnt; CurrTxokCnt = priv->NumTxOkTotal - priv->LastTxokCnt; CurrRxokCnt = priv->ieee80211->NumRxOkTotal - priv->LastRxokCnt; CurrSignalStrength = priv->Stats_RecvSignalPower; TxThroughput = (u32)(priv->NumTxOkBytesTotal - priv->LastTxOKBytes); priv->LastTxOKBytes = priv->NumTxOkBytesTotal; priv->CurrentOperaRate = priv->ieee80211->rate / 5; /* 2 Compute retry ratio. */ if (CurrTxokCnt > 0) { CurrRetryRate = (u16)(CurrRetryCnt * 100 / CurrTxokCnt); } else { /* It may be serious retry. To distinguish serious retry or no packets modified by Bruce */ CurrRetryRate = (u16)(CurrRetryCnt * 100 / 1); } priv->LastRetryCnt = priv->CurrRetryCnt; priv->LastTxokCnt = priv->NumTxOkTotal; priv->LastRxokCnt = priv->ieee80211->NumRxOkTotal; priv->CurrRetryCnt = 0; /* 2No Tx packets, return to init_rate or not? */ if (CurrRetryRate == 0 && CurrTxokCnt == 0) { /* * After 9 (30*300ms) seconds in this condition, we try to raise rate. */ priv->TryupingCountNoData++; /* [TRC Dell Lab] Extend raised period from 4.5sec to 9sec, Isaiah 2008-02-15 18:00 */ if (priv->TryupingCountNoData > 30) { priv->TryupingCountNoData = 0; priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate); /* Reset Fail Record */ priv->LastFailTxRate = 0; priv->LastFailTxRateSS = -200; priv->FailTxRateCount = 0; } goto SetInitialGain; } else { priv->TryupingCountNoData = 0; /*Reset trying up times. */ } /* * For Netgear case, I comment out the following signal strength estimation, * which can results in lower rate to transmit when sample is NOT enough (e.g. PING request). * * Restructure rate adaptive as the following main stages: * (1) Add retry threshold in 54M upgrading condition with signal strength. * (2) Add the mechanism to degrade to CCK rate according to signal strength * and retry rate. * (3) Remove all Initial Gain Updates over OFDM rate. To avoid the complicated * situation, Initial Gain Update is upon on DIG mechanism except CCK rate. * (4) Add the mechanism of trying to upgrade tx rate. * (5) Record the information of upping tx rate to avoid trying upping tx rate constantly. * */ /* * 11Mbps or 36Mbps * Check more times in these rate(key rates). */ if (priv->CurrentOperaRate == 22 || priv->CurrentOperaRate == 72) TryUpTh += 9; /* * Let these rates down more difficult. */ if (MgntIsCckRate(priv->CurrentOperaRate) || priv->CurrentOperaRate == 36) TryDownTh += 1; /* 1 Adjust Rate. */ if (priv->bTryuping == true) { /* 2 For Test Upgrading mechanism * Note: * Sometimes the throughput is upon on the capability between the AP and NIC, * thus the low data rate does not improve the performance. * We randomly upgrade the data rate and check if the retry rate is improved. */ /* Upgrading rate did not improve the retry rate, fallback to the original rate. */ if ((CurrRetryRate > 25) && TxThroughput < priv->LastTxThroughput) { /*Not necessary raising rate, fall back rate. */ bTryDown = true; } else { priv->bTryuping = false; } } else if (CurrSignalStrength > -47 && (CurrRetryRate < 50)) { /* * 2For High Power * * Return to highest data rate, if signal strength is good enough. * SignalStrength threshold(-50dbm) is for RTL8186. * Revise SignalStrength threshold to -51dbm. */ /* Also need to check retry rate for safety, by Bruce, 2007-06-05. */ if (priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate) { bTryUp = true; /* Upgrade Tx Rate directly. */ priv->TryupingCount += TryUpTh; } } else if (CurrTxokCnt > 9 && CurrTxokCnt < 100 && CurrRetryRate >= 600) { /* *2 For Serious Retry * * Traffic is not busy but our Tx retry is serious. */ bTryDown = true; /* Let Rate Mechanism to degrade tx rate directly. */ priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 108) { /* 2For 54Mbps */ /* Air Link */ if ((CurrRetryRate > 26) && (priv->LastRetryRate > 25)) { bTryDown = true; } /* Cable Link */ else if ((CurrRetryRate > 17) && (priv->LastRetryRate > 16) && (CurrSignalStrength > -72)) { bTryDown = true; } if (bTryDown && (CurrSignalStrength < -75)) /* cable link */ priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 96) { /* 2For 48Mbps */ /* Air Link */ if (((CurrRetryRate > 48) && (priv->LastRetryRate > 47))) { bTryDown = true; } else if (((CurrRetryRate > 21) && (priv->LastRetryRate > 20)) && (CurrSignalStrength > -74)) { /* Cable Link */ /* Down to rate 36Mbps. */ bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 8) && (priv->LastRetryRate < 8)) { /* TO DO: need to consider (RSSI) */ bTryUp = true; } if (bTryDown && (CurrSignalStrength < -75)) { priv->TryDownCountLowData += TryDownTh; } } else if (priv->CurrentOperaRate == 72) { /* 2For 36Mbps */ if ((CurrRetryRate > 43) && (priv->LastRetryRate > 41)) { /* Down to rate 24Mbps. */ bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 15) && (priv->LastRetryRate < 16)) { /* TO DO: need