示例#1
0
/*
 * open_new_vect - opens new vector map for writing
 */
int open_new_vect(struct Map_info *map, char *vect)
{
    Vect_open_new(map, vect, 1);
    Vect_set_map_name(map, vect);
    Vect_set_comment(map, G_recreate_command());
    Vect_hist_command(map);

    return 1;
}
示例#2
0
文件: vect.c 项目: rkrug/grass-ci
/*
 * open_new_vect - opens new vector map for writing
 */
int open_new_vect(struct Map_info *map, char *vect)
{
    if (Vect_open_new(map, vect, 1) < 0)
        G_fatal_error(_("Unable to create vector map <%s>"), vect);

    Vect_set_map_name(map, vect);
    Vect_set_comment(map, G_recreate_command());
    Vect_hist_command(map);

    return 1;
}
示例#3
0
int main(int argc, char *argv[])
{
    struct Map_info In, Out;
    static struct line_pnts *Points;
    struct line_cats *Cats;
    struct field_info *Fi;
    struct cat_list *Clist;
    int i, j, ret, option, otype, type, with_z, step, id;
    int n_areas, centr, new_centr, nmodified;
    int open_level;
    double x, y;
    int cat, ocat, scat, *fields, nfields, field;
    struct GModule *module;
    struct Option *in_opt, *out_opt, *option_opt, *type_opt;
    struct Option *cat_opt, *field_opt, *step_opt, *id_opt;
    struct Flag *shell, *notab;
    FREPORT **freps;
    int nfreps, rtype, fld;
    char *desc;

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("category"));
    G_add_keyword(_("layer"));
    module->description =
	_("Attaches, deletes or reports vector categories to map geometry.");

    in_opt = G_define_standard_option(G_OPT_V_INPUT);

    field_opt = G_define_standard_option(G_OPT_V_FIELD);
    field_opt->multiple = YES;
    field_opt->guisection = _("Selection");

    type_opt = G_define_standard_option(G_OPT_V3_TYPE);
    type_opt->answer = "point,line,centroid,face";
    type_opt->guisection = _("Selection");

    id_opt = G_define_standard_option(G_OPT_V_IDS);
    id_opt->label = _("Feature ids (by default all features are processed)");
    id_opt->guisection = _("Selection");

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    out_opt->required = NO;

    option_opt = G_define_option();
    option_opt->key = "option";
    option_opt->type = TYPE_STRING;
    option_opt->required = YES;
    option_opt->multiple = NO;
    option_opt->options = "add,del,chlayer,sum,report,print,layers,transfer";
    option_opt->description = _("Action to be done");
    desc = NULL;
    G_asprintf(&desc,
	       "add;%s;"
	       "del;%s;"
	       "chlayer;%s;"
	       "sum;%s;"
	       "transfer;%s;"
	       "report;%s;"
	       "print;%s;"
	       "layers;%s",
	       _("add a category to features without category in the given layer"),
	       _("delete category (cat=-1 to delete all categories of given layer)"),
	       _("change layer number (e.g. layer=3,1 changes layer 3 to layer 1)"),
	       _("add the value specified by cat option to the current category value"),
	       _("copy values from one layer to another (e.g. layer=1,2,3 copies values from layer 1 to layer 2 and 3)"),
	       _("print report (statistics), in shell style: layer type count min max"),
	       _("print category values, layers are separated by '|', more cats in the same layer are separated by '/'"),
	       _("print only layer numbers"));
    option_opt->descriptions = desc;
    
    cat_opt = G_define_standard_option(G_OPT_V_CAT);
    cat_opt->answer = "1";

    step_opt = G_define_option();
    step_opt->key = "step";
    step_opt->type = TYPE_INTEGER;
    step_opt->required = NO;
    step_opt->multiple = NO;
    step_opt->answer = "1";
    step_opt->description = _("Category increment");

    shell = G_define_flag();
    shell->key = 'g';
    shell->label = _("Shell script style, currently only for report");
    shell->description = _("Format: layer type count min max");
    
    notab = G_define_standard_flag(G_FLG_V_TABLE);
    notab->description = _("Do not copy attribute table(s)");

