示例#1
0
文件: gfs.c 项目: RJVB/zfs
/*
 * gfs_root_create_file(): create a root vnode for a GFS file as a filesystem
 *
 * Similar to gfs_root_create(), this creates a root vnode for a file to
 * be the pseudo-filesystem.
 */
struct vnode *
gfs_root_create_file(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino)
{
	struct vnode	*vp = gfs_file_create(size, NULL, ops, VREG);

	((gfs_file_t *)vnode_fsnode(vp))->gfs_ino = ino;

	VFS_HOLD(vfsp);
	VN_SET_VFS_TYPE_DEV(vp, vfsp, VREG, 0);
	vp->v_flag |= VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT;

	return (vp);
}
示例#2
0
void
osi_PostPopulateVCache(struct vcache *avc) {
    AFSTOV(avc)->v_op = afs_ops;
    AFSTOV(avc)->v_vfsp = afs_globalVFS;
    vSetType(avc, VREG);

#ifdef AFS_SUN58_ENV
    /* Normally we do this in osi_vnhold when we notice the ref count went from
     * 0 -> 1. But if we just setup or reused a vcache, we set the refcount to
     * 1 directly. So, we must explicitly VFS_HOLD here. */
    VFS_HOLD(afs_globalVFS);
#endif
}
示例#3
0
/*
 * gfs_root_create(): create a root vnode for a GFS filesystem
 *
 * Similar to gfs_dir_create(), this creates a root vnode for a filesystem.  The
 * only difference is that it takes a vfs_t instead of a vnode_t as its parent.
 */
vnode_t *
gfs_root_create(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino,
    gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen,
    gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb)
{
	vnode_t *vp;

	VFS_HOLD(vfsp);
	vp = gfs_dir_create(size, NULL, vfsp, ops, entries, inode_cb,
	    maxlen, readdir_cb, lookup_cb);
	/* Manually set the inode */
	((gfs_file_t *)vp->v_data)->gfs_ino = ino;
	vp->v_flag |= VROOT;

	return (vp);
}
示例#4
0
文件: gfs.c 项目: pcd1193182/openzfs
/*
 * gfs_root_create(): create a root vnode for a GFS filesystem
 *
 * Similar to gfs_dir_create(), this creates a root vnode for a filesystem.  The
 * only difference is that it takes a vfs_t instead of a vnode_t as its parent.
 */
vnode_t *
gfs_root_create(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino,
    gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen,
    gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb)
{
	vnode_t *vp = gfs_dir_create(size, NULL, ops, entries, inode_cb,
	    maxlen, readdir_cb, lookup_cb);

	/* Manually set the inode */
	((gfs_file_t *)vp->v_data)->gfs_ino = ino;

	VFS_HOLD(vfsp);
	VN_SET_VFS_TYPE_DEV(vp, vfsp, VDIR, 0);
	vp->v_flag |= VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT;

	return (vp);
}
示例#5
0
文件: gfs.c 项目: RJVB/zfs
/*
 * gfs_root_create(): create a root vnode for a GFS filesystem
 *
 * Similar to gfs_dir_create(), this creates a root vnode for a filesystem.  The
 * only difference is that it takes a vfs_t instead of a struct vnode as its parent.
 */
struct vnode *
gfs_root_create(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino,
    gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen,
    gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb)
{
	struct vnode *vp;

	VFS_HOLD(vfsp);
	vp = gfs_dir_create(size, NULL, vfsp, ops, entries, inode_cb,
                        maxlen, readdir_cb, lookup_cb,
                        ZFS_VNODE_SYSTEM);
	/* Manually set the inode */
	((gfs_file_t *)vnode_fsnode(vp))->gfs_ino = ino;
    dprintf(".zfs created returning %p; ino %d\n", vp, ino);

    /*
     * Since we created the .zfs node as VSYSTEM, we have to manually
     * call vnode_recycle() as done in zfsctl_destroy().
     */

	return (vp);
}
示例#6
0
struct pcnode *
pc_getnode(
	struct pcfs *fsp,	/* filsystem for node */
	daddr_t blkno,		/* phys block no of dir entry */
	int offset,		/* offset of dir entry in block */
	struct pcdir *ep)	/* node dir entry */
{
	struct pcnode *pcp;
	struct pchead *hp;
	struct vnode *vp;
	pc_cluster32_t scluster;