to consider (RSSI) */ bTryUp = true; } if (bTryDown && (CurrSignalStrength < -80)) priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 48) { /* 2For 24Mbps */ /* Air Link */ if (((CurrRetryRate > 63) && (priv->LastRetryRate > 62))) { bTryDown = true; } else if (((CurrRetryRate > 33) && (priv->LastRetryRate > 32)) && (CurrSignalStrength > -82)) { /* Cable Link */ bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 20) && (priv->LastRetryRate < 21)) { /* TO DO: need to consider (RSSI) */ bTryUp = true; } if (bTryDown && (CurrSignalStrength < -82)) priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 36) { if (((CurrRetryRate > 85) && (priv->LastRetryRate > 86))) { bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 22) && (priv->LastRetryRate < 23)) { /* TO DO: need to consider (RSSI) */ bTryUp = true; } } else if (priv->CurrentOperaRate == 22) { /* 2For 11Mbps */ if (CurrRetryRate > 95) { bTryDown = true; } else if ((CurrRetryRate < 29) && (priv->LastRetryRate < 30)) { /*TO DO: need to consider (RSSI) */ bTryUp = true; } } else if (priv->CurrentOperaRate == 11) { /* 2For 5.5Mbps */ if (CurrRetryRate > 149) { bTryDown = true; } else if ((CurrRetryRate < 60) && (priv->LastRetryRate < 65)) { bTryUp = true; } } else if (priv->CurrentOperaRate == 4) { /* 2For 2 Mbps */ if ((CurrRetryRate > 99) && (priv->LastRetryRate > 99)) { bTryDown = true; } else if ((CurrRetryRate < 65) && (priv->LastRetryRate < 70)) { bTryUp = true; } } else if (priv->CurrentOperaRate == 2) { /* 2For 1 Mbps */ if ((CurrRetryRate < 70) && (priv->LastRetryRate < 75)) { bTryUp = true; } } if (bTryUp && bTryDown) printk("StaRateAdaptive87B(): Tx Rate tried upping and downing simultaneously!\n"); /* 1 Test Upgrading Tx Rate * Sometimes the cause of the low throughput (high retry rate) is the compatibility between the AP and NIC. * To test if the upper rate may cause lower retry rate, this mechanism randomly occurs to test upgrading tx rate. */ if (!bTryUp && !bTryDown && (priv->TryupingCount == 0) && (priv->TryDownCountLowData == 0) && priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate && priv->FailTxRateCount < 2) { if (jiffies % (CurrRetryRate + 101) == 0) { bTryUp = true; priv->bTryuping = true; } } /* 1 Rate Mechanism */ if (bTryUp) { priv->TryupingCount++; priv->TryDownCountLowData = 0; /* * Check more times if we need to upgrade indeed. * Because the largest value of pHalData->TryupingCount is 0xFFFF and * the largest value of pHalData->FailTxRateCount is 0x14, * this condition will be satisfied at most every 2 min. */ if ((priv->TryupingCount > (TryUpTh + priv->FailTxRateCount * priv->FailTxRateCount)) || (CurrSignalStrength > priv->LastFailTxRateSS) || priv->bTryuping) { priv->TryupingCount = 0; /* * When transferring from CCK to OFDM, DIG is an important issue. */ if (priv->CurrentOperaRate == 22) bUpdateInitialGain = true; /* * The difference in throughput between 48Mbps and 36Mbps is 8M. * So, we must be careful in this rate scale. Isaiah 2008-02-15. */ if (((priv->CurrentOperaRate == 72) || (priv->CurrentOperaRate == 48) || (priv->CurrentOperaRate == 36)) && (priv->FailTxRateCount > 2)) priv->RateAdaptivePeriod = (RATE_ADAPTIVE_TIMER_PERIOD / 2); /* (1)To avoid upgrade frequently to the fail tx rate, add the FailTxRateCount into the threshold. */ /* (2)If the signal strength is increased, it may be able to upgrade. */ priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate); if (priv->CurrentOperaRate == 36) { priv->bUpdateARFR = true; write_nic_word(dev, ARFR, 0x0F8F); /* bypass 12/9/6 */ } else if (priv->bUpdateARFR) { priv->bUpdateARFR = false; write_nic_word(dev, ARFR, 0x0FFF); /* set 1M ~ 54Mbps. */ } /* Update Fail Tx rate and count. */ if (priv->LastFailTxRate != priv->CurrentOperaRate) { priv->LastFailTxRate = priv->CurrentOperaRate; priv->FailTxRateCount = 0; priv->LastFailTxRateSS = -200; /* Set lowest power. */ } } } else { if (priv->TryupingCount > 0) priv->TryupingCount--; } if (bTryDown) { priv->TryDownCountLowData++; priv->TryupingCount = 0; /* Check if Tx rate can be degraded or Test trying upgrading should fallback. */ if (priv->TryDownCountLowData > TryDownTh || priv->bTryuping) { priv->TryDownCountLowData = 0; priv->bTryuping = false; /* Update fail information. */ if (priv->LastFailTxRate == priv->CurrentOperaRate) { priv->FailTxRateCount++; /* Record the Tx fail rate signal strength. */ if (CurrSignalStrength > priv->LastFailTxRateSS) priv->LastFailTxRateSS = CurrSignalStrength; } else { priv->LastFailTxRate = priv->CurrentOperaRate; priv->FailTxRateCount = 1; priv->LastFailTxRateSS = CurrSignalStrength; } priv->CurrentOperaRate = GetDegradeTxRate(dev, priv->CurrentOperaRate); /* Reduce chariot training time at weak signal strength situation. SD3 ED demand. */ if ((CurrSignalStrength < -80) && (priv->CurrentOperaRate > 72)) { priv->CurrentOperaRate = 72; } if (priv->CurrentOperaRate == 36) { priv->bUpdateARFR = true; write_nic_word(dev, ARFR, 0x0F8F); /* bypass 12/9/6 */ } else if (priv->bUpdateARFR) { priv->bUpdateARFR = false; write_nic_word(dev, ARFR, 0x0FFF); /* set 1M ~ 54Mbps. */ } /* * When it is CCK rate, it may need to update initial gain to receive lower power packets. */ if (MgntIsCckRate(priv->CurrentOperaRate)) { bUpdateInitialGain = true; } } } else { if (priv->TryDownCountLowData > 0) priv->TryDownCountLowData--; } /* * Keep the Tx fail rate count to equal to 0x15 at most. * Reduce the fail count at least to 10 sec if tx rate is tending stable. */ if (priv->FailTxRateCount >= 0x15 || (!bTryUp && !bTryDown && priv->TryDownCountLowData == 0 && priv->TryupingCount && priv->FailTxRateCount > 0x6)) { priv->FailTxRateCount--; } OfdmTxPwrIdx = priv->chtxpwr_ofdm[priv->ieee80211->current_network.channel]; CckTxPwrIdx = priv->chtxpwr[priv->ieee80211->current_network.channel]; /* Mac0x9e increase 2 level in 36M~18M situation */ if ((priv->CurrentOperaRate < 96) && (priv->CurrentOperaRate > 22)) { u1bCck = read_nic_byte(dev, CCK_TXAGC); u1bOfdm = read_nic_byte(dev, OFDM_TXAGC); /* case 1: Never enter High power */ if (u1bCck == CckTxPwrIdx) { if (u1bOfdm != (OfdmTxPwrIdx + 2)) { priv->bEnhanceTxPwr = true; u1bOfdm = ((u1bOfdm + 2) > 35) ? 35 : (u1bOfdm + 2); write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); } } else if (u1bCck < CckTxPwrIdx) { /* case 2: enter high power */ if (!priv->bEnhanceTxPwr) { priv->bEnhanceTxPwr = true; u1bOfdm = ((u1bOfdm + 2) > 35) ? 35 : (u1bOfdm + 2); write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); } } } else if (priv->bEnhanceTxPwr) { /* 54/48/11/5.5/2/1 */ u1bCck = read_nic_byte(dev, CCK_TXAGC); u1bOfdm = read_nic_byte(dev, OFDM_TXAGC); /* case 1: Never enter High power */ if (u1bCck == CckTxPwrIdx) { priv->bEnhanceTxPwr = false; write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx); } /* case 2: enter high power */ else if (u1bCck < CckTxPwrIdx) { priv->bEnhanceTxPwr = false; u1bOfdm = ((u1bOfdm - 2) > 0) ? (u1bOfdm - 2) : 0; write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); } } /* * We need update initial gain when we set tx rate "from OFDM to CCK" or * "from CCK to OFDM". */ SetInitialGain: if (bUpdateInitialGain) { if (MgntIsCckRate(priv->CurrentOperaRate)) { /* CCK */ if (priv->InitialGain > priv->RegBModeGainStage) { priv->InitialGainBackUp = priv->InitialGain; if (CurrSignalStrength < -85) /* Low power, OFDM [0x17] = 26. */ /* SD3 SYs suggest that CurrSignalStrength < -65, ofdm 0x17=26. */ priv->InitialGain = priv->RegBModeGainStage; else if (priv->InitialGain > priv->RegBModeGainStage + 1) priv->InitialGain -= 2; else priv->InitialGain--; printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n", priv->InitialGain, priv->CurrentOperaRate); UpdateInitialGain(dev); } } else { /* OFDM */ if (priv->InitialGain < 4) { priv->InitialGainBackUp = priv->InitialGain; priv->InitialGain++; printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n", priv->InitialGain, priv->CurrentOperaRate); UpdateInitialGain(dev); } } } /* Record the related info */ priv->LastRetryRate = CurrRetryRate; priv->LastTxThroughput = TxThroughput; priv->ieee80211->rate = priv->CurrentOperaRate * 5; }
/* * Implementation of DIG for Zebra and Zebra2. */ static void DIG_Zebra(struct net_device *dev) { struct r8180_priv *priv = ieee80211_priv(dev); u16 CCKFalseAlarm, OFDMFalseAlarm; u16 OfdmFA1, OfdmFA2; int InitialGainStep = 7; /* The number of initial gain stages. */ int LowestGainStage = 4; /* The capable lowest stage of performing dig workitem. */ u32 AwakePeriodIn2Sec = 0; CCKFalseAlarm = (u16)(priv->FalseAlarmRegValue & 0x0000ffff); OFDMFalseAlarm = (u16)((priv->FalseAlarmRegValue >> 16) & 0x0000ffff); OfdmFA1 = 0x15; OfdmFA2 = ((u16)(priv->RegDigOfdmFaUpTh)) << 8; /* The number of initial gain steps is different, by Bruce, 2007-04-13. */ if (priv->InitialGain == 0) { /* autoDIG */ /* Advised from SD3 DZ */ priv->InitialGain = 4; /* In 87B, m74dBm means State 4 (m82dBm) */ } /* Advised from SD3 DZ */ OfdmFA1 = 0x20; #if 1 /* lzm reserved 080826 */ AwakePeriodIn2Sec = (2000 - priv->DozePeriodInPast2Sec); priv->DozePeriodInPast2Sec = 0; if (AwakePeriodIn2Sec) { OfdmFA1 = (u16)((OfdmFA1 * AwakePeriodIn2Sec) / 2000); OfdmFA2 = (u16)((OfdmFA2 * AwakePeriodIn2Sec) / 2000); } else { ; } #endif InitialGainStep = 8; LowestGainStage = priv->RegBModeGainStage; /* Lowest gain stage. */ if (OFDMFalseAlarm > OfdmFA1) { if (OFDMFalseAlarm > OfdmFA2) { priv->DIG_NumberFallbackVote++; if (priv->DIG_NumberFallbackVote > 1) { /* serious OFDM False Alarm, need fallback */ if (priv->InitialGain < InitialGainStep) { priv->InitialGainBackUp = priv->InitialGain; priv->InitialGain = (priv->InitialGain + 1); UpdateInitialGain(dev); } priv->DIG_NumberFallbackVote = 0; priv->DIG_NumberUpgradeVote = 0; } } else { if (priv->DIG_NumberFallbackVote) priv->DIG_NumberFallbackVote--; } priv->DIG_NumberUpgradeVote = 0; } else { if (priv->DIG_NumberFallbackVote) priv->DIG_NumberFallbackVote--; priv->DIG_NumberUpgradeVote++; if (priv->DIG_NumberUpgradeVote > 9) { if (priv->InitialGain > LowestGainStage) { /* In 87B, m78dBm means State 4 (m864dBm) */ priv->InitialGainBackUp = priv->InitialGain; priv->InitialGain = (priv->InitialGain - 1); UpdateInitialGain(dev); } priv->DIG_NumberFallbackVote = 0; priv->DIG_NumberUpgradeVote = 0; } } }