    G_gisinit(argv[0]);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    /* read options */
    option = 0;
    switch (option_opt->answer[0]) {
    case ('a'):
	option = O_ADD;
	break;
    case ('d'):
	option = O_DEL;
	break;
    case ('c'):
	option = O_CHFIELD;
	G_warning(_("Database connection and attribute tables for concerned layers are not changed"));
	break;
    case ('s'):
	option = O_SUM;
	break;
    case ('t'):
        option = O_TRANS;
        break;
    case ('r'):
	option = O_REP;
	break;
    case ('p'):
	option = O_PRN;
	break;
    case ('l'):
	option = O_LYR;
	break;
    }

    if (option == O_LYR) {
	/* print vector layer numbers */
	/* open vector on level 2 head only, this is why this option
	 * is processed here, all other options need (?) to fully open 
	 * the input vector */
	Vect_set_open_level(2);
	if (Vect_open_old_head2(&In, in_opt->answer, "", field_opt->answer) < 2) {
	    G_fatal_error(_("Unable to open vector map <%s> at topological level %d"),
			  Vect_get_full_name(&In), 2);
	}
	if (In.format == GV_FORMAT_NATIVE) {
	    nfields = Vect_cidx_get_num_fields(&In);
	    for (i = 0; i < nfields; i++) {
		if ((field = Vect_cidx_get_field_number(&In, i)) > 0)
		    fprintf(stdout, "%d\n", field);
	    }
	}
	else
	    fprintf(stdout, "%s\n", field_opt->answer);

	Vect_close(&In);
	exit(EXIT_SUCCESS);
    }

    cat = atoi(cat_opt->answer);
    step = atoi(step_opt->answer);
    otype = Vect_option_to_types(type_opt);

    if (cat < 0 && option == O_ADD)
	G_fatal_error(_("Invalid category number (must be equal to or greater than 0). "
			"Normally category number starts at 1."));

    /* collect ids */
    if (id_opt->answer) {
	Clist = Vect_new_cat_list();
	Clist->field = atoi(field_opt->answer);
	ret = Vect_str_to_cat_list(id_opt->answer, Clist);
	if (ret > 0) {
	    G_warning(n_("%d error in id option",
                         "%d errors in id option",
                         ret), ret);
	}
    }
    else {
	Clist = NULL;
    }

    if ((option != O_REP) && (option != O_PRN) && (option != O_LYR)) {
	if (out_opt->answer == NULL)
	    G_fatal_error(_("Output vector wasn't entered"));

	Vect_check_input_output_name(in_opt->answer, out_opt->answer,
				     G_FATAL_EXIT);
    }

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    /* do we need topology ? */
    if ((option == O_ADD && (otype & GV_AREA)) ||
	(option == O_REP && (otype & GV_AREA)) ||
        (option == O_TRANS) || /* topo for cidx check */
        (option == O_LYR)) /* topo for cidx check */
	open_level = 2;
    else
	open_level = 1;

    /* open input vector */
    if (open_level > 1) {
	Vect_set_open_level(open_level);
	if (Vect_open_old2(&In, in_opt->answer, "", field_opt->answer) < open_level) {
	    G_warning(_("Unable to open vector map <%s> at topological level %d"),
			  Vect_get_full_name(&In), open_level);
	    open_level = 1;
	}
    }
    if (open_level == 1) {
	Vect_set_open_level(open_level);
	if (Vect_open_old2(&In, in_opt->answer, "", field_opt->answer) < open_level) {
	    G_fatal_error(_("Unable to open vector map <%s> at topological level %d"),
			  Vect_get_full_name(&In), open_level);
	}
    }

    /* read fields */
    i = nfields = 0;
    while (field_opt->answers[i++])
	nfields++;
    fields = (int *)G_malloc(nfields * sizeof(int));
    
    i = 0;
    while (field_opt->answers[i]) {
	fields[i] = Vect_get_field_number(&In, field_opt->answers[i]);
	i++;
    }
    if (nfields > 1 && option != O_PRN && option != O_CHFIELD && option != O_TRANS)
	G_fatal_error(_("Too many layers for this operation"));
    
    if (nfields != 2 && option == O_CHFIELD)
	G_fatal_error(_("2 layers must be specified"));

    if (option == O_TRANS && open_level == 1 && nfields < 2) {
	G_fatal_error(_("2 layers must be specified"));
    }

    if (option == O_TRANS && open_level > 1) {
	/* check if field[>0] already exists */
	if (nfields > 1) {
	    for(i = 1; i < nfields; i++) {
		if (Vect_cidx_get_field_index(&In, fields[i]) != -1)
		    G_warning(_("Categories already exist in layer %d"), fields[i]);
	    }
	}
	/* find next free layer number */
	else if (nfields == 1) {
	    int max = -1;
	    
	    for (i = 0; i < Vect_cidx_get_num_fields(&In); i++) {
		if (max < Vect_cidx_get_field_number(&In, i))
		    max = Vect_cidx_get_field_number(&In, i);
	    }
	    max++;

	    nfields++;
	    fields = (int *)G_realloc(fields, nfields * sizeof(int));
	    fields[nfields - 1] = max;
	}
    }

    if (otype & GV_AREA && option == O_TRANS && !(otype & GV_CENTROID))
	otype |= GV_CENTROID;