	ASSERT(fsp->pcfs_flags & PCFS_LOCKED);
	if (ep == (struct pcdir *)0) {
		ep = &pcfs_rootdirentry;
		scluster = 0;
	} else {
		scluster = pc_getstartcluster(fsp, ep);
	}
	/*
	 * First look for active nodes.
	 * File nodes are identified by the location (blkno, offset) of
	 * its directory entry.
	 * Directory nodes are identified by the starting cluster number
	 * for the entries.
	 */
	if (ep->pcd_attr & PCA_DIR) {
		hp = &pcdhead[PCDHASH(fsp, scluster)];
		rw_enter(&pcnodes_lock, RW_READER);
		for (pcp = hp->pch_forw;
		    pcp != (struct pcnode *)hp; pcp = pcp->pc_forw) {
			if ((fsp == VFSTOPCFS(PCTOV(pcp)->v_vfsp)) &&
			    (scluster == pcp->pc_scluster)) {
				VN_HOLD(PCTOV(pcp));
				rw_exit(&pcnodes_lock);
				return (pcp);
			}
		}
		rw_exit(&pcnodes_lock);
	} else {
		hp = &pcfhead[PCFHASH(fsp, blkno, offset)];
		rw_enter(&pcnodes_lock, RW_READER);
		for (pcp = hp->pch_forw;
		    pcp != (struct pcnode *)hp; pcp = pcp->pc_forw) {
			if ((fsp == VFSTOPCFS(PCTOV(pcp)->v_vfsp)) &&
			    ((pcp->pc_flags & PC_INVAL) == 0) &&
			    (blkno == pcp->pc_eblkno) &&
			    (offset == pcp->pc_eoffset)) {
				VN_HOLD(PCTOV(pcp));
				rw_exit(&pcnodes_lock);
				return (pcp);
			}
		}
		rw_exit(&pcnodes_lock);
	}
	/*
	 * Cannot find node in active list. Allocate memory for a new node
	 * initialize it, and put it on the active list.
	 */
	pcp = kmem_alloc(sizeof (struct pcnode), KM_SLEEP);
	bzero(pcp, sizeof (struct pcnode));
	vp = vn_alloc(KM_SLEEP);
	pcp->pc_vn = vp;
	pcp->pc_entry = *ep;
	pcp->pc_eblkno = blkno;
	pcp->pc_eoffset = offset;
	pcp->pc_scluster = scluster;
	pcp->pc_lcluster = scluster;
	pcp->pc_lindex = 0;
	pcp->pc_flags = 0;
	if (ep->pcd_attr & PCA_DIR) {
		vn_setops(vp, pcfs_dvnodeops);
		vp->v_type = VDIR;
		if (scluster == 0) {
			vp->v_flag = VROOT;
			blkno = offset = 0;
			if (IS_FAT32(fsp)) {
				pc_cluster32_t ncl = 0;

				scluster = fsp->pcfs_rdirstart;
				if (pc_fileclsize(fsp, scluster, &ncl)) {
					PC_DPRINTF1(2, "cluster chain "
					    "corruption, scluster=%d\n",
					    scluster);
					pcp->pc_flags |= PC_INVAL;
				}
				pcp->pc_size = fsp->pcfs_clsize * ncl;
			} else {
				pcp->pc_size =
				    fsp->pcfs_rdirsec * fsp->pcfs_secsize;
			}
		} else {
			pc_cluster32_t ncl = 0;

			if (pc_fileclsize(fsp, scluster, &ncl)) {
				PC_DPRINTF1(2, "cluster chain corruption, "
				    "scluster=%d\n", scluster);
				pcp->pc_flags |= PC_INVAL;
			}
			pcp->pc_size = fsp->pcfs_clsize * ncl;
		}
	} else {
		vn_setops(vp, pcfs_fvnodeops);
		vp->v_type = VREG;
		vp->v_flag = VNOSWAP;
		fsp->pcfs_frefs++;
		pcp->pc_size = ltohi(ep->pcd_size);
	}
	fsp->pcfs_nrefs++;
	VFS_HOLD(PCFSTOVFS(fsp));
	vp->v_data = (caddr_t)pcp;
	vp->v_vfsp = PCFSTOVFS(fsp);
	vn_exists(vp);
	rw_enter(&pcnodes_lock, RW_WRITER);
	insque(pcp, hp);
	rw_exit(&pcnodes_lock);
	return (pcp);
}
示例#7
0
/*
 * Construct a new znode/vnode and intialize.
 *
 * This does not do a call to dmu_set_user() that is
 * up to the caller to do, in case you don't want to
 * return the znode
 */
static znode_t *
zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz)
{
	znode_t	*zp;
	vnode_t *vp;

	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
	zfs_znode_cache_constructor(zp, zfsvfs->z_parent->z_vfs, 0);

	ASSERT(zp->z_dirlocks == NULL);
	ASSERT(zp->z_dbuf == NULL);
	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));

	/*
	 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
	 * the zfs_znode_move() callback.
	 */
	zp->z_phys = NULL;
	zp->z_unlinked = 0;
	zp->z_atime_dirty = 0;
	zp->z_mapcnt = 0;
	zp->z_last_itx = 0;
	zp->z_id = db->db_object;
	zp->z_blksz = blksz;
	zp->z_seq = 0x7A4653;
	zp->z_sync_cnt = 0;

	vp = ZTOV(zp);
#ifdef TODO
	vn_reinit(vp);
#endif

	zfs_znode_dmu_init(zfsvfs, zp, db);

	zp->z_gen = zp->z_phys->zp_gen;

#if 0
	if (vp == NULL)
		return (zp);
#endif

	vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
	switch (vp->v_type) {
	case VDIR:
		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
		break;
	case VFIFO:
		vp->v_op = &zfs_fifoops;
		break;
	}
	if (vp->v_type != VFIFO)
		VN_LOCK_ASHARE(vp);

	mutex_enter(&zfsvfs->z_znodes_lock);
	list_insert_tail(&zfsvfs->z_all_znodes, zp);
	membar_producer();
	/*
	 * Everything else must be valid before assigning z_zfsvfs makes the
	 * znode eligible for zfs_znode_move().
	 */
	zp->z_zfsvfs = zfsvfs;
	mutex_exit(&zfsvfs->z_znodes_lock);

	VFS_HOLD(zfsvfs->z_vfs);
	return (zp);
}
示例#8
0
/*
 * Configure root file system.
 */
int
rootconf(void)
{
	int error;
	struct vfssw *vsw;
	extern void pm_init(void);

	BMDPRINTF(("rootconf: fstype %s\n", rootfs.bo_fstype));
	BMDPRINTF(("rootconf: name %s\n", rootfs.bo_name));
	BMDPRINTF(("rootconf: flags 0x%x\n", rootfs.bo_flags));
	BMDPRINTF(("rootconf: obp_bootpath %s\n", obp_bootpath));

