示例#1
0
static void merge_spheres(VECTOR C, DBL *r, VECTOR  C1, DBL  r1, VECTOR  C2, DBL  r2)
{
	DBL l, r1r, r2r, k1, k2;
	VECTOR D;

	VSub(D, C1, C2);

	VLength(l, D);

	/* Check if one sphere encloses the other. */

	r1r = sqrt(r1);
	r2r = sqrt(r2);

	if (l + r1r <= r2r)
	{
		Assign_Vector(C, C2);

		*r = r2;

		return;
	}

	if (l + r2r <= r1r)
	{
		Assign_Vector(C, C1);

		*r = r1;

		return;
	}

	k1 = (1.0 + (r1r - r2r) / l) / 2.0;
	k2 = (1.0 + (r2r - r1r) / l) / 2.0;

	VLinComb2(C, k1, C1, k2, C2);

	*r = Sqr((l + r1r + r2r) / 2.0);
}
示例#2
0
void Perturb_Normal(VECTOR Layer_Normal, const TNORMAL *Tnormal, const VECTOR EPoint, Intersection *Intersection, const Ray *ray, TraceThreadData *Thread)
{
	VECTOR TPoint,P1;
	DBL value1,value2,Amount;
	int i;
	BLEND_MAP *Blend_Map;
	BLEND_MAP_ENTRY *Prev, *Cur;

	if (Tnormal==NULL)
	{
		return;
	}

	/* If normal_map present, use it and return */

	if ((Blend_Map=Tnormal->Blend_Map) != NULL)
	{
		if ((Blend_Map->Type == NORMAL_TYPE) && (Tnormal->Type == UV_MAP_PATTERN))
		{
			UV_VECT UV_Coords;

			Cur = &(Tnormal->Blend_Map->Blend_Map_Entries[0]);

			/* Don't bother warping, simply get the UV vect of the intersection */
			Intersection->Object->UVCoord(UV_Coords, Intersection, Thread);
			TPoint[X] = UV_Coords[U];
			TPoint[Y] = UV_Coords[V];
			TPoint[Z] = 0;

			Perturb_Normal(Layer_Normal,Cur->Vals.Tnormal,TPoint,Intersection,ray,Thread);
			VNormalizeEq(Layer_Normal);
			Assign_Vector(Intersection->PNormal, Layer_Normal); /* -hdf- June 98 */

			return;
		}
		else if ((Blend_Map->Type == NORMAL_TYPE) && (Tnormal->Type != AVERAGE_PATTERN))
		{
			/* NK 19 Nov 1999 added Warp_EPoint */
			Warp_EPoint (TPoint, EPoint, (TPATTERN *)Tnormal);
			value1 = Evaluate_TPat((TPATTERN *)Tnormal,TPoint,Intersection,ray,Thread);

			Search_Blend_Map (value1,Blend_Map,&Prev,&Cur);

			Warp_Normal(Layer_Normal,Layer_Normal, (TPATTERN *)Tnormal, Test_Flag(Tnormal,DONT_SCALE_BUMPS_FLAG));
			Assign_Vector(P1,Layer_Normal);

			Warp_EPoint (TPoint, EPoint, (TPATTERN *)Tnormal);

			Perturb_Normal(Layer_Normal,Cur->Vals.Tnormal,TPoint,Intersection,ray,Thread);

			if (Prev != Cur)
			{
				Perturb_Normal(P1,Prev->Vals.Tnormal,TPoint,Intersection,ray,Thread);

				value2 = (value1-Prev->value)/(Cur->value-Prev->value);
				value1 = 1.0-value2;

				VLinComb2(Layer_Normal,value1,P1,value2,Layer_Normal);
			}

			UnWarp_Normal(Layer_Normal,Layer_Normal,(TPATTERN *)Tnormal, Test_Flag(Tnormal,DONT_SCALE_BUMPS_FLAG));

			VNormalizeEq(Layer_Normal);

			Assign_Vector(Intersection->PNormal, Layer_Normal); /* -hdf- June 98 */

			return;
		}
	}

	/* No normal_map. */

	if (Tnormal->Type <= LAST_NORM_ONLY_PATTERN)
	{
		Warp_Normal(Layer_Normal,Layer_Normal, (TPATTERN *)Tnormal,
		            Test_Flag(Tnormal,DONT_SCALE_BUMPS_FLAG));