    /* open output vector if needed */
    if (option == O_ADD || option == O_DEL || option == O_CHFIELD ||
	option == O_SUM || option == O_TRANS) {
	with_z = Vect_is_3d(&In);

	if (0 > Vect_open_new(&Out, out_opt->answer, with_z)) {
	    Vect_close(&In);
	    exit(EXIT_FAILURE);
	}

	Vect_copy_head_data(&In, &Out);
	Vect_hist_copy(&In, &Out);
	Vect_hist_command(&Out);
    }

    id = 0;

    nmodified = 0;

    if (option == O_ADD || option == O_DEL || option == O_CHFIELD ||
	option == O_SUM || option == O_TRANS) {
	G_message(_("Processing features..."));
    }

    switch (option) {
    case (O_ADD):
	/* Lines */
	while ((type = Vect_read_next_line(&In, Points, Cats)) > 0) {
	    id++;
	    if (type & otype && (!Clist ||
				 (Clist &&
				  Vect_cat_in_cat_list(id, Clist) == TRUE))) {
		if ((Vect_cat_get(Cats, fields[0], &ocat)) == 0) {
		    if (ocat < 0) {
			if (Vect_cat_set(Cats, fields[0], cat) > 0) {
			    nmodified++;
			}
			cat += step;
		    }
		}
	    }
	    Vect_write_line(&Out, type, Points, Cats);
	}
	/* Areas */
	if ((otype & GV_AREA) && open_level > 1) {
	    n_areas = Vect_get_num_areas(&In);
	    new_centr = 0;
	    for (i = 1; i <= n_areas; i++) {
		centr = Vect_get_area_centroid(&In, i);
		if (centr > 0)
		    continue;	/* Centroid exists and may be processed as line */
		ret = Vect_get_point_in_area(&In, i, &x, &y);
		if (ret < 0) {
		    G_warning(_("Unable to calculate area centroid"));
		    continue;
		}
		Vect_reset_line(Points);
		Vect_reset_cats(Cats);
		Vect_append_point(Points, x, y, 0.0);
		if (Vect_cat_set(Cats, fields[0], cat) > 0) {
		    nmodified++;
		}
		cat += step;
		Vect_write_line(&Out, GV_CENTROID, Points, Cats);
		new_centr++;
	    }
	    if (new_centr > 0) 
		G_message(n_("%d new centroid placed in output map",
                             "%d new centroids placed in output map",
                             new_centr), new_centr);
	}
	break;

    case (O_TRANS):
	/* Lines */
	while ((type = Vect_read_next_line(&In, Points, Cats)) > 0) {
	    id++;
	    if (type & otype && (!Clist ||
				 (Clist &&
				  Vect_cat_in_cat_list(id, Clist) == TRUE))) {
		int n = Cats->n_cats;

		scat = -1;
		for (i = 0; i < n; i++) {
		    if (Cats->field[i] == fields[0]) {
			scat = Cats->cat[i];
			for (j = 1; j < nfields; j++) {
			    if (Vect_cat_set(Cats, fields[j], scat) > 0) {
				G_debug(4, "Copy cat %i of field %i to field %i", scat, fields[0], fields[j]);
			    }
			}
		    }
		}
		if (scat != -1)
		    nmodified++;
	    }
	    Vect_write_line(&Out, type, Points, Cats);
	}
	break;

    case (O_DEL):
	while ((type = Vect_read_next_line(&In, Points, Cats)) > 0) {
	    id++;
	    if (type & otype && (!Clist ||
				 (Clist &&
				  Vect_cat_in_cat_list(id, Clist) == TRUE))) {
		ret = Vect_field_cat_del(Cats, fields[0], cat);
		if (ret > 0) {
		    nmodified++;
		}
	    }
	    Vect_write_line(&Out, type, Points, Cats);
	}
	break;

    case (O_CHFIELD):
	while ((type = Vect_read_next_line(&In, Points, Cats)) > 0) {
	    id++;
	    if (type & otype && (!Clist ||
				 (Clist &&
				  Vect_cat_in_cat_list(id, Clist) == TRUE))) {
		i = 0;
		while (i < Cats->n_cats) {
		    if (Cats->field[i] == fields[0]) {
			int found = -1;
			
