status_t M68KVMTranslationMap040::Unmap(addr_t start, addr_t end) { start = ROUNDDOWN(start, B_PAGE_SIZE); if (start >= end) return B_OK; TRACE("M68KVMTranslationMap040::Unmap: asked to free pages 0x%lx to 0x%lx\n", start, end); page_root_entry *pr = fPagingStructures->pgroot_virt; page_directory_entry *pd; page_table_entry *pt; int index; do { index = VADDR_TO_PRENT(start); if (PRE_TYPE(pr[index]) != DT_ROOT) { // no pagedir here, move the start up to access the next page // dir group start = ROUNDUP(start + 1, kPageDirAlignment); continue; } Thread* thread = thread_get_current_thread(); ThreadCPUPinner pinner(thread); pd = (page_directory_entry*)MapperGetPageTableAt( PRE_TO_PA(pr[index])); // we want the table at rindex, not at rindex%(tbl/page) //pd += (index % NUM_DIRTBL_PER_PAGE) * NUM_DIRENT_PER_TBL; index = VADDR_TO_PDENT(start); if (PDE_TYPE(pd[index]) != DT_DIR) { // no pagedir here, move the start up to access the next page // table group start = ROUNDUP(start + 1, kPageTableAlignment); continue; } pt = (page_table_entry*)MapperGetPageTableAt( PDE_TO_PA(pd[index])); // we want the table at rindex, not at rindex%(tbl/page) //pt += (index % NUM_PAGETBL_PER_PAGE) * NUM_PAGEENT_PER_TBL; for (index = VADDR_TO_PTENT(start); (index < NUM_PAGEENT_PER_TBL) && (start < end); index++, start += B_PAGE_SIZE) { if (PTE_TYPE(pt[index]) != DT_PAGE && PTE_TYPE(pt[index]) != DT_INDIRECT) { // page mapping not valid continue; } TRACE("::Unmap: removing page 0x%lx\n", start); page_table_entry oldEntry = M68KPagingMethod040::ClearPageTableEntry(&pt[index]); fMapCount--; if ((oldEntry & M68K_PTE_ACCESSED) != 0) { // Note, that we only need to invalidate the address, if the // accessed flags was set, since only then the entry could have // been in any TLB. InvalidatePage(start); } } } while (start != 0 && start < end); return B_OK; }
bool M68KVMTranslationMap040::ClearAccessedAndModified(VMArea* area, addr_t address, bool unmapIfUnaccessed, bool& _modified) { ASSERT(address % B_PAGE_SIZE == 0); page_root_entry* pr = fPagingStructures->pgroot_virt; TRACE("M68KVMTranslationMap040::ClearAccessedAndModified(%#" B_PRIxADDR ")\n", address); #if 0 RecursiveLocker locker(fLock); int index = VADDR_TO_PDENT(address); if ((pd[index] & M68K_PDE_PRESENT) == 0) return false; ThreadCPUPinner pinner(thread_get_current_thread()); page_table_entry* pt = (page_table_entry*)MapperGetPageTableAt( pd[index] & M68K_PDE_ADDRESS_MASK); index = VADDR_TO_PTENT(address); // perform the deed page_table_entry oldEntry; if (unmapIfUnaccessed) { while (true) { oldEntry = pt[index]; if ((oldEntry & M68K_PTE_PRESENT) == 0) { // page mapping not valid return false; } if (oldEntry & M68K_PTE_ACCESSED) { // page was accessed -- just clear the flags oldEntry = M68KPagingMethod040::ClearPageTableEntryFlags( &pt[index], M68K_PTE_ACCESSED | M68K_PTE_DIRTY); break; } // page hasn't been accessed -- unmap it if (M68KPagingMethod040::TestAndSetPageTableEntry(&pt[index], 0, oldEntry) == oldEntry) { break; } // something changed -- check again } } else { oldEntry = M68KPagingMethod040::ClearPageTableEntryFlags(&pt[index], M68K_PTE_ACCESSED | M68K_PTE_DIRTY); } pinner.Unlock(); _modified = (oldEntry & M68K_PTE_DIRTY) != 0; if ((oldEntry & M68K_PTE_ACCESSED) != 0) { // Note, that we only need to invalidate the address, if the // accessed flags was set, since only then the entry could have been // in any TLB. InvalidatePage(address); Flush(); return true; } if (!unmapIfUnaccessed) return false; // We have unmapped the address. Do the "high level" stuff. fMapCount--; locker.Detach(); // UnaccessedPageUnmapped() will unlock for us UnaccessedPageUnmapped(area, (oldEntry & M68K_PTE_ADDRESS_MASK) / B_PAGE_SIZE); #endif return false; }
status_t M68KVMTranslationMap040::Map(addr_t va, phys_addr_t pa, uint32 attributes, uint32 memoryType, vm_page_reservation* reservation) { TRACE("M68KVMTranslationMap040::Map: entry pa 0x%lx va 0x%lx\n", pa, va); /* dprintf("pgdir at 0x%x\n", pgdir); dprintf("index is %d\n", va / B_PAGE_SIZE / 1024); dprintf("final at 0x%x\n", &pgdir[va / B_PAGE_SIZE / 1024]); dprintf("value is 0x%x\n", *(int *)&pgdir[va / B_PAGE_SIZE / 1024]); dprintf("present bit is %d\n", pgdir[va / B_PAGE_SIZE / 1024].present); dprintf("addr is %d\n", pgdir[va / B_PAGE_SIZE / 1024].addr); */ page_root_entry *pr = fPagingStructures->pgroot_virt; page_directory_entry *pd; page_table_entry *pt; addr_t pd_pg, pt_pg; uint32 rindex, dindex, pindex; // check to see if a page directory exists for this range rindex = VADDR_TO_PRENT(va); if (PRE_TYPE(pr[rindex]) != DT_ROOT) { phys_addr_t pgdir; vm_page *page; uint32 i; // we need to allocate a pgdir group page = vm_page_allocate_page(reservation, PAGE_STATE_WIRED | VM_PAGE_ALLOC_CLEAR); DEBUG_PAGE_ACCESS_END(page); pgdir = (phys_addr_t)page->physical_page_number * B_PAGE_SIZE; TRACE("::Map: asked for free page for pgdir. 0x%lx\n", pgdir); // for each pgdir on the allocated page: for (i = 0; i < NUM_DIRTBL_PER_PAGE; i++) { uint32 aindex = rindex & ~(NUM_DIRTBL_PER_PAGE-1); /* aligned */ page_root_entry *apr = &pr[aindex + i]; // put in the pgroot M68KPagingMethod040::PutPageDirInPageRoot(apr, pgdir, attributes | ((attributes & B_USER_PROTECTION) != 0 ? B_WRITE_AREA : B_KERNEL_WRITE_AREA)); // update any other page roots, if it maps kernel space //XXX: suboptimal, should batch them if ((aindex+i) >= FIRST_KERNEL_PGDIR_ENT && (aindex+i) < (FIRST_KERNEL_PGDIR_ENT + NUM_KERNEL_PGDIR_ENTS)) M68KPagingStructures040::UpdateAllPageDirs((aindex+i), pr[aindex+i]); pgdir += SIZ_DIRTBL; } fMapCount++; } // now, fill in the pentry //XXX: is this required? Thread* thread = thread_get_current_thread(); ThreadCPUPinner pinner(thread); pd = (page_directory_entry*)MapperGetPageTableAt( PRE_TO_PA(pr[rindex])); //pinner.Unlock(); // we want the table at rindex, not at rindex%(tbl/page) //pd += (rindex % NUM_DIRTBL_PER_PAGE) * NUM_DIRENT_PER_TBL; // check to see if a page table exists for this range dindex = VADDR_TO_PDENT(va); if (PDE_TYPE(pd[dindex]) != DT_DIR) { phys_addr_t pgtable; vm_page *page; uint32 i; // we need to allocate a pgtable group page = vm_page_allocate_page(reservation, PAGE_STATE_WIRED | VM_PAGE_ALLOC_CLEAR); DEBUG_PAGE_ACCESS_END(page); pgtable = (phys_addr_t)page->physical_page_number * B_PAGE_SIZE; TRACE("::Map: asked for free page for pgtable. 