	/*
	 * Install cluster modules that were only loaded during
	 * loadrootmodules().
	 */
	if (error = clboot_rootconf())
		return (error);

	if (root_is_svm) {
		(void) strncpy(rootfs.bo_name, obp_bootpath, BO_MAXOBJNAME);

		BMDPRINTF(("rootconf: svm: rootfs name %s\n", rootfs.bo_name));
		BMDPRINTF(("rootconf: svm: svm name %s\n", svm_bootpath));
	}

	/*
	 * Run _init on the root filesystem (we already loaded it
	 * but we've been waiting until now to _init it) which will
	 * have the side-effect of running vsw_init() on this vfs.
	 * Because all the nfs filesystems are lumped into one
	 * module we need to special case it.
	 */
	if (strncmp(rootfs.bo_fstype, "nfs", 3) == 0) {
		if (modload("fs", "nfs") == -1) {
			cmn_err(CE_CONT, "Cannot initialize %s filesystem\n",
			    rootfs.bo_fstype);
			return (ENXIO);
		}
	} else {
		if (modload("fs", rootfs.bo_fstype) == -1) {
			cmn_err(CE_CONT, "Cannot initialize %s filesystem\n",
			    rootfs.bo_fstype);
			return (ENXIO);
		}
	}
	RLOCK_VFSSW();
	vsw = vfs_getvfsswbyname(rootfs.bo_fstype);
	RUNLOCK_VFSSW();
	VFS_INIT(rootvfs, &vsw->vsw_vfsops, (caddr_t)0);
	VFS_HOLD(rootvfs);

	if (root_is_svm) {
		rootvfs->vfs_flag |= VFS_RDONLY;
	}

	/*
	 * This pm-releated call has to occur before root is mounted since we
	 * need to power up all devices.  It is placed after VFS_INIT() such
	 * that opening a device via ddi_lyr_ interface just before root has
	 * been mounted would work.
	 */
	pm_init();

	if (netboot) {
		if ((error = strplumb()) != 0) {
			cmn_err(CE_CONT, "Cannot plumb network device\n");
			return (error);
		}
	}

	/*
	 * ufs_mountroot() ends up calling getrootdev()
	 * (below) which actually triggers the _init, identify,
	 * probe and attach of the drivers that make up root device
	 * bush; these are also quietly waiting in memory.
	 */
	BMDPRINTF(("rootconf: calling VFS_MOUNTROOT %s\n", rootfs.bo_fstype));

	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
	vfs_unrefvfssw(vsw);
	rootdev = rootvfs->vfs_dev;

	if (error)
		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
		    rootfs.bo_name, rootfs.bo_fstype);
	else
		cmn_err(CE_CONT, "?root on %s fstype %s\n",
		    rootfs.bo_name, rootfs.bo_fstype);
	return (error);
}
示例#9
0
int do_mount(char *spec, char *dir, int mflag, char *opt)
{
	// VERIFY(mflag == 0);

	vfs_t *vfs = kmem_zalloc(sizeof(vfs_t), KM_SLEEP);
	if(vfs == NULL)
		return ENOMEM;

	VFS_INIT(vfs, zfs_vfsops, 0);
	VFS_HOLD(vfs);

	struct mounta uap = {
	.spec = spec,
	.dir = dir,
	.flags = mflag | MS_SYSSPACE,
	.fstype = "zfs-fuse",
	.dataptr = "",
	.datalen = 0,
	.optptr = opt,
	.optlen = strlen(opt)
	};

	int ret;
	if ((ret = VFS_MOUNT(vfs, rootdir, &uap, kcred)) != 0) {
		kmem_free(vfs, sizeof(vfs_t));
		return ret;
	}
	/* Actually, optptr is totally ignored by VFS_MOUNT.
	 * So we are going to pass this with fuse_mount_options if possible */
    if (fuse_mount_options == NULL)
        fuse_mount_options = "";
	char real_opts[1024];
	*real_opts = 0;
	if (*fuse_mount_options)
		strcat(real_opts,fuse_mount_options); // comes with a starting ,
	if (*opt)
		sprintf(&real_opts[strlen(real_opts)],",%s",opt);

#ifdef DEBUG
	atomic_inc_32(&mounted);;

	fprintf(stderr, "mounting %s\n", dir);
#endif

	char *fuse_opts = NULL;
	int has_default_perm = 0;
	if (fuse_version() <= 27) {
	if(asprintf(&fuse_opts, FUSE_OPTIONS, spec, real_opts) == -1) {
		VERIFY(do_umount(vfs, B_FALSE) == 0);
		return ENOMEM;
	}
	} else {
	  if(asprintf(&fuse_opts, FUSE_OPTIONS ",big_writes", spec, real_opts) == -1) {
	    VERIFY(do_umount(vfs, B_FALSE) == 0);
	    return ENOMEM;
	  }
	}
	
	struct fuse_args args = FUSE_ARGS_INIT(0, NULL);

	if(fuse_opt_add_arg(&args, "") == -1 ||
	   fuse_opt_add_arg(&args, "-o") == -1 ||
	   fuse_opt_add_arg(&args, fuse_opts) == -1) {
		fuse_opt_free_args(&args);
		free(fuse_opts);
		VERIFY(do_umount(vfs, B_FALSE) == 0);
		return ENOMEM;
	}
	has_default_perm = detect_fuseoption(fuse_opts,"default_permissions");
	free(fuse_opts);

	struct fuse_chan *ch = fuse_mount(dir, &args);

	if(ch == NULL) {
		VERIFY(do_umount(vfs, B_FALSE) == 0);
		return EIO;
	}

	if (has_default_perm)
	    vfs->fuse_attribute = FUSE_VFS_HAS_DEFAULT_PERM;