		Warp_EPoint (TPoint, EPoint, (TPATTERN *)Tnormal);

		switch (Tnormal->Type)
		{
			case BITMAP_PATTERN:    bump_map    (TPoint, Tnormal, Layer_Normal);            break;
			case BUMPS_PATTERN:     bumps       (TPoint, Tnormal, Layer_Normal);            break;
			case DENTS_PATTERN:     dents       (TPoint, Tnormal, Layer_Normal, Thread);    break;
			case RIPPLES_PATTERN:   ripples     (TPoint, Tnormal, Layer_Normal, Thread);    break;
			case WAVES_PATTERN:     waves       (TPoint, Tnormal, Layer_Normal, Thread);    break;
			case WRINKLES_PATTERN:  wrinkles    (TPoint, Tnormal, Layer_Normal);            break;
			case QUILTED_PATTERN:   quilted     (TPoint, Tnormal, Layer_Normal);            break;
			case FACETS_PATTERN:    facets      (TPoint, Tnormal, Layer_Normal, Thread);    break;
			case AVERAGE_PATTERN:   Do_Average_Normals (TPoint, Tnormal, Layer_Normal, Intersection, ray, Thread); break;
			default:
				throw POV_EXCEPTION_STRING("Normal pattern not yet implemented.");
		}

		UnWarp_Normal(Layer_Normal,Layer_Normal, (TPATTERN *)Tnormal,
		              Test_Flag(Tnormal,DONT_SCALE_BUMPS_FLAG));
	}
	else
	{
		Warp_Normal(Layer_Normal,Layer_Normal, (TPATTERN *)Tnormal,
		            Test_Flag(Tnormal,DONT_SCALE_BUMPS_FLAG));

		Amount=Tnormal->Amount * -5.0; /*fudge factor*/
		Amount*=0.02/Tnormal->Delta; /* NK delta */

		/* warp the center point first - this is the last warp */
		Warp_EPoint(TPoint,EPoint,(TPATTERN *)Tnormal);

		for(i=0; i<=3; i++)
		{
			VAddScaled(P1,TPoint,Tnormal->Delta,Pyramid_Vect[i]); /* NK delta */
			value1 = Do_Slope_Map(Evaluate_TPat((TPATTERN *)Tnormal,P1,Intersection,ray,Thread),Blend_Map);
			VAddScaledEq(Layer_Normal,value1*Amount,Pyramid_Vect[i]);
		}

		UnWarp_Normal(Layer_Normal,Layer_Normal,(TPATTERN *)Tnormal,
		              Test_Flag(Tnormal,DONT_SCALE_BUMPS_FLAG));

	}

	if ( Intersection )
		Assign_Vector(Intersection->PNormal, Layer_Normal); /* -hdf- June 98 */
}
示例#3
0
static DBL ground_fog(RAY *Ray, DBL Depth, DBL  Width, FOG *Fog, COLOUR Colour)
{
  DBL fog_density, delta;
  DBL start, end;
  DBL y1, y2, k;
  VECTOR P, P1, P2;

  /* Get start point. */

  VEvaluateRay(P1, Ray->Initial, Depth, Ray->Direction);

  /* Get end point. */

  VLinComb2(P2, 1.0, P1, Width, Ray->Direction);

  /*
   * Could preform transfomation here to translate Start and End
   * points into ground fog space.
   */

  VDot(y1, P1, Fog->Up);
  VDot(y2, P2, Fog->Up);

  start = (y1 - Fog->Offset) / Fog->Alt;
  end   = (y2 - Fog->Offset) / Fog->Alt;

  /* Get integral along y-axis from start to end. */

  if (start <= 0.0)
  {
    if (end <= 0.0)
    {
      fog_density = 1.0;
    }
    else
    {
      fog_density = (atan(end) - start) / (end - start);
    }
  }
  else
  {
    if (end <= 0.0)
    {
      fog_density = (atan(start) - end) / (start - end);
    }
    else
    {
      delta = start - end;

      if (fabs(delta) > EPSILON)
      {
        fog_density = (atan(start) - atan(end)) / delta;
      }
      else
      {
        fog_density = 1.0 / (Sqr(start) + 1.0);
      }
    }
  }

  /* Apply turbulence. */

  if (Fog->Turb != NULL)
  {
    VHalf(P, P1, P2);

    VEvaluateEq(P, Fog->Turb->Turbulence);

    /* The further away the less influence turbulence has. */

    k = exp(-Width / Fog->Distance);

    Width *= 1.0 - k * min(1.0, Turbulence(P, Fog->Turb, NULL)*Fog->Turb_Depth);
  }

  Assign_Colour(Colour, Fog->Colour);

  return (exp(-Width * fog_density / Fog->Distance));
}