0x%lx\n", pgtable); // for each pgtable on the allocated page: for (i = 0; i < NUM_PAGETBL_PER_PAGE; i++) { uint32 aindex = dindex & ~(NUM_PAGETBL_PER_PAGE-1); /* aligned */ page_directory_entry *apd = &pd[aindex + i]; // put in the pgdir M68KPagingMethod040::PutPageTableInPageDir(apd, pgtable, attributes | ((attributes & B_USER_PROTECTION) != 0 ? B_WRITE_AREA : B_KERNEL_WRITE_AREA)); // no need to update other page directories for kernel space; // the root-level already point to us. pgtable += SIZ_PAGETBL; } #warning M68K: really mean map_count++ ?? fMapCount++; } // now, fill in the pentry //ThreadCPUPinner pinner(thread); pt = (page_table_entry*)MapperGetPageTableAt(PDE_TO_PA(pd[dindex])); // we want the table at rindex, not at rindex%(tbl/page) //pt += (dindex % NUM_PAGETBL_PER_PAGE) * NUM_PAGEENT_PER_TBL; pindex = VADDR_TO_PTENT(va); ASSERT_PRINT((PTE_TYPE(pt[pindex]) != DT_INVALID) == 0, "virtual address: %#" B_PRIxADDR ", existing pte: %#" B_PRIx32, va, pt[pindex]); M68KPagingMethod040::PutPageTableEntryInTable(&pt[pindex], pa, attributes, memoryType, fIsKernelMap); pinner.Unlock(); // Note: We don't need to invalidate the TLB for this address, as previously // the entry was not present and the TLB doesn't cache those entries. fMapCount++; return B_OK; }
status_t ARMVMTranslationMap32Bit::Protect(addr_t start, addr_t end, uint32 attributes, uint32 memoryType) { start = ROUNDDOWN(start, B_PAGE_SIZE); if (start >= end) return B_OK; TRACE("protect_tmap: pages 0x%lx to 0x%lx, attributes %lx\n", start, end, attributes); #if 0 //IRA // compute protection flags uint32 newProtectionFlags = 0; if ((attributes & B_USER_PROTECTION) != 0) { newProtectionFlags = ARM_PTE_USER; if ((attributes & B_WRITE_AREA) != 0) newProtectionFlags |= ARM_PTE_WRITABLE; } else if ((attributes & B_KERNEL_WRITE_AREA) != 0) newProtectionFlags = ARM_PTE_WRITABLE; page_directory_entry *pd = fPagingStructures->pgdir_virt; do { int index = VADDR_TO_PDENT(start); if ((pd[index] & ARM_PDE_TYPE_MASK) == 0) { // no page table here, move the start up to access the next page // table start = ROUNDUP(start + 1, kPageTableAlignment); continue; } Thread* thread = thread_get_current_thread(); ThreadCPUPinner pinner(thread); page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt( pd[index] & ARM_PDE_ADDRESS_MASK); for (index = VADDR_TO_PTENT(start); index < 256 && start < end; index++, start += B_PAGE_SIZE) { page_table_entry entry = pt[index]; if ((entry & ARM_PTE_PRESENT) == 0) { // page mapping not valid continue; } TRACE("protect_tmap: protect page 0x%lx\n", start); // set the new protection flags -- we want to do that atomically, // without changing the accessed or dirty flag page_table_entry oldEntry; while (true) { oldEntry = ARMPagingMethod32Bit::TestAndSetPageTableEntry( &pt[index], (entry & ~(ARM_PTE_PROTECTION_MASK | ARM_PTE_MEMORY_TYPE_MASK)) | newProtectionFlags | ARMPagingMethod32Bit::MemoryTypeToPageTableEntryFlags( memoryType), entry); if (oldEntry == entry) break; entry = oldEntry; } if ((oldEntry & ARM_PTE_ACCESSED) != 0) { // Note, that we only need to invalidate the address, if the // accessed flag was set, since only then the entry could have // been in any TLB. InvalidatePage(start); } } } while (start != 0 && start < end); #endif return B_OK; }