	struct fuse_session *se = fuse_lowlevel_new(&args, &zfs_operations, sizeof(zfs_operations), vfs);
	fuse_opt_free_args(&args);

	if(se == NULL) {
		VERIFY(do_umount(vfs, B_FALSE) == 0); /* ZFSFUSE: FIXME?? */
		fuse_unmount(dir,ch);
		return EIO;
	}

	fuse_session_add_chan(se, ch);

	if(zfsfuse_newfs(dir, ch) != 0) {
		fuse_session_destroy(se);
		fuse_unmount(dir,ch);
		return EIO;
	}

	return 0;
}
示例#10
0
/*
 * Provide a shadow for a vnode.  We create a new shadow before checking for an
 * existing one, to minimize the amount of time we need to hold ftable_lock.
 * If a vp already has a shadow in the hash list, return its shadow.  If not,
 * we hash the new vnode and return its pointer to the caller.
 */
vnode_t *
fifovp(vnode_t *vp, cred_t *crp)
{
	fifonode_t *fnp;
	fifonode_t *spec_fnp;   /* Speculative fnode ptr. */
	fifodata_t *fdp;
	vnode_t *newvp;
	struct vattr va;
	vnode_t	*rvp;

	ASSERT(vp != NULL);

	fdp = kmem_cache_alloc(fnode_cache, KM_SLEEP);

	fdp->fifo_lock.flk_ref = 1;
	fnp = &fdp->fifo_fnode[0];

	/*
	 * Its possible that fifo nodes on different lofs mountpoints
	 * shadow the same real filesystem fifo node.
	 * In this case its necessary to get and store the realvp.
	 * This way different fifo nodes sharing the same real vnode
	 * can use realvp for communication.
	 */

	if (VOP_REALVP(vp, &rvp, NULL) == 0)
			vp = rvp;

	fnp->fn_realvp	= vp;
	fnp->fn_wcnt	= 0;
	fnp->fn_rcnt	= 0;

#if FIFODEBUG
	if (! Fifo_fastmode) {
		fnp->fn_flag	= 0;
	} else {
		fnp->fn_flag	= FIFOFAST;
	}
#else /* FIFODEBUG */
	fnp->fn_flag	= FIFOFAST;
#endif /* FIFODEBUG */

	/*
	 * initialize the times from vp.
	 */
	va.va_mask = AT_TIMES;
	if (VOP_GETATTR(vp, &va, 0, crp, NULL) == 0) {
		fnp->fn_atime = va.va_atime.tv_sec;
		fnp->fn_mtime = va.va_mtime.tv_sec;
		fnp->fn_ctime = va.va_ctime.tv_sec;
	} else {
		fnp->fn_atime = 0;
		fnp->fn_mtime = 0;
		fnp->fn_ctime = 0;
	}

	/*
	 * Grab the VP here to avoid holding locks
	 * whilst trying to acquire others.
	 */

	VN_HOLD(vp);

	mutex_enter(&ftable_lock);

	if ((spec_fnp = fifofind(vp)) != NULL) {
		mutex_exit(&ftable_lock);

		/*
		 * Release the vnode and free up our pre-prepared fnode.
		 * Zero the lock reference just to explicitly signal
		 * this is unused.
		 */
		VN_RELE(vp);
		fdp->fifo_lock.flk_ref = 0;
		kmem_cache_free(fnode_cache, fdp);

		return (FTOV(spec_fnp));
	}

	newvp = FTOV(fnp);
	fifo_reinit_vp(newvp);
	/*
	 * Since the fifo vnode's v_vfsp needs to point to the
	 * underlying filesystem's vfsp we need to bump up the
	 * underlying filesystem's vfs reference count.
	 * The count is decremented when the fifo node is
	 * inactivated.
	 */

	VFS_HOLD(vp->v_vfsp);
	newvp->v_vfsp = vp->v_vfsp;
	newvp->v_rdev = vp->v_rdev;
	newvp->v_flag |= (vp->v_flag & VROOT);

	fifoinsert(fnp);
	mutex_exit(&ftable_lock);

	return (newvp);
}
示例#11
0
/*
 * getflabel -
 *
 * Return pointer to the ts_label associated with the specified file,
 * or returns NULL if error occurs.  Caller is responsible for doing
 * a label_rele of the ts_label.
 */
ts_label_t *
getflabel(vnode_t *vp)
{
	vfs_t		*vfsp, *rvfsp;
	vnode_t		*rvp, *rvp2;
	zone_t		*zone;
	ts_label_t	*zl;
	int		err;
	boolean_t	vfs_is_held = B_FALSE;
	char		vpath[MAXPATHLEN];

	ASSERT(vp);
	vfsp = vp->v_vfsp;
	if (vfsp == NULL)
		return (NULL);

	rvp = vp;

	/*
	 * Traverse lofs mounts and fattach'es to get the real vnode
	 */
	if (VOP_REALVP(rvp, &rvp2, NULL) == 0)
		rvp = rvp2;

	rvfsp = rvp->v_vfsp;

	/* rvp/rvfsp now represent the real vnode/vfs we will be using */

	/* Go elsewhere to handle all nfs files. */
	if (strncmp(vfssw[rvfsp->vfs_fstype].vsw_name, "nfs", 3) == 0)
		return (getflabel_nfs(rvfsp));

	/*
	 * Fast path, for objects in a labeled zone: everything except
	 * for lofs/nfs will be just the label of that zone.
	 */
	if ((rvfsp->vfs_zone != NULL) && (rvfsp->vfs_zone != global_zone)) {
		if ((strcmp(vfssw[rvfsp->vfs_fstype].vsw_name,
		    "lofs") != 0)) {
			zone = rvfsp->vfs_zone;
			zone_hold(zone);
			goto zone_out;		/* return this label */
		}
	}