			/* check if cat already exists in layer fields[1] */
			for (j = 0; j < Cats->n_cats; j++) {
			    if (Cats->field[j] == fields[1] &&
				Cats->cat[j] == Cats->cat[i]) {
				found = j;
				break;
			    }
			}
			/* does not exist, change layer */
			if (found < 0) {
			    Cats->field[i] = fields[1];
			    i++;
			}
			/* exists already in fields[1], delete from fields[0] */
			else
			    Vect_field_cat_del(Cats, fields[0], Cats->cat[found]);
			nmodified++;
		    }
		}
	    }
	    Vect_write_line(&Out, type, Points, Cats);
	}
	break;

    case (O_SUM):
	while ((type = Vect_read_next_line(&In, Points, Cats)) > 0) {
	    id++;
	    if (type & otype && (!Clist ||
				 (Clist &&
				  Vect_cat_in_cat_list(id, Clist) == TRUE))) {
		for (i = 0; i < Cats->n_cats; i++) {
		    if (Cats->field[i] == fields[0]) {
			Cats->cat[i] += cat;
		    }
		}
		nmodified++;
	    }
	    Vect_write_line(&Out, type, Points, Cats);
	}
	break;

    case (O_REP):
	nfreps = 0;
	freps = NULL;
	while ((type = Vect_read_next_line(&In, Points, Cats)) > 0) {
	    id++;
	    if (Clist && Vect_cat_in_cat_list(id, Clist) == FALSE)
		continue;

	    switch (type) {
	    case (GV_POINT):
		rtype = FR_POINT;
		break;
	    case (GV_LINE):
		rtype = FR_LINE;
		break;
	    case (GV_BOUNDARY):
		rtype = FR_BOUNDARY;
		break;
	    case (GV_CENTROID):
		rtype = FR_CENTROID;
		break;
	    case (GV_FACE):
		rtype = FR_FACE;
		break;
	    case (GV_KERNEL):
		rtype = FR_KERNEL;
		break;
	    default:
		rtype = FR_UNKNOWN;
	    }

	    for (i = 0; i < Cats->n_cats; i++) {
		field = Cats->field[i];
		cat = Cats->cat[i];


		ret = FALSE;
		for (j = 0; j < nfreps; j++) {
		    if (freps[j]->field == field) {
			fld = j;
			ret = TRUE;
			break;
		    }
		}
		if (!ret) {	/* field report doesn't exist */
		    nfreps++;
		    freps =
			(FREPORT **) G_realloc(freps,
					       nfreps * sizeof(FREPORT *));
		    fld = nfreps - 1;
		    freps[fld] = (FREPORT *) G_calloc(1, sizeof(FREPORT));
		    freps[fld]->field = field;
		    for (j = 0; j < FRTYPES; j++) {
			/* cat '0' is valid category number */
			freps[fld]->min[j] = -1;
		    }
		    if ((Fi = Vect_get_field(&In, field)) != NULL) {
			freps[fld]->table = G_store(Fi->table);
		    }
		    else {
			freps[fld]->table = '\0';
		    }
		}

		freps[fld]->count[rtype]++;
		freps[fld]->count[FR_ALL]++;

		if (freps[fld]->min[rtype] == -1 ||
		    freps[fld]->min[rtype] > cat)
		    freps[fld]->min[rtype] = cat;

		if ((freps[fld]->max[rtype] == 0) ||
		    freps[fld]->max[rtype] < cat)
		    freps[fld]->max[rtype] = cat;

		if (freps[fld]->min[FR_ALL] == -1 ||
		    freps[fld]->min[FR_ALL] > cat)
		    freps[fld]->min[FR_ALL] = cat;

		if ((freps[fld]->max[FR_ALL] == 0) ||
		    freps[fld]->max[FR_ALL] < cat)
		    freps[fld]->max[FR_ALL] = cat;
	    }
	}
	/* Areas */
	if ((otype & GV_AREA) && open_level > 1 && !Clist) {
	    n_areas = Vect_get_num_areas(&In);
	    for (i = 1; i <= n_areas; i++) {
		int k;

		centr = Vect_get_area_centroid(&In, i);
		if (centr <= 0)
		    continue;	/* Area without centroid */
		    