void ARMVMTranslationMap32Bit::UnmapArea(VMArea* area, bool deletingAddressSpace, bool ignoreTopCachePageFlags) { if (area->cache_type == CACHE_TYPE_DEVICE || area->wiring != B_NO_LOCK) { ARMVMTranslationMap32Bit::UnmapPages(area, area->Base(), area->Size(), true); return; } bool unmapPages = !deletingAddressSpace || !ignoreTopCachePageFlags; page_directory_entry* pd = fPagingStructures->pgdir_virt; RecursiveLocker locker(fLock); VMAreaMappings mappings; mappings.MoveFrom(&area->mappings); for (VMAreaMappings::Iterator it = mappings.GetIterator(); vm_page_mapping* mapping = it.Next();) { vm_page* page = mapping->page; page->mappings.Remove(mapping); VMCache* cache = page->Cache(); bool pageFullyUnmapped = false; if (!page->IsMapped()) { atomic_add(&gMappedPagesCount, -1); pageFullyUnmapped = true; } if (unmapPages || cache != area->cache) { addr_t address = area->Base() + ((page->cache_offset * B_PAGE_SIZE) - area->cache_offset); int index = VADDR_TO_PDENT(address); if ((pd[index] & ARM_PDE_TYPE_MASK) == 0) { panic("page %p has mapping for area %p (%#" B_PRIxADDR "), but " "has no page dir entry", page, area, address); continue; } ThreadCPUPinner pinner(thread_get_current_thread()); page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt( pd[index] & ARM_PDE_ADDRESS_MASK); page_table_entry oldEntry = ARMPagingMethod32Bit::ClearPageTableEntry( &pt[VADDR_TO_PTENT(address)]); pinner.Unlock(); if ((oldEntry & ARM_PTE_TYPE_MASK) == 0) { panic("page %p has mapping for area %p (%#" B_PRIxADDR "), but " "has no page table entry", page, area, address); continue; } // transfer the accessed/dirty flags to the page and invalidate // the mapping, if necessary if (true /*(oldEntry & ARM_PTE_ACCESSED) != 0*/) { // XXX IRA page->accessed = true; if (!deletingAddressSpace) InvalidatePage(address); } if (true /*(oldEntry & ARM_PTE_DIRTY) != 0*/) page->modified = true; if (pageFullyUnmapped) { DEBUG_PAGE_ACCESS_START(page); if (cache->temporary) vm_page_set_state(page, PAGE_STATE_INACTIVE); else if (page->modified) vm_page_set_state(page, PAGE_STATE_MODIFIED); else vm_page_set_state(page, PAGE_STATE_CACHED); DEBUG_PAGE_ACCESS_END(page); } } fMapCount--; } Flush(); // flush explicitely, since we directly use the lock locker.Unlock(); bool isKernelSpace = area->address_space == VMAddressSpace::Kernel(); uint32 freeFlags = CACHE_DONT_WAIT_FOR_MEMORY | (isKernelSpace ? CACHE_DONT_LOCK_KERNEL_SPACE : 0); while (vm_page_mapping* mapping = mappings.RemoveHead()) object_cache_free(gPageMappingsObjectCache, mapping, freeFlags); }
void ARMVMTranslationMap32Bit::UnmapPages(VMArea* area, addr_t base, size_t size, bool updatePageQueue) { if (size == 0) return; addr_t start = base; addr_t end = base + size - 1; TRACE("ARMVMTranslationMap32Bit::UnmapPages(%p, %#" B_PRIxADDR ", %#" B_PRIxADDR ")\n", area, start, end); page_directory_entry* pd = fPagingStructures->pgdir_virt; VMAreaMappings queue; RecursiveLocker locker(fLock); do { int index = VADDR_TO_PDENT(start); if ((pd[index] & ARM_PDE_TYPE_MASK) == 0) { // no page table here, move the start up to access the next page // table start = ROUNDUP(start + 1, kPageTableAlignment); continue; } Thread* thread = thread_get_current_thread(); ThreadCPUPinner pinner(thread); page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt( pd[index] & ARM_PDE_ADDRESS_MASK); for (index = VADDR_TO_PTENT(start); (index < 256) && (start < end); index++, start += B_PAGE_SIZE) { page_table_entry oldEntry = ARMPagingMethod32Bit::ClearPageTableEntry(&pt[index]); if ((oldEntry & ARM_PTE_TYPE_MASK) == 0) continue; fMapCount--; if (true /*(oldEntry & ARM_PTE_ACCESSED) != 0*/) { // XXX IRA // Note, that we only need to invalidate the address, if the // accessed flags was set, since only then the entry could have // been in any TLB. InvalidatePage(start); } if (area->cache_type != CACHE_TYPE_DEVICE) { // get the page vm_page* page = vm_lookup_page( (oldEntry & ARM_PTE_ADDRESS_MASK) / B_PAGE_SIZE); ASSERT(page != NULL); DEBUG_PAGE_ACCESS_START(page); // transfer the accessed/dirty flags to the page if (/*(oldEntry & ARM_PTE_ACCESSED) != 0*/ true) // XXX IRA page->accessed = true; if (/*(oldEntry & ARM_PTE_DIRTY) != 0 */ true) page->modified = true; // remove the mapping object/decrement the wired_count of the // page if (area->wiring == B_NO_LOCK) { vm_page_mapping* mapping = NULL; vm_page_mappings::Iterator iterator = page->mappings.GetIterator(); while ((mapping = iterator.Next()) != NULL) { if (mapping->area == area) break; } ASSERT(mapping != NULL); area->mappings.Remove(mapping); page->mappings.Remove(mapping); queue.Add(mapping); } else page->DecrementWiredCount(); if (!page->IsMapped()) { atomic_add(&gMappedPagesCount, -1); if (updatePageQueue) { if (page->Cache()->temporary) vm_page_set_state(page, PAGE_STATE_INACTIVE); else if (page->modified) vm_page_set_state(page, PAGE_STATE_MODIFIED); else vm_page_set_state(page, PAGE_STATE_CACHED); } } DEBUG_PAGE_ACCESS_END(page); } } Flush(); // flush explicitly, since we directly use the lock } while (start != 0 && start < end); // TODO: As in UnmapPage() we can lose page dirty flags here. ATM it's not // really critical here, as in all cases this method is used, the unmapped // area range is unmapped for good (resized/cut) and the pages will likely // be freed. locker.Unlock(); // free removed mappings bool isKernelSpace = area->address_space == VMAddressSpace::Kernel(); uint32 freeFlags = CACHE_DONT_WAIT_FOR_MEMORY | (isKernelSpace ? CACHE_DONT_LOCK_KERNEL_SPACE : 0); while (vm_page_mapping* mapping = queue.RemoveHead()) object_cache_free(gPageMappingsObjectCache, mapping, freeFlags); }
/*! Caller must have locked the cache of the page to be unmapped. This object shouldn't be locked. */ status_t ARMVMTranslationMap32Bit::UnmapPage(VMArea* area, addr_t address, bool updatePageQueue) { ASSERT(address % B_PAGE_SIZE == 0); page_directory_entry* pd = fPagingStructures->pgdir_virt; TRACE("ARMVMTranslationMap32Bit::UnmapPage(%#" B_PRIxADDR ")\n", address); RecursiveLocker locker(fLock); int index = VADDR_TO_PDENT(address); if ((pd[index] & ARM_PDE_TYPE_MASK) == 0) return B_ENTRY_NOT_FOUND; ThreadCPUPinner pinner(thread_get_current_thread()); page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt( pd[index] & ARM_PDE_ADDRESS_MASK); index = VADDR_TO_PTENT(address); page_table_entry oldEntry = ARMPagingMethod32Bit::ClearPageTableEntry( &pt[index]); pinner.Unlock(); if ((oldEntry & ARM_PTE_TYPE_MASK) == 0) { // page mapping not valid return