	/*
	 * Get the vnode path -- it may be missing or weird for some
	 * cases, like devices.  In those cases use the label of the
	 * current zone.
	 */
	err = vnodetopath(rootdir, rvp, vpath, sizeof (vpath), kcred);
	if ((err != 0) || (*vpath != '/')) {
		zone = curproc->p_zone;
		zone_hold(zone);
		goto zone_out;
	}

	/*
	 * For zfs filesystem, return the explicit label property if a
	 * meaningful one exists.
	 */
	if (strncmp(vfssw[rvfsp->vfs_fstype].vsw_name, "zfs", 3) == 0) {
		ts_label_t *tsl;

		tsl = getflabel_zfs(rvfsp);

		/* if label found, return it, otherwise continue... */
		if (tsl != NULL)
			return (tsl);
	}

	/*
	 * If a mountpoint exists, hold the vfs while we reference it.
	 * Otherwise if mountpoint is NULL it should not be held (e.g.,
	 * a hold/release on spec_vfs would result in an attempted free
	 * and panic.)
	 */
	if (vfsp->vfs_mntpt != NULL) {
		VFS_HOLD(vfsp);
		vfs_is_held = B_TRUE;
	}

	zone = zone_find_by_any_path(vpath, B_FALSE);

	/*
	 * If the vnode source zone is properly set to a non-global zone, or
	 * any zone if the mount is R/W, then use the label of that zone.
	 */
	if ((zone != global_zone) || ((vfsp->vfs_flag & VFS_RDONLY) != 0))
		goto zone_out;		/* return this label */

	/*
	 * Otherwise, if we're not in the global zone, use the label of
	 * our zone.
	 */
	if ((zone = curproc->p_zone) != global_zone) {
		zone_hold(zone);
		goto zone_out;		/* return this label */
	}

	/*
	 * We're in the global zone and the mount is R/W ... so the file
	 * may actually be in the global zone -- or in the root of any zone.
	 * Always build our own path for the file, to be sure it's simplified
	 * (i.e., no ".", "..", "//", and so on).
	 */

	zone_rele(zone);
	zone = zone_find_by_any_path(vpath, B_FALSE);

zone_out:
	if ((curproc->p_zone == global_zone) && (zone == global_zone)) {
		vfs_t		*nvfs;
		boolean_t	exported = B_FALSE;
		refstr_t	*mntpt_ref;
		char		*mntpt;

		/*
		 * File is in the global zone - check whether it's admin_high.
		 * If it's in a filesys that was exported from the global zone,
		 * it's admin_low by definition.  Otherwise, if it's in a
		 * filesys that's NOT exported to any zone, it's admin_high.
		 *
		 * And for these files if there wasn't a valid mount resource,
		 * the file must be admin_high (not exported, probably a global
		 * zone device).
		 */
		if (!vfs_is_held)
			goto out_high;

		mntpt_ref = vfs_getmntpoint(vfsp);
		mntpt = (char *)refstr_value(mntpt_ref);

		if ((mntpt != NULL) && (*mntpt == '/')) {
			zone_t	*to_zone;

			to_zone = zone_find_by_any_path(mntpt, B_FALSE);
			zone_rele(to_zone);
			if (to_zone != global_zone) {
				/* force admin_low */
				exported = B_TRUE;
			}
		}
		if (mntpt_ref)
			refstr_rele(mntpt_ref);

		if (!exported) {
			size_t	plen = strlen(vpath);

			vfs_list_read_lock();
			nvfs = vfsp->vfs_next;
			while (nvfs != vfsp) {
				const char	*rstr;
				size_t		rlen = 0;

				/*
				 * Skip checking this vfs if it's not lofs
				 * (the only way to export from the global
				 * zone to a zone).
				 */
				if (strncmp(vfssw[nvfs->vfs_fstype].vsw_name,
				    "lofs", 4) != 0) {
					nvfs = nvfs->vfs_next;
					continue;
				}

				rstr = refstr_value(nvfs->vfs_resource);
				if (rstr != NULL)
					rlen = strlen(rstr);

				/*
				 * Check for a match: does this vfs correspond
				 * to our global zone file path?  I.e., check
				 * if the resource string of this vfs is a
				 * prefix of our path.
				 */
				if ((rlen > 0) && (rlen <= plen) &&
				    (strncmp(rstr, vpath, rlen) == 0) &&
				    (vpath[rlen] == '/' ||
				    vpath[rlen] == '\0')) {
					/* force admin_low */
					exported = B_TRUE;
					break;
				}
				nvfs = nvfs->vfs_next;
			}
			vfs_list_unlock();
		}

		if (!exported)
			goto out_high;
	}

	if (vfs_is_held)
		VFS_RELE(vfsp);