		Vect_read_line(&In, NULL, Cats, centr);
		for (j = 0; j < Cats->n_cats; j++) {
		    field = Cats->field[j];
		    cat = Cats->cat[j];


		    ret = FALSE;
		    for (k = 0; k < nfreps; k++) {
			if (freps[k]->field == field) {
			    fld = k;
			    ret = TRUE;
			    break;
			}
		    }
		    if (!ret) {	/* field report doesn't exist */
			nfreps++;
			freps =
			    (FREPORT **) G_realloc(freps,
						   nfreps * sizeof(FREPORT *));
			fld = nfreps - 1;
			freps[fld] = (FREPORT *) G_calloc(1, sizeof(FREPORT));
			freps[fld]->field = field;
			for (j = 0; j < FRTYPES; j++) {
			    /* cat '0' is valid category number */
			    freps[fld]->min[k] = -1;
			}
			if ((Fi = Vect_get_field(&In, field)) != NULL) {
			    freps[fld]->table = G_store(Fi->table);
			}
			else {
			    freps[fld]->table = '\0';
			}
		    }

		    freps[fld]->count[FR_AREA]++;

		    if (freps[fld]->min[FR_AREA] == -1 ||
			freps[fld]->min[FR_AREA] > cat)
			freps[fld]->min[FR_AREA] = cat;

		    if ((freps[fld]->max[FR_AREA] == 0) ||
			freps[fld]->max[FR_AREA] < cat)
			freps[fld]->max[FR_AREA] = cat;
		}
	    }
	}
	for (i = 0; i < nfreps; i++) {
	    if (shell->answer) {
		if (freps[i]->count[FR_POINT] > 0)
		    fprintf(stdout, "%d point %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_POINT],
			    (freps[i]->min[FR_POINT] < 0 ? 0 : freps[i]->min[FR_POINT]),
			    freps[i]->max[FR_POINT]);

		if (freps[i]->count[FR_LINE] > 0)
		    fprintf(stdout, "%d line %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_LINE],
			    (freps[i]->min[FR_LINE] < 0 ? 0 : freps[i]->min[FR_LINE]),
			    freps[i]->max[FR_LINE]);

		if (freps[i]->count[FR_BOUNDARY] > 0)
		    fprintf(stdout, "%d boundary %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_BOUNDARY],
			    (freps[i]->min[FR_BOUNDARY] < 0 ? 0 : freps[i]->min[FR_BOUNDARY]),
			    freps[i]->max[FR_BOUNDARY]);

		if (freps[i]->count[FR_CENTROID] > 0)
		    fprintf(stdout, "%d centroid %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_CENTROID],
			    (freps[i]->min[FR_BOUNDARY] < 0 ? 0 : freps[i]->min[FR_BOUNDARY]),
			    freps[i]->max[FR_CENTROID]);

		if (freps[i]->count[FR_AREA] > 0)
		    fprintf(stdout, "%d area %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_AREA],
			    (freps[i]->min[FR_AREA] < 0 ? 0 : freps[i]->min[FR_AREA]),
			    freps[i]->max[FR_AREA]);

		if (freps[i]->count[FR_FACE] > 0)
		    fprintf(stdout, "%d face %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_FACE],
			    (freps[i]->min[FR_FACE] < 0 ? 0 : freps[i]->min[FR_FACE]),
			    freps[i]->max[FR_FACE]);

		if (freps[i]->count[FR_KERNEL] > 0)
		    fprintf(stdout, "%d kernel %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_KERNEL],
			    (freps[i]->min[FR_KERNEL] < 0 ? 0 : freps[i]->min[FR_KERNEL]),
			    freps[i]->max[FR_KERNEL]);