void StaRateAdaptive87SE( struct net_device *dev ) { struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); unsigned long CurrTxokCnt; u16 CurrRetryCnt; u16 CurrRetryRate; //u16 i,idx; unsigned long CurrRxokCnt; bool bTryUp = false; bool bTryDown = false; u8 TryUpTh = 1; u8 TryDownTh = 2; u32 TxThroughput; long CurrSignalStrength; bool bUpdateInitialGain = false; u8 u1bOfdm=0, u1bCck = 0; char OfdmTxPwrIdx, CckTxPwrIdx; priv->RateAdaptivePeriod= RATE_ADAPTIVE_TIMER_PERIOD; CurrRetryCnt = priv->CurrRetryCnt; CurrTxokCnt = priv->NumTxOkTotal - priv->LastTxokCnt; CurrRxokCnt = priv->ieee80211->NumRxOkTotal - priv->LastRxokCnt; CurrSignalStrength = priv->Stats_RecvSignalPower; TxThroughput = (u32)(priv->NumTxOkBytesTotal - priv->LastTxOKBytes); priv->LastTxOKBytes = priv->NumTxOkBytesTotal; priv->CurrentOperaRate = priv->ieee80211->rate/5; //printk("priv->CurrentOperaRate is %d\n",priv->CurrentOperaRate); //2 Compute retry ratio. if (CurrTxokCnt>0) { CurrRetryRate = (u16)(CurrRetryCnt*100/CurrTxokCnt); } else { // It may be serious retry. To distinguish serious retry or no packets modified by Bruce CurrRetryRate = (u16)(CurrRetryCnt*100/1); } // // Added by Roger, 2007.01.02. // For debug information. // //printk("\n(1) pHalData->LastRetryRate: %d \n",priv->LastRetryRate); //printk("(2) RetryCnt = %d \n", CurrRetryCnt); //printk("(3) TxokCnt = %d \n", CurrTxokCnt); //printk("(4) CurrRetryRate = %d \n", CurrRetryRate); //printk("(5) CurrSignalStrength = %d \n",CurrSignalStrength); //printk("(6) TxThroughput is %d\n",TxThroughput); //printk("priv->NumTxOkBytesTotal is %d\n",priv->NumTxOkBytesTotal); priv->LastRetryCnt = priv->CurrRetryCnt; priv->LastTxokCnt = priv->NumTxOkTotal; priv->LastRxokCnt = priv->ieee80211->NumRxOkTotal; priv->CurrRetryCnt = 0; //2No Tx packets, return to init_rate or not? if (CurrRetryRate==0 && CurrTxokCnt == 0) { // //After 9 (30*300ms) seconds in this condition, we try to raise rate. // priv->TryupingCountNoData++; // printk("No Tx packets, TryupingCountNoData(%d)\n", priv->TryupingCountNoData); //[TRC Dell Lab] Extend raised period from 4.5sec to 9sec, Isaiah 2008-02-15 18:00 if (priv->TryupingCountNoData>30) { priv->TryupingCountNoData = 0; priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate); // Reset Fail Record priv->LastFailTxRate = 0; priv->LastFailTxRateSS = -200; priv->FailTxRateCount = 0; } goto SetInitialGain; } else { priv->TryupingCountNoData=0; //Reset trying up times. } // // For Netgear case, I comment out the following signal strength estimation, // which can results in lower rate to transmit when sample is NOT enough (e.g. PING request). // 2007.04.09, by Roger. // // // Restructure rate adaptive as the following main stages: // (1) Add retry threshold in 54M upgrading condition with signal strength. // (2) Add the mechanism to degrade to CCK rate according to signal strength // and retry rate. // (3) Remove all Initial Gain Updates over OFDM rate. To avoid the complicated // situation, Initial Gain Update is upon on DIG mechanism except CCK rate. // (4) Add the mehanism of trying to upgrade tx rate. // (5) Record the information of upping tx rate to avoid trying upping tx rate constantly. // By Bruce, 2007-06-05. // // // 11Mbps or 36Mbps // Check more times in these rate(key rates). // if(priv->CurrentOperaRate == 22 || priv->CurrentOperaRate == 72) { TryUpTh += 9; } // // Let these rates down more difficult. // if(MgntIsCckRate(priv->CurrentOperaRate) || priv->CurrentOperaRate == 36) { TryDownTh += 1; } //1 Adjust Rate. if (priv->bTryuping == true) { //2 For Test Upgrading mechanism // Note: // Sometimes the throughput is upon on the capability bwtween the AP and NIC, // thus the low data rate does not improve the performance. // We randomly upgrade the data rate and check if the retry rate is improved. // Upgrading rate did not improve the retry rate, fallback to the original rate. if ( (CurrRetryRate > 25) && TxThroughput < priv->LastTxThroughput) { //Not necessary raising rate, fall back rate. bTryDown = true; //printk("case1-1: Not necessary raising rate, fall back rate....