	/*
	 * Now that we have the "home" zone for the file, return the slabel
	 * of that zone.
	 */
	zl = zone->zone_slabel;
	label_hold(zl);
	zone_rele(zone);
	return (zl);

out_high:
	if (vfs_is_held)
		VFS_RELE(vfsp);

	label_hold(l_admin_high);
	zone_rele(zone);
	return (l_admin_high);
}
示例#12
0
/*
 * Mount a file descriptor onto the node in the file system.
 * Create a new vnode, update the attributes with info from the
 * file descriptor and the mount point.  The mask, mode, uid, gid,
 * atime, mtime and ctime are taken from the mountpt.  Link count is
 * set to one, the file system id is namedev and nodeid is unique
 * for each mounted object.  Other attributes are taken from mount point.
 * Make sure user is owner (or root) with write permissions on mount point.
 * Hash the new vnode and return 0.
 * Upon entry to this routine, the file descriptor is in the
 * fd field of a struct namefd.  Copy that structure from user
 * space and retrieve the file descriptor.
 */
static int
nm_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *crp)
{
	struct namefd namefdp;
	struct vnode *filevp;		/* file descriptor vnode */
	struct file *fp;
	struct vnode *newvp;		/* vnode representing this mount */
	struct vnode *rvp;		/* realvp (if any) for the mountpt */
	struct namenode *nodep;		/* namenode for this mount */
	struct vattr filevattr;		/* attributes of file dec.  */
	struct vattr *vattrp;		/* attributes of this mount */
	char *resource_name;
	char *resource_nodetype;
	statvfs64_t *svfsp;
	int error = 0;

	/*
	 * Get the file descriptor from user space.
	 * Make sure the file descriptor is valid and has an
	 * associated file pointer.
	 * If so, extract the vnode from the file pointer.
	 */
	if (uap->datalen != sizeof (struct namefd))
		return (EINVAL);

	if (copyin(uap->dataptr, &namefdp, uap->datalen))
		return (EFAULT);

	if ((fp = getf(namefdp.fd)) == NULL)
		return (EBADF);

	/*
	 * If the mount point already has something mounted
	 * on it, disallow this mount.  (This restriction may
	 * be removed in a later release).
	 * Or unmount has completed but the namefs ROOT vnode
	 * count has not decremented to zero, disallow this mount.
	 */

	mutex_enter(&mvp->v_lock);
	if ((mvp->v_flag & VROOT) ||
	    vfs_matchops(mvp->v_vfsp, namefs_vfsops)) {
		mutex_exit(&mvp->v_lock);
		releasef(namefdp.fd);
		return (EBUSY);
	}
	mutex_exit(&mvp->v_lock);

	/*
	 * Cannot allow users to fattach() in /dev/pts.
	 * First, there is no need for doing so and secondly
	 * we cannot allow arbitrary users to park on a node in
	 * /dev/pts or /dev/vt.
	 */
	rvp = NULLVP;
	if (vn_matchops(mvp, spec_getvnodeops()) &&
	    VOP_REALVP(mvp, &rvp, NULL) == 0 && rvp &&
	    (vn_matchops(rvp, devpts_getvnodeops()) ||
	    vn_matchops(rvp, devvt_getvnodeops()))) {
		releasef(namefdp.fd);
		return (ENOTSUP);
	}

	filevp = fp->f_vnode;
	if (filevp->v_type == VDIR || filevp->v_type == VPORT) {
		releasef(namefdp.fd);
		return (EINVAL);
	}

	/*
	 * If the fd being mounted refers to neither a door nor a stream,
	 * make sure the caller is privileged.
	 */
	if (filevp->v_type != VDOOR && filevp->v_stream == NULL) {
		if (secpolicy_fs_mount(crp, filevp, vfsp) != 0) {
			/* fd is neither a stream nor a door */
			releasef(namefdp.fd);
			return (EINVAL);
		}
	}

	/*
	 * Make sure the file descriptor is not the root of some
	 * file system.
	 * If it's not, create a reference and allocate a namenode
	 * to represent this mount request.
	 */
	if (filevp->v_flag & VROOT) {
		releasef(namefdp.fd);
		return (EBUSY);
	}

	nodep = kmem_zalloc(sizeof (struct namenode), KM_SLEEP);

	mutex_init(&nodep->nm_lock, NULL, MUTEX_DEFAULT, NULL);
	vattrp = &nodep->nm_vattr;
	vattrp->va_mask = AT_ALL;
	if (error = VOP_GETATTR(mvp, vattrp, 0, crp, NULL))
		goto out;

	filevattr.va_mask = AT_ALL;
	if (error = VOP_GETATTR(filevp, &filevattr, 0, crp, NULL))
		goto out;
	/*
	 * Make sure the user is the owner of the mount point
	 * or has sufficient privileges.
	 */
	if (error = secpolicy_vnode_owner(crp, vattrp->va_uid))
		goto out;

	/*
	 * Make sure the user has write permissions on the
	 * mount point (or has sufficient privileges).
	 */
	if (!(vattrp->va_mode & VWRITE) &&
	    secpolicy_vnode_access(crp, mvp, vattrp->va_uid, VWRITE) != 0) {
		error = EACCES;
		goto out;
	}

	/*
	 * If the file descriptor has file/record locking, don't
	 * allow the mount to succeed.
	 */
	if (vn_has_flocks(filevp)) {
		error = EACCES;
		goto out;
	}

	/*
	 * Initialize the namenode.
	 */
	if (filevp->v_stream) {
		struct stdata *stp = filevp->v_stream;
		mutex_enter(&stp->sd_lock);
		stp->sd_flag |= STRMOUNT;
		mutex_exit(&stp->sd_lock);
	}
	nodep->nm_filevp = filevp;
	mutex_enter(&fp->f_tlock);
	fp->f_count++;
	mutex_exit(&fp->f_tlock);

	releasef(namefdp.fd);
	nodep->nm_filep = fp;
	nodep->nm_mountpt = mvp;

	/*
	 * The attributes for the mounted file descriptor were initialized
	 * above by applying VOP_GETATTR to the mount point.  Some of
	 * the fields of the attributes structure will be overwritten
	 * by the attributes from the file descriptor.
	 */
	vattrp->va_type    = filevattr.va_type;
	vattrp->va_fsid    = namedev;
	vattrp->va_nodeid  = namenodeno_alloc();
	vattrp->va_nlink   = 1;
	vattrp->va_size    = filevattr.va_size;
	vattrp->va_rdev    = filevattr.va_rdev;
	vattrp->va_blksize = filevattr.va_blksize;
	vattrp->va_nblocks = filevattr.va_nblocks;
	vattrp->va_seq	   = 0;