		if (freps[i]->count[FR_ALL] > 0)
		    fprintf(stdout, "%d all %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_ALL],
			    (freps[i]->min[FR_ALL] < 0 ? 0 : freps[i]->min[FR_ALL]),
			    freps[i]->max[FR_ALL]);
	    }
	    else {
		if (freps[i]->table != '\0') {
		    fprintf(stdout, "%s: %d/%s\n", _("Layer/table"),
			    freps[i]->field, freps[i]->table);
		}
		else {
		    fprintf(stdout, "%s: %d\n", _("Layer"), freps[i]->field);
		}
		fprintf(stdout, _("type       count        min        max\n"));
		fprintf(stdout, "%s    %7d %10d %10d\n", _("point"),
			freps[i]->count[FR_POINT],
			(freps[i]->min[FR_POINT] < 0) ? 0 : freps[i]->min[FR_POINT],
			freps[i]->max[FR_POINT]);
		fprintf(stdout, "%s     %7d %10d %10d\n", _("line"),
			freps[i]->count[FR_LINE],
			(freps[i]->min[FR_LINE] < 0) ? 0 : freps[i]->min[FR_LINE],
			freps[i]->max[FR_LINE]);
		fprintf(stdout, "%s %7d %10d %10d\n", _("boundary"),
			freps[i]->count[FR_BOUNDARY],
			(freps[i]->min[FR_BOUNDARY] < 0) ? 0 : freps[i]->min[FR_BOUNDARY],
			freps[i]->max[FR_BOUNDARY]);
		fprintf(stdout, "%s %7d %10d %10d\n", _("centroid"),
			freps[i]->count[FR_CENTROID],
			(freps[i]->min[FR_CENTROID] < 0) ? 0 : freps[i]->min[FR_CENTROID],
			freps[i]->max[FR_CENTROID]);
		fprintf(stdout, "%s     %7d %10d %10d\n", _("area"),
			freps[i]->count[FR_AREA],
			(freps[i]->min[FR_AREA] < 0) ? 0 : freps[i]->min[FR_AREA],
			freps[i]->max[FR_AREA]);
		fprintf(stdout, "%s     %7d %10d %10d\n", _("face"),
			freps[i]->count[FR_FACE],
			(freps[i]->min[FR_FACE] < 0) ? 0 : freps[i]->min[FR_FACE],
			freps[i]->max[FR_FACE]);
		fprintf(stdout, "%s   %7d %10d %10d\n", _("kernel"),
			freps[i]->count[FR_KERNEL],
			(freps[i]->min[FR_KERNEL] < 0) ? 0 : freps[i]->min[FR_KERNEL],
			freps[i]->max[FR_KERNEL]);
		fprintf(stdout, "%s      %7d %10d %10d\n", _("all"),
			freps[i]->count[FR_ALL],
			(freps[i]->min[FR_ALL] < 0) ? 0 : freps[i]->min[FR_ALL],
			freps[i]->max[FR_ALL]);
	    }
	}
	break;

    case (O_PRN):
	while ((type = Vect_read_next_line(&In, Points, Cats)) > 0) {
	    id++;
	    int has = 0;

	    if (!(type & otype))
		continue;

	    if (Clist && Vect_cat_in_cat_list(id, Clist) == FALSE)
		continue;

	    /* Check if the line has at least one cat */
	    for (i = 0; i < nfields; i++) {
		for (j = 0; j < Cats->n_cats; j++) {
		    if (Cats->field[j] == fields[i]) {
			has = 1;
			break;
		    }
		}
	    }

	    if (!has)
		continue;

	    for (i = 0; i < nfields; i++) {
		int first = 1;

		if (i > 0)
		    fprintf(stdout, "|");
		for (j = 0; j < Cats->n_cats; j++) {
		    if (Cats->field[j] == fields[i]) {
			if (!first)
			    fprintf(stdout, "/");
			fprintf(stdout, "%d", Cats->cat[j]);
			first = 0;
		    }
		}
	    }
	    fprintf(stdout, "\n");
	}
	break;
    }

    if (option == O_ADD || option == O_DEL || option == O_CHFIELD ||
        option == O_SUM || option == O_TRANS){
        if (!notab->answer){
	    G_message(_("Copying attribute table(s)..."));
            if (Vect_copy_tables(&In, &Out, 0))
                G_warning(_("Failed to copy attribute table to output map"));
	}
	Vect_build(&Out);
	Vect_close(&Out);
    }

    if (option == O_TRANS && nmodified > 0)
        for(i = 1; i < nfields; i++)
	    G_important_message(_("Categories copied from layer %d to layer %d"),
		                  fields[0], fields[i]);

    if (option != O_REP && option != O_PRN) 
        G_done_msg(n_("%d feature modified.",
                      "%d features modified.",
                      nmodified), nmodified);
    