B_ENTRY_NOT_FOUND; } fMapCount--; if (true /*(oldEntry & ARM_PTE_ACCESSED) != 0*/) { // XXX IRA // Note, that we only need to invalidate the address, if the // accessed flags was set, since only then the entry could have been // in any TLB. InvalidatePage(address); Flush(); // NOTE: Between clearing the page table entry and Flush() other // processors (actually even this processor with another thread of the // same team) could still access the page in question via their cached // entry. We can obviously lose a modified flag in this case, with the // effect that the page looks unmodified (and might thus be recycled), // but is actually modified. // In most cases this is harmless, but for vm_remove_all_page_mappings() // this is actually a problem. // Interestingly FreeBSD seems to ignore this problem as well // (cf. pmap_remove_all()), unless I've missed something. } locker.Detach(); // PageUnmapped() will unlock for us PageUnmapped(area, (oldEntry & ARM_PTE_ADDRESS_MASK) / B_PAGE_SIZE, true /*(oldEntry & ARM_PTE_ACCESSED) != 0*/, true /*(oldEntry & ARM_PTE_DIRTY) != 0*/, updatePageQueue); return B_OK; }
status_t ARMVMTranslationMap32Bit::Map(addr_t va, phys_addr_t pa, uint32 attributes, uint32 memoryType, vm_page_reservation* reservation) { TRACE("map_tmap: entry pa 0x%lx va 0x%lx\n", pa, va); /* dprintf("pgdir at 0x%x\n", pgdir); dprintf("index is %d\n", va / B_PAGE_SIZE / 1024); dprintf("final at 0x%x\n", &pgdir[va / B_PAGE_SIZE / 1024]); dprintf("value is 0x%x\n", *(int *)&pgdir[va / B_PAGE_SIZE / 1024]); dprintf("present bit is %d\n", pgdir[va / B_PAGE_SIZE / 1024].present); dprintf("addr is %d\n", pgdir[va / B_PAGE_SIZE / 1024].addr); */ page_directory_entry* pd = fPagingStructures->pgdir_virt; // check to see if a page table exists for this range uint32 index = VADDR_TO_PDENT(va); if ((pd[index] & ARM_PDE_TYPE_MASK) == 0) { phys_addr_t pgtable; vm_page *page; // we need to allocate a pgtable page = vm_page_allocate_page(reservation, PAGE_STATE_WIRED | VM_PAGE_ALLOC_CLEAR); DEBUG_PAGE_ACCESS_END(page); pgtable = (phys_addr_t)page->physical_page_number * B_PAGE_SIZE; TRACE("map_tmap: asked for free page for pgtable. 0x%lx\n", pgtable); // put it in the pgdir ARMPagingMethod32Bit::PutPageTableInPageDir(&pd[index], pgtable, attributes | ((attributes & B_USER_PROTECTION) != 0 ? B_WRITE_AREA : B_KERNEL_WRITE_AREA)); // update any other page directories, if it maps kernel space if (index >= FIRST_KERNEL_PGDIR_ENT && index < (FIRST_KERNEL_PGDIR_ENT + NUM_KERNEL_PGDIR_ENTS)) { ARMPagingStructures32Bit::UpdateAllPageDirs(index, pd[index]); } fMapCount++; } // now, fill in the pentry Thread* thread = thread_get_current_thread(); ThreadCPUPinner pinner(thread); page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt( pd[index] & ARM_PDE_ADDRESS_MASK); index = VADDR_TO_PTENT(va); ASSERT_PRINT((pt[index] & ARM_PTE_TYPE_MASK) == 0, "virtual address: %#" B_PRIxADDR ", existing pte: %#" B_PRIx32, va, pt[index]); ARMPagingMethod32Bit::PutPageTableEntryInTable(&pt[index], pa, attributes, memoryType, fIsKernelMap); pinner.Unlock(); // Note: We don't need to invalidate the TLB for this address, as previously // the entry was not present and the TLB doesn't cache those entries. fMapCount++; return 0; }