	/*
	 * Initialize new vnode structure for the mounted file descriptor.
	 */
	nodep->nm_vnode = vn_alloc(KM_SLEEP);
	newvp = NMTOV(nodep);

	newvp->v_flag = filevp->v_flag | VROOT | VNOMAP | VNOSWAP;
	vn_setops(newvp, nm_vnodeops);
	newvp->v_vfsp = vfsp;
	newvp->v_stream = filevp->v_stream;
	newvp->v_type = filevp->v_type;
	newvp->v_rdev = filevp->v_rdev;
	newvp->v_data = (caddr_t)nodep;
	VFS_HOLD(vfsp);
	vn_exists(newvp);

	/*
	 * Initialize the vfs structure.
	 */
	vfsp->vfs_vnodecovered = NULL;
	vfsp->vfs_flag |= VFS_UNLINKABLE;
	vfsp->vfs_bsize = 1024;
	vfsp->vfs_fstype = namefstype;
	vfs_make_fsid(&vfsp->vfs_fsid, namedev, namefstype);
	vfsp->vfs_data = (caddr_t)nodep;
	vfsp->vfs_dev = namedev;
	vfsp->vfs_bcount = 0;

	/*
	 * Set the name we mounted from.
	 */
	switch (filevp->v_type) {
	case VPROC:	/* VOP_GETATTR() translates this to VREG */
	case VREG:	resource_nodetype = "file"; break;
	case VDIR:	resource_nodetype = "directory"; break;
	case VBLK:	resource_nodetype = "device"; break;
	case VCHR:	resource_nodetype = "device"; break;
	case VLNK:	resource_nodetype = "link"; break;
	case VFIFO:	resource_nodetype = "fifo"; break;
	case VDOOR:	resource_nodetype = "door"; break;
	case VSOCK:	resource_nodetype = "socket"; break;
	default:	resource_nodetype = "resource"; break;
	}

#define	RESOURCE_NAME_SZ 128 /* Maximum length of the resource name */
	resource_name = kmem_alloc(RESOURCE_NAME_SZ, KM_SLEEP);
	svfsp = kmem_alloc(sizeof (statvfs64_t), KM_SLEEP);

	error = VFS_STATVFS(filevp->v_vfsp, svfsp);
	if (error == 0) {
		(void) snprintf(resource_name, RESOURCE_NAME_SZ,
		    "unspecified_%s_%s", svfsp->f_basetype, resource_nodetype);
	} else {
		(void) snprintf(resource_name, RESOURCE_NAME_SZ,
		    "unspecified_%s", resource_nodetype);
	}

	vfs_setresource(vfsp, resource_name);

	kmem_free(svfsp, sizeof (statvfs64_t));
	kmem_free(resource_name, RESOURCE_NAME_SZ);
#undef RESOURCE_NAME_SZ

	/*
	 * Insert the namenode.
	 */
	mutex_enter(&ntable_lock);
	nameinsert(nodep);
	mutex_exit(&ntable_lock);
	return (0);
out:
	releasef(namefdp.fd);
	kmem_free(nodep, sizeof (struct namenode));
	return (error);
}
示例#13
0
/*
 * Get/Make vfs structure for given real vfs
 */
static struct vfs *
makelfsnode(struct vfs *vfsp, struct loinfo *li)
{
    struct lfsnode *lfs;
    struct lfsnode *tlfs;

    /*
     * Don't grab any locks for the fast (common) case.
     */
    if (vfsp == li->li_realvfs)
        return (li->li_mountvfs);
    ASSERT(li->li_refct > 0);
    mutex_enter(&li->li_lfslock);
    if ((lfs = lfsfind(vfsp, li)) == NULL) {
        mutex_exit(&li->li_lfslock);
        lfs = kmem_zalloc(sizeof (*lfs), KM_SLEEP);
        mutex_enter(&li->li_lfslock);
        if ((tlfs = lfsfind(vfsp, li)) != NULL) {
            kmem_free(lfs, sizeof (*lfs));
            lfs = tlfs;
            goto found_lfs;
        }
        lfs->lfs_realvfs = vfsp;

        /*
         * Even though the lfsnode is strictly speaking a private
         * implementation detail of lofs, it should behave as a regular
         * vfs_t for the benefit of the rest of the kernel.
         */
        VFS_INIT(&lfs->lfs_vfs, lo_vfsops, (caddr_t)li);
        lfs->lfs_vfs.vfs_fstype = li->li_mountvfs->vfs_fstype;
        lfs->lfs_vfs.vfs_flag =
            ((vfsp->vfs_flag | li->li_mflag) & ~li->li_dflag) &
            INHERIT_VFS_FLAG;
        lfs->lfs_vfs.vfs_bsize = vfsp->vfs_bsize;
        lfs->lfs_vfs.vfs_dev = vfsp->vfs_dev;
        lfs->lfs_vfs.vfs_fsid = vfsp->vfs_fsid;

        if (vfsp->vfs_mntpt != NULL) {
            lfs->lfs_vfs.vfs_mntpt = vfs_getmntpoint(vfsp);
            /* Leave a reference to the mountpoint */
        }

        (void) VFS_ROOT(vfsp, &lfs->lfs_realrootvp);