\n"); //printk("case1-1: pMgntInfo->CurrentOperaRate =%d, TxThroughput = %d, LastThroughput = %d\n", // priv->CurrentOperaRate, TxThroughput, priv->LastTxThroughput); } else { priv->bTryuping = false; } } else if (CurrSignalStrength > -47 && (CurrRetryRate < 50)) { //2For High Power // // Added by Roger, 2007.04.09. // Return to highest data rate, if signal strength is good enough. // SignalStrength threshold(-50dbm) is for RTL8186. // Revise SignalStrength threshold to -51dbm. // // Also need to check retry rate for safety, by Bruce, 2007-06-05. if(priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate ) { bTryUp = true; // Upgrade Tx Rate directly. priv->TryupingCount += TryUpTh; } // printk("case2: StaRateAdaptive87SE: Power(%d) is high enough!!. \n", CurrSignalStrength); } else if(CurrTxokCnt > 9 && CurrTxokCnt< 100 && CurrRetryRate >= 600) { //2 For Serious Retry // // Traffic is not busy but our Tx retry is serious. // bTryDown = true; // Let Rate Mechanism to degrade tx rate directly. priv->TryDownCountLowData += TryDownTh; // printk("case3: RA: Tx Retry is serious. Degrade Tx Rate to %d directly...\n", priv->CurrentOperaRate); } else if ( priv->CurrentOperaRate == 108 ) { //2For 54Mbps // Air Link if ( (CurrRetryRate>26)&&(priv->LastRetryRate>25)) // if ( (CurrRetryRate>40)&&(priv->LastRetryRate>39)) { //Down to rate 48Mbps. bTryDown = true; } // Cable Link else if ( (CurrRetryRate>17)&&(priv->LastRetryRate>16) && (CurrSignalStrength > -72)) // else if ( (CurrRetryRate>17)&&(priv->LastRetryRate>16) && (CurrSignalStrength > -72)) { //Down to rate 48Mbps. bTryDown = true; } if(bTryDown && (CurrSignalStrength < -75)) //cable link { priv->TryDownCountLowData += TryDownTh; } //printk("case4---54M \n"); } else if ( priv->CurrentOperaRate == 96 ) { //2For 48Mbps //Air Link if ( ((CurrRetryRate>48) && (priv->LastRetryRate>47))) // if ( ((CurrRetryRate>65) && (priv->LastRetryRate>64))) { //Down to rate 36Mbps. bTryDown = true; } //Cable Link else if ( ((CurrRetryRate>21) && (priv->LastRetryRate>20)) && (CurrSignalStrength > -74)) { //Down to rate 36Mbps. bTryDown = true; } else if((CurrRetryRate> (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 )) // else if((CurrRetryRate> (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 )) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ( (CurrRetryRate<8) && (priv->LastRetryRate<8) ) //TO DO: need to consider (RSSI) // else if ( (CurrRetryRate<28) && (priv->LastRetryRate<8) ) { bTryUp = true; } if(bTryDown && (CurrSignalStrength < -75)) { priv->TryDownCountLowData += TryDownTh; } //printk("case5---48M \n"); } else if ( priv->CurrentOperaRate == 72 ) { //2For 36Mbps if ( (CurrRetryRate>43) && (priv->LastRetryRate>41)) // if ( (CurrRetryRate>60) && (priv->LastRetryRate>59)) { //Down to rate 24Mbps. bTryDown = true; } else if((CurrRetryRate> (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 )) // else if((CurrRetryRate> (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 )) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ( (CurrRetryRate<15) && (priv->LastRetryRate<16)) //TO DO: need to consider (RSSI) // else if ( (CurrRetryRate<35) && (priv->LastRetryRate<36)) { bTryUp = true; } if(bTryDown && (CurrSignalStrength < -80)) { priv->TryDownCountLowData += TryDownTh; } //printk("case6---36M \n"); } else if ( priv->CurrentOperaRate == 48 ) { //2For 24Mbps // Air Link if ( ((CurrRetryRate>63) && (priv->LastRetryRate>62))) // if ( ((CurrRetryRate>83) && (priv->LastRetryRate>82))) { //Down to rate 18Mbps. bTryDown = true; } //Cable Link else if ( ((CurrRetryRate>33) && (priv->LastRetryRate>32)) && (CurrSignalStrength > -82) ) // else if ( ((CurrRetryRate>50) && (priv->LastRetryRate>49)) && (CurrSignalStrength > -82) ) { //Down to rate 18Mbps. bTryDown = true; } else if((CurrRetryRate> (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 )) // else if((CurrRetryRate> (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 )) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ( (CurrRetryRate<20) && (priv->LastRetryRate<21)) //TO DO: need to consider (RSSI) // else if ( (CurrRetryRate<40) && (priv->LastRetryRate<41)) { bTryUp = true; } if(bTryDown && (CurrSignalStrength < -82)) { priv->TryDownCountLowData += TryDownTh; } //printk("case7---24M \n"); } else if ( priv->CurrentOperaRate == 36 ) { //2For 18Mbps // original (109, 109) //[TRC Dell Lab] (90, 91), Isaiah 2008-02-18 23:24 // (85, 86), Isaiah 2008-02-18 24:00 if ( ((CurrRetryRate>85) && (priv->LastRetryRate>86))) // if ( ((CurrRetryRate>115) && (priv->LastRetryRate>116))) { //Down to rate 11Mbps. bTryDown = true; } //[TRC Dell Lab] Isaiah 2008-02-18 23:24 else if((CurrRetryRate> (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 )) // else