示例#1
0
void NSRm<EvalT, Traits>::
evaluateFields(typename Traits::EvalData workset)
{
  for (std::size_t cell=0; cell < workset.numCells; ++cell) {
    for (std::size_t qp=0; qp < numQPs; ++qp) {      
      for (std::size_t i=0; i < numDims; ++i) {
        if (workset.transientTerms && enableTransient) 
          Rm(cell,qp,i) = rho(cell,qp)*V_Dot(cell,qp,i);
        else
          Rm(cell,qp,i) = 0;
        if (!porousMedia) // Navier-Stokes
          Rm(cell,qp,i) += pGrad(cell,qp,i)+force(cell,qp,i);
        else              // Porous Media
          Rm(cell,qp,i) += phi(cell,qp)*pGrad(cell,qp,i)+phi(cell,qp)*force(cell,qp,i);
        if (porousMedia) { //permeability and Forchheimer terms 
         Rm(cell,qp,i) += -permTerm(cell,qp,i)+ForchTerm(cell,qp,i);
        }
        for (std::size_t j=0; j < numDims; ++j) {
          if (!porousMedia) // Navier-Stokes
            Rm(cell,qp,i) += rho(cell,qp)*V(cell,qp,j)*VGrad(cell,qp,i,j);
          else              // Porous Media 
            Rm(cell,qp,i) += rho(cell,qp)*V(cell,qp,j)*VGrad(cell,qp,i,j)/phi(cell,qp);
        }
      } 
    }
  }
}
void StokesContinuityResid<EvalT, Traits>::
evaluateFields(typename Traits::EvalData workset)
{
  typedef Intrepid::FunctionSpaceTools FST;

  for (std::size_t cell=0; cell < workset.numCells; ++cell) {
    for (std::size_t qp=0; qp < numQPs; ++qp) {
      divergence(cell,qp) = 0.0;
      for (std::size_t i=0; i < numDims; ++i) {
        divergence(cell,qp) += VGrad(cell,qp,i,i);
      }
    }
  }
  FST::integrate<ScalarT>(CResidual, divergence, wBF, Intrepid::COMP_CPP,  
                          false); // "false" overwrites

  contractDataFieldScalar<ScalarT>(CResidual, divergence, wBF,false); // "false" overwrites



  if (havePSPG) {
    for (std::size_t cell=0; cell < workset.numCells; ++cell) {
      for (std::size_t node=0; node < numNodes; ++node) {          
	for (std::size_t qp=0; qp < numQPs; ++qp) {               
	  for (std::size_t j=0; j < numDims; ++j) { 
	    CResidual(cell,node) += 
	      TauM(cell,qp)*Rm(cell,qp,j)*wGradBF(cell,node,qp,j);
	  }  
	}    
      }
    }
  }

}
void NSMomentumResid<EvalT, Traits>::
evaluateFields(typename Traits::EvalData workset)
{
  
  for (std::size_t cell=0; cell < workset.numCells; ++cell) {
    for (std::size_t node=0; node < numNodes; ++node) {          
      for (std::size_t i=0; i<numDims; i++) {
	MResidual(cell,node,i) = 0.0;
	for (std::size_t qp=0; qp < numQPs; ++qp) {
	  MResidual(cell,node,i) += 
	    (Rm(cell, qp, i)-pGrad(cell,qp,i))*wBF(cell,node,qp) -
	    P(cell,qp)*wGradBF(cell,node,qp,i);               
	  for (std::size_t j=0; j < numDims; ++j) { 
	    MResidual(cell,node,i) += 
	      mu(cell,qp)*(VGrad(cell,qp,i,j)+VGrad(cell,qp,j,i))*wGradBF(cell,node,qp,j);
//	      mu(cell,qp)*VGrad(cell,qp,i,j)*wGradBF(cell,node,qp,j);
	  }  
	}
      }
    }
  }
  
  if (haveSUPG) {
    for (std::size_t cell=0; cell < workset.numCells; ++cell) {
      for (std::size_t node=0; node < numNodes; ++node) {          
	for (std::size_t i=0; i<numDims; i++) {
	  for (std::size_t qp=0; qp < numQPs; ++qp) {           
	    for (std::size_t j=0; j < numDims; ++j) { 
	      MResidual(cell,node,i) += 
		rho(cell,qp)*TauM(cell,qp)*Rm(cell,qp,j)*V(cell,qp,j)*wGradBF(cell,node,qp,j);
	    }  
	  }
	}
      }
    }
  }
 
}
示例#4
0
void Viscosity<EvalT, Traits>::
evaluateFields(typename Traits::EvalData workset)
{
  if (visc_type == CONSTANT){ 
    for (std::size_t cell=0; cell < workset.numCells; ++cell) {
      for (std::size_t qp=0; qp < numQPs; ++qp) {
        mu(cell,qp) = 1.0; 
      }
    }
  }
  else if (visc_type == GLENSLAW) {
    if (homotopyParam == 0.0) {
      for (std::size_t cell=0; cell < workset.numCells; ++cell) {
        for (std::size_t qp=0; qp < numQPs; ++qp) {
          mu(cell,qp) = 1.0/2.0*pow(A, -1.0/n); 
        }
      }
    }
    else {
      ScalarT ff = pow(10.0, -10.0*homotopyParam); 
      for (std::size_t cell=0; cell < workset.numCells; ++cell) {
        for (std::size_t qp=0; qp < numQPs; ++qp) {
          //evaluate non-linear viscosity, given by Glen's law, at quadrature points
          ScalarT epsilonEqp = 0.0; //used to define the viscosity in non-linear Stokes 
          for (std::size_t k=0; k<numDims; k++) {
            for (std::size_t l=0; l<numDims; l++) {
             epsilonEqp += 1.0/8.0*(VGrad(cell,qp,k,l) + VGrad(cell,qp,l,k))*(VGrad(cell,qp,k,l) + VGrad(cell,qp,l,k)); 
             }
          }
        epsilonEqp += ff;
        epsilonEqp = sqrt(epsilonEqp);
        mu(cell,qp) = 1.0/2.0*pow(A, -1.0/n)*pow(epsilonEqp,  1.0/n-1.0); //non-linear viscosity, given by Glen's law  
        //end non-linear viscosity evaluation
      }
    }
  }
}
}
void StokesMomentumResid<EvalT, Traits>::
evaluateFields(typename Traits::EvalData workset)
{
  for (std::size_t cell=0; cell < workset.numCells; ++cell) {
    for (std::size_t node=0; node < numNodes; ++node) {          
      for (std::size_t i=0; i<numDims; i++) {
	MResidual(cell,node,i) = 0.0;
	for (std::size_t qp=0; qp < numQPs; ++qp) {
	  MResidual(cell,node,i) += 
	    force(cell,qp,i)*wBF(cell,node,qp) -
	     P(cell,qp)*wGradBF(cell,node,qp,i);          
	  for (std::size_t j=0; j < numDims; ++j) { 
	    MResidual(cell,node,i) += 
	      muFELIX(cell,qp)*(VGrad(cell,qp,i,j)+VGrad(cell,qp,j,i))*wGradBF(cell,node,qp,j);
//	      muFELIX(cell,qp)*VGrad(cell,qp,i,j)*wGradBF(cell,node,qp,j);
	  }  
	}
      }
    }
  }
  
 
}