        /*
         * We use 1 instead of 0 as the value to associate with
         * an idle lfs_vfs.  This is to prevent VFS_RELE()
         * trying to kmem_free() our lfs_t (which is the wrong
         * size).
         */
        VFS_HOLD(&lfs->lfs_vfs);
        lfs->lfs_next = li->li_lfs;
        li->li_lfs = lfs;
        vfs_propagate_features(vfsp, &lfs->lfs_vfs);
    }

found_lfs:
    VFS_HOLD(&lfs->lfs_vfs);
    mutex_exit(&li->li_lfslock);
    return (&lfs->lfs_vfs);
}
示例#14
0
static vnode_t *
make_rnode4(nfs4_sharedfh_t *fh, r4hashq_t *rhtp, struct vfs *vfsp,
    struct vnodeops *vops,
    int (*putapage)(vnode_t *, page_t *, u_offset_t *, size_t *, int, cred_t *),
    int *newnode, cred_t *cr)
{
	rnode4_t *rp;
	rnode4_t *trp;
	vnode_t *vp;
	mntinfo4_t *mi;

	ASSERT(RW_READ_HELD(&rhtp->r_lock));

	mi = VFTOMI4(vfsp);

start:
	if ((rp = r4find(rhtp, fh, vfsp)) != NULL) {
		vp = RTOV4(rp);
		*newnode = 0;
		return (vp);
	}
	rw_exit(&rhtp->r_lock);

	mutex_enter(&rp4freelist_lock);

	if (rp4freelist != NULL && rnode4_new >= nrnode) {
		rp = rp4freelist;
		rp4_rmfree(rp);
		mutex_exit(&rp4freelist_lock);

		vp = RTOV4(rp);

		if (rp->r_flags & R4HASHED) {
			rw_enter(&rp->r_hashq->r_lock, RW_WRITER);
			mutex_enter(&vp->v_lock);
			if (vp->v_count > 1) {
				vp->v_count--;
				mutex_exit(&vp->v_lock);
				rw_exit(&rp->r_hashq->r_lock);
				rw_enter(&rhtp->r_lock, RW_READER);
				goto start;
			}
			mutex_exit(&vp->v_lock);
			rp4_rmhash_locked(rp);
			rw_exit(&rp->r_hashq->r_lock);
		}

		r4inactive(rp, cr);

		mutex_enter(&vp->v_lock);
		if (vp->v_count > 1) {
			vp->v_count--;
			mutex_exit(&vp->v_lock);
			rw_enter(&rhtp->r_lock, RW_READER);
			goto start;
		}
		mutex_exit(&vp->v_lock);
		vn_invalid(vp);

		/*
		 * destroy old locks before bzero'ing and
		 * recreating the locks below.
		 */
		uninit_rnode4(rp);

		/*
		 * Make sure that if rnode is recycled then
		 * VFS count is decremented properly before
		 * reuse.
		 */
		VFS_RELE(vp->v_vfsp);
		vn_reinit(vp);
	} else {
		vnode_t *new_vp;

		mutex_exit(&rp4freelist_lock);

		rp = kmem_cache_alloc(rnode4_cache, KM_SLEEP);
		new_vp = vn_alloc(KM_SLEEP);

		atomic_add_long((ulong_t *)&rnode4_new, 1);
#ifdef DEBUG
		clstat4_debug.nrnode.value.ui64++;
#endif
		vp = new_vp;
	}

	bzero(rp, sizeof (*rp));
	rp->r_vnode = vp;
	nfs_rw_init(&rp->r_rwlock, NULL, RW_DEFAULT, NULL);
	nfs_rw_init(&rp->r_lkserlock, NULL, RW_DEFAULT, NULL);
	mutex_init(&rp->r_svlock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&rp->r_statelock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&rp->r_statev4_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&rp->r_os_lock, NULL, MUTEX_DEFAULT, NULL);
	rp->created_v4 = 0;
	list_create(&rp->r_open_streams, sizeof (nfs4_open_stream_t),
	    offsetof(nfs4_open_stream_t, os_node));
	rp->r_lo_head.lo_prev_rnode = &rp->r_lo_head;
	rp->r_lo_head.lo_next_rnode = &rp->r_lo_head;
	cv_init(&rp->r_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&rp->r_commit.c_cv, NULL, CV_DEFAULT, NULL);
	rp->r_flags = R4READDIRWATTR;
	rp->r_fh = fh;
	rp->r_hashq = rhtp;
	sfh4_hold(rp->r_fh);
	rp->r_server = mi->mi_curr_serv;
	rp->r_deleg_type = OPEN_DELEGATE_NONE;
	rp->r_deleg_needs_recovery = OPEN_DELEGATE_NONE;
	nfs_rw_init(&rp->r_deleg_recall_lock, NULL, RW_DEFAULT, NULL);

	rddir4_cache_create(rp);
	rp->r_putapage = putapage;
	vn_setops(vp, vops);
	vp->v_data = (caddr_t)rp;
	vp->v_vfsp = vfsp;
	VFS_HOLD(vfsp);
	vp->v_type = VNON;
	if (isrootfh(fh, rp))
		vp->v_flag = VROOT;
	vn_exists(vp);

	/*
	 * There is a race condition if someone else
	 * alloc's the rnode while no locks are held, so we
	 * check again and recover if found.
	 */
	rw_enter(&rhtp->r_lock, RW_WRITER);
	if ((trp = r4find(rhtp, fh, vfsp)) != NULL) {
		vp = RTOV4(trp);
		*newnode = 0;
		rw_exit(&rhtp->r_lock);
		rp4_addfree(rp, cr);
		rw_enter(&rhtp->r_lock, RW_READER);
		return (vp);
	}
	rp4_addhash(rp);
	*newnode = 1;
	return (vp);
}