if((CurrRetryRate> (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 )) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ( (CurrRetryRate<22) && (priv->LastRetryRate<23)) //TO DO: need to consider (RSSI) // else if ( (CurrRetryRate<42) && (priv->LastRetryRate<43)) { bTryUp = true; } //printk("case8---18M \n"); } else if ( priv->CurrentOperaRate == 22 ) { //2For 11Mbps if (CurrRetryRate>95) // if (CurrRetryRate>155) { bTryDown = true; } else if ( (CurrRetryRate<29) && (priv->LastRetryRate <30) )//TO DO: need to consider (RSSI) // else if ( (CurrRetryRate<49) && (priv->LastRetryRate <50) ) { bTryUp = true; } //printk("case9---11M \n"); } else if ( priv->CurrentOperaRate == 11 ) { //2For 5.5Mbps if (CurrRetryRate>149) // if (CurrRetryRate>189) { bTryDown = true; } else if ( (CurrRetryRate<60) && (priv->LastRetryRate < 65)) // else if ( (CurrRetryRate<80) && (priv->LastRetryRate < 85)) { bTryUp = true; } //printk("case10---5.5M \n"); } else if ( priv->CurrentOperaRate == 4 ) { //2For 2 Mbps if((CurrRetryRate>99) && (priv->LastRetryRate>99)) // if((CurrRetryRate>199) && (priv->LastRetryRate>199)) { bTryDown = true; } else if ( (CurrRetryRate < 65) && (priv->LastRetryRate < 70)) // else if ( (CurrRetryRate < 85) && (priv->LastRetryRate < 90)) { bTryUp = true; } //printk("case11---2M \n"); } else if ( priv->CurrentOperaRate == 2 ) { //2For 1 Mbps if( (CurrRetryRate<70) && (priv->LastRetryRate<75)) // if( (CurrRetryRate<90) && (priv->LastRetryRate<95)) { bTryUp = true; } //printk("case12---1M \n"); } if(bTryUp && bTryDown) printk("StaRateAdaptive87B(): Tx Rate tried upping and downing simultaneously!\n"); //1 Test Upgrading Tx Rate // Sometimes the cause of the low throughput (high retry rate) is the compatibility between the AP and NIC. // To test if the upper rate may cause lower retry rate, this mechanism randomly occurs to test upgrading tx rate. if(!bTryUp && !bTryDown && (priv->TryupingCount == 0) && (priv->TryDownCountLowData == 0) && priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate && priv->FailTxRateCount < 2) { if(jiffies% (CurrRetryRate + 101) == 0) { bTryUp = true; priv->bTryuping = true; //printk("StaRateAdaptive87SE(): Randomly try upgrading...\n"); } } //1 Rate Mechanism if(bTryUp) { priv->TryupingCount++; priv->TryDownCountLowData = 0; { // printk("UP: pHalData->TryupingCount = %d\n", priv->TryupingCount); // printk("UP: TryUpTh(%d)+ (FailTxRateCount(%d))^2 =%d\n", // TryUpTh, priv->FailTxRateCount, (TryUpTh + priv->FailTxRateCount * priv->FailTxRateCount) ); // printk("UP: pHalData->bTryuping=%d\n", priv->bTryuping); } // // Check more times if we need to upgrade indeed. // Because the largest value of pHalData->TryupingCount is 0xFFFF and // the largest value of pHalData->FailTxRateCount is 0x14, // this condition will be satisfied at most every 2 min. // if((priv->TryupingCount > (TryUpTh + priv->FailTxRateCount * priv->FailTxRateCount)) || (CurrSignalStrength > priv->LastFailTxRateSS) || priv->bTryuping) { priv->TryupingCount = 0; // // When transferring from CCK to OFDM, DIG is an important issue. // if(priv->CurrentOperaRate == 22) bUpdateInitialGain = true; // The difference in throughput between 48Mbps and 36Mbps is 8M. // So, we must be carefully in this rate scale. Isaiah 2008-02-15. // if( ((priv->CurrentOperaRate == 72) || (priv->CurrentOperaRate == 48) || (priv->CurrentOperaRate == 36)) && (priv->FailTxRateCount > 2) ) priv->RateAdaptivePeriod= (RATE_ADAPTIVE_TIMER_PERIOD/2); // (1)To avoid upgrade frequently to the fail tx rate, add the FailTxRateCount into the threshold. // (2)If the signal strength is increased, it may be able to upgrade. priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate); // printk("StaRateAdaptive87SE(): Upgrade Tx Rate to %d\n", priv->CurrentOperaRate); //[TRC Dell Lab] Bypass 12/9/6, Isaiah 2008-02-18 20:00 if(priv->CurrentOperaRate ==36) { priv->bUpdateARFR=true; write_nic_word(dev, ARFR, 0x0F8F); //bypass 12/9/6 // printk("UP: ARFR=0xF8F\n"); } else if(priv->bUpdateARFR) { priv->bUpdateARFR=false; write_nic_word(dev, ARFR, 0x0FFF); //set 1M ~ 54Mbps. // printk("UP: ARFR=0xFFF\n"); } // Update Fail Tx rate and count. if(priv->LastFailTxRate != priv->CurrentOperaRate) { priv->LastFailTxRate = priv->CurrentOperaRate; priv->FailTxRateCount = 0; priv->LastFailTxRateSS = -200; // Set lowest power. } } } else { if(priv->TryupingCount > 0) priv->TryupingCount --; } if(bTryDown) { priv->TryDownCountLowData++; priv->TryupingCount = 0; { // printk("DN: pHalData->TryDownCountLowData = %d\n",priv->TryDownCountLowData); // printk("DN: TryDownTh =%d\n", TryDownTh); // printk("DN: pHalData->bTryuping=%d\n", priv->bTryuping); } //Check if Tx rate can be degraded or Test trying upgrading should fallback. if(priv->TryDownCountLowData > TryDownTh || priv->bTryuping) { priv->TryDownCountLowData = 0; priv->bTryuping = false; // Update fail information. if(priv->LastFailTxRate == priv->CurrentOperaRate) { priv->FailTxRateCount ++; // Record the Tx fail rate signal strength. if(CurrSignalStrength > priv->LastFailTxRateSS) { priv->LastFailTxRateSS = CurrSignalStrength; } } else { priv->LastFailTxRate = priv->CurrentOperaRate; priv->FailTxRateCount = 1; priv->LastFailTxRateSS = CurrSignalStrength; } priv->CurrentOperaRate = GetDegradeTxRate(dev, priv->CurrentOperaRate); // Reduce chariot training time at weak signal strength situation. SD3 ED demand. //[TRC Dell Lab] Revise Signal Threshold from -75 to -80 , Isaiah 2008-02-18 20:00 if( (CurrSignalStrength < -80) && (priv->CurrentOperaRate > 72 )) { priv->CurrentOperaRate = 72; // printk("DN: weak signal strength (%d), degrade to 36Mbps\n", CurrSignalStrength); } //[TRC Dell Lab] Bypass 12/9/6, Isaiah 2008-02-18 20:00 if(priv->CurrentOperaRate ==36) { priv->bUpdateARFR=true; write_nic_word(dev, ARFR, 0x0F8F); //bypass 12/9/6 // printk("DN: ARFR=0xF8F\n"); } else if(priv->bUpdateARFR) { priv->bUpdateARFR=false; write_nic_word(dev, ARFR, 0x0FFF); //set 1M ~ 54Mbps. // printk("DN: ARFR=0xFFF\n"); } // // When it is CCK rate, it may need to update initial gain to receive lower power packets. // if(MgntIsCckRate(priv->CurrentOperaRate)) { bUpdateInitialGain = true; } // printk("StaRateAdaptive87SE(): Degrade Tx Rate to %d\n", priv->CurrentOperaRate); } } else { if(priv->TryDownCountLowData > 0) priv->TryDownCountLowData --; } // Keep the Tx fail rate count to equal to 0x15 at most. // Reduce the fail count at least to 10 sec if tx rate is tending stable. if(priv->FailTxRateCount >= 0x15 || (!bTryUp && !bTryDown && priv->TryDownCountLowData == 0 && priv->TryupingCount && priv->FailTxRateCount > 0x6)) { priv->FailTxRateCount --; } OfdmTxPwrIdx = priv->chtxpwr_ofdm[priv->ieee80211->current_network.channel]; CckTxPwrIdx = priv->chtxpwr[priv->ieee80211->current_network.channel]; //[TRC Dell Lab] Mac0x9e increase 2 level in 36M~18M situation, Isaiah 2008-02-18 24:00 if((priv->CurrentOperaRate < 96) &&(priv->CurrentOperaRate > 22)) { u1bCck = read_nic_byte(dev, CCK_TXAGC); u1bOfdm = read_nic_byte(dev, OFDM_TXAGC); // case 1: Never enter High power if(u1bCck == CckTxPwrIdx ) { if(u1bOfdm != (OfdmTxPwrIdx+2) ) { priv->bEnhanceTxPwr= true; u1bOfdm = ((u1bOfdm+2) > 35) ? 35: (u1bOfdm+2); write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); // printk("Enhance OFDM_TXAGC : +++++ u1bOfdm= 0x%x\n", u1bOfdm); } } // case 2: enter high power else if(u1bCck < CckTxPwrIdx) { if(!priv->bEnhanceTxPwr) { priv->bEnhanceTxPwr= true; u1bOfdm = ((u1bOfdm+2) > 35) ? 35: (u1bOfdm+2); write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); //RT_TRACE(COMP_RATE, DBG_TRACE, ("Enhance OFDM_TXAGC(2) : +++++ u1bOfdm= 0x%x\n", u1bOfdm)); } } } else if(priv->bEnhanceTxPwr) //54/48/11/5.5/2/1 { u1bCck = read_nic_byte(dev, CCK_TXAGC); u1bOfdm = read_nic_byte(dev, OFDM_TXAGC); // case 1: Never enter High power if(u1bCck == CckTxPwrIdx ) { priv->bEnhanceTxPwr= false; write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx); //printk("Recover OFDM_TXAGC : ===== u1bOfdm= 0x%x\n", OfdmTxPwrIdx); } // case 2: enter high power else if(u1bCck < CckTxPwrIdx) { priv->bEnhanceTxPwr= false; u1bOfdm = ((u1bOfdm-2) > 0) ? (u1bOfdm-2): 0; write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); //RT_TRACE(COMP_RATE, DBG_TRACE, ("Recover OFDM_TXAGC(2): ===== u1bOfdm= 0x%x\n", u1bOfdm)); } } // // We need update initial gain when we set tx rate "from OFDM to CCK" or // "from CCK to OFDM". // SetInitialGain: if(bUpdateInitialGain) { if(MgntIsCckRate(priv->CurrentOperaRate)) // CCK { if(priv->InitialGain > priv->RegBModeGainStage) { priv->InitialGainBackUp= priv->InitialGain; if(CurrSignalStrength < -85) // Low power, OFDM [0x17] = 26. { //SD3 SYs suggest that CurrSignalStrength < -65, ofdm 0x17=26. priv->InitialGain = priv->RegBModeGainStage; } else if(priv->InitialGain > priv->RegBModeGainStage + 1) { priv->InitialGain -= 2; } else { priv->InitialGain --; } printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n",priv->InitialGain, priv->CurrentOperaRate); UpdateInitialGain(dev); } } else // OFDM { if(priv->InitialGain < 4) { priv->InitialGainBackUp= priv->InitialGain; priv->InitialGain ++; printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n",priv->InitialGain, priv->CurrentOperaRate); UpdateInitialGain(dev); } } } //Record the related info priv->LastRetryRate = CurrRetryRate; priv->LastTxThroughput = TxThroughput; priv->ieee80211->rate = priv->CurrentOperaRate * 5; }
// // Description: // Implementation of DIG for Zebra and Zebra2. // void DIG_Zebra( struct net_device *dev ) { struct r8180_priv *priv = ieee80211_priv(dev); u16 CCKFalseAlarm, OFDMFalseAlarm; u16 OfdmFA1, OfdmFA2; int InitialGainStep = 7; // The number of initial gain stages. int LowestGainStage = 4; // The capable lowest stage of performing dig workitem. u32 AwakePeriodIn2Sec=0; //printk("---------> DIG_Zebra()\n"); CCKFalseAlarm = (u16)(priv->FalseAlarmRegValue & 0x0000ffff); OFDMFalseAlarm = (u16)((priv->FalseAlarmRegValue >> 16) & 0x0000ffff); OfdmFA1 = 0x15; OfdmFA2 = ((u16)(priv->RegDigOfdmFaUpTh)) << 8; // printk("DIG**********CCK False Alarm: %#X \n",CCKFalseAlarm); // printk("DIG**********OFDM False Alarm: %#X \n",OFDMFalseAlarm); // The number of initial gain steps is different, by Bruce, 2007-04-13. if (priv->InitialGain == 0 ) //autoDIG { // Advised from SD3 DZ priv->InitialGain = 4; // In 87B, m74dBm means State 4 (m82dBm) } { // Advised from SD3 DZ OfdmFA1 = 0x20; } #if 1 //lzm reserved 080826 AwakePeriodIn2Sec = (2000-priv ->DozePeriodInPast2Sec); //printk("&&& DozePeriod=%d AwakePeriod=%d\n", priv->DozePeriodInPast2Sec, AwakePeriodIn2Sec); priv ->DozePeriodInPast2Sec=0; if(AwakePeriodIn2Sec) { //RT_TRACE(COMP_DIG, DBG_TRACE, ("DIG: AwakePeriodIn2Sec(%d) - FATh(0x%X , 0x%X) ->",AwakePeriodIn2Sec, OfdmFA1, OfdmFA2)); // adjuest DIG threshold. OfdmFA1 = (u16)((OfdmFA1*AwakePeriodIn2Sec) / 2000) ; OfdmFA2 = (u16)((OfdmFA2*AwakePeriodIn2Sec) / 2000) ; //RT_TRACE(COMP_DIG, DBG_TRACE, ("( 0x%X , 0x%X)\n", OfdmFA1, OfdmFA2)); } else { ;//RT_TRACE(COMP_DIG, DBG_WARNING, ("ERROR!! AwakePeriodIn2Sec should not be ZERO!!\n")); } #endif InitialGainStep = 8; LowestGainStage = priv->RegBModeGainStage; // Lowest gain stage. if (OFDMFalseAlarm > OfdmFA1) { if (OFDMFalseAlarm > OfdmFA2) { priv->DIG_NumberFallbackVote++; if (priv->DIG_NumberFallbackVote >1) { //serious OFDM False Alarm, need fallback if (priv->InitialGain < InitialGainStep) { priv->InitialGainBackUp= priv->InitialGain; priv->InitialGain = (priv->InitialGain + 1); // printk("DIG**********OFDM False Alarm: %#X, OfdmFA1: %#X, OfdmFA2: %#X\n", OFDMFalseAlarm, OfdmFA1, OfdmFA2); // printk("DIG+++++++ fallback OFDM:%d \n", priv->InitialGain); UpdateInitialGain(dev); } priv->DIG_NumberFallbackVote = 0; priv->DIG_NumberUpgradeVote=0; } } else { if (priv->DIG_NumberFallbackVote) priv->DIG_NumberFallbackVote--; } priv->DIG_NumberUpgradeVote=0; } else { if (priv->DIG_NumberFallbackVote) priv->DIG_NumberFallbackVote--; priv->DIG_NumberUpgradeVote++; if (priv->DIG_NumberUpgradeVote>9) { if (priv->InitialGain > LowestGainStage) // In 87B, m78dBm means State 4 (m864dBm) { priv->InitialGainBackUp= priv->InitialGain; priv->InitialGain = (priv->InitialGain - 1); // printk("DIG**********OFDM False Alarm: %#X, OfdmFA1: %#X, OfdmFA2: %#X\n", OFDMFalseAlarm, OfdmFA1, OfdmFA2); // printk("DIG--------- Upgrade OFDM:%d \n", priv->InitialGain); UpdateInitialGain(dev); } priv->DIG_NumberFallbackVote = 0; priv->DIG_NumberUpgradeVote=0; } } // printk("DIG+++++++ OFDM:%d\n", priv->InitialGain); //printk("<--------- DIG_Zebra()\n"); }
void DIG_Zebra(struct net_device *dev) { struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); u16 CCKFalseAlarm, OFDMFalseAlarm; u16 OfdmFA1, OfdmFA2; int InitialGainStep = 7; int LowestGainStage = 4; if(priv->card_8187_Bversion == VERSION_8187B_B) { CCKFalseAlarm = 0; OFDMFalseAlarm = (u16)(priv->FalseAlarmRegValue); OfdmFA1 = 0x01; OfdmFA2 = priv->RegDigOfdmFaUpTh; } else { CCKFalseAlarm = (u16)(priv->FalseAlarmRegValue & 0x0000ffff); OFDMFalseAlarm = (u16)((priv->FalseAlarmRegValue >> 16) & 0x0000ffff); OfdmFA1 = 0x15; OfdmFA2 = ((u16)(priv->RegDigOfdmFaUpTh)) << 8; } if(priv->card_8187 == NIC_8187) { if (priv->InitialGain == 0 ) { switch( priv->rf_chip) { case RF_ZEBRA: priv->InitialGain = 5; break; case RF_ZEBRA2: priv->InitialGain = 4; break; default: priv->InitialGain = 5; break; } } InitialGainStep = 7; if(priv->InitialGain > 7) priv->InitialGain = 5; LowestGainStage = 4; } else { if (priv->InitialGain == 0 ) { priv->InitialGain = 4; } if(priv->card_8187_Bversion != VERSION_8187B_B) { OfdmFA1 = 0x20; } InitialGainStep = 8; LowestGainStage = priv->RegBModeGainStage; } if (OFDMFalseAlarm > OfdmFA1) { if (OFDMFalseAlarm > OfdmFA2) { priv->DIG_NumberFallbackVote++; if (priv->DIG_NumberFallbackVote >1) { if (priv->InitialGain < InitialGainStep) { priv->InitialGain = (priv->InitialGain + 1); UpdateInitialGain(dev); } priv->DIG_NumberFallbackVote = 0; priv->DIG_NumberUpgradeVote=0; } } else { if (priv->DIG_NumberFallbackVote) priv->DIG_NumberFallbackVote--; } priv->DIG_NumberUpgradeVote=0; } else { if (priv->DIG_NumberFallbackVote) priv->DIG_NumberFallbackVote--; priv->DIG_NumberUpgradeVote++; if (priv->DIG_NumberUpgradeVote>9) { if (priv->InitialGain > LowestGainStage) { priv->InitialGain = (priv->InitialGain - 1); UpdateInitialGain(dev); } priv->DIG_NumberFallbackVote = 0; priv->DIG_NumberUpgradeVote=0; } } }