    Vect_close(&In);

    exit(EXIT_SUCCESS);
}
示例#4
0
int close_streamvect(char *stream_vect)
{
    int r, c, r_nbr, c_nbr, done;
    GW_LARGE_INT i;
    CELL stream_id, stream_nbr;
    ASP_FLAG af;
    int next_node;
    struct sstack
    {
	int stream_id;
	int next_trib;
    } *nodestack;
    int top = 0, stack_step = 1000;
    int asp_r[9] = { 0, -1, -1, -1, 0, 1, 1, 1, 0 };
    int asp_c[9] = { 0, 1, 0, -1, -1, -1, 0, 1, 1 };
    struct Map_info Out;
    static struct line_pnts *Points;
    struct line_cats *Cats;
    dbDriver *driver;
    dbHandle handle;
    dbString table_name, dbsql, valstr;
    struct field_info *Fi;
    char *cat_col_name = "cat", buf[2000];
    struct Cell_head window;
    double north_offset, west_offset, ns_res, ew_res;
    int next_cat;

    G_message(_("Writing vector map <%s>..."), stream_vect);

    if (Vect_open_new(&Out, stream_vect, 0) < 0)
	G_fatal_error(_("Unable to create vector map <%s>"), stream_vect);
    
    nodestack = (struct sstack *)G_malloc(stack_step * sizeof(struct sstack));

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    G_get_set_window(&window);
    ns_res = window.ns_res;
    ew_res = window.ew_res;
    north_offset = window.north - 0.5 * ns_res;
    west_offset = window.west + 0.5 * ew_res;

    next_cat = n_stream_nodes + 1;

    for (i = 0; i < n_outlets; i++, next_cat++) {
	G_percent(i, n_outlets, 2);
	r = outlets[i].r;
	c = outlets[i].c;
	cseg_get(&stream, &stream_id, r, c);

	if (!stream_id)
	    continue;

	Vect_reset_line(Points);
	Vect_reset_cats(Cats);

	/* outlet */
	Vect_cat_set(Cats, 1, stream_id);
	Vect_cat_set(Cats, 2, 2);
	Vect_append_point(Points, west_offset + c * ew_res,
			  north_offset - r * ns_res, 0);
	Vect_write_line(&Out, GV_POINT, Points, Cats);

	/* add root node to stack */
	G_debug(3, "add root node");
	top = 0;
	nodestack[top].stream_id = stream_id;
	nodestack[top].next_trib = 0;

	/* depth first post order traversal */
	G_debug(3, "traverse");
	while (top >= 0) {

	    done = 1;
	    stream_id = nodestack[top].stream_id;
	    G_debug(3, "stream_id %d", stream_id);
	    if (nodestack[top].next_trib < stream_node[stream_id].n_trib) {
		/* add to stack */
		next_node =
		    stream_node[stream_id].trib[nodestack[top].next_trib];
		G_debug(3, "add to stack: next %d, trib %d, n trib %d",
			next_node, nodestack[top].next_trib,
			stream_node[stream_id].n_trib);
		nodestack[top].next_trib++;
		top++;
		if (top >= stack_step) {
		    /* need more space */
		    stack_step += 1000;
		    nodestack =
			(struct sstack *)G_realloc(nodestack,
						   stack_step *
						   sizeof(struct sstack));
		}
		nodestack[top].next_trib = 0;
		nodestack[top].stream_id = next_node;
		done = 0;
		G_debug(3, "go further down");
	    }
	    if (done) {
		G_debug(3, "write stream segment");

		Vect_reset_line(Points);
		Vect_reset_cats(Cats);

		r_nbr = stream_node[stream_id].r;
		c_nbr = stream_node[stream_id].c;

		cseg_get(&stream, &stream_nbr, r_nbr, c_nbr);
		if (stream_nbr <= 0)
                    G_fatal_error(_("Stream id %d not set, top is %d, parent is %d"),
                                  stream_id, top, nodestack[top - 1].stream_id);

		Vect_cat_set(Cats, 1, stream_id);
		if (stream_node[stream_id].n_trib == 0)
		    Vect_cat_set(Cats, 2, 0);
		else
		    Vect_cat_set(Cats, 2, 1);

		Vect_append_point(Points, west_offset + c_nbr * ew_res,
				  north_offset - r_nbr * ns_res, 0);

		Vect_write_line(&Out, GV_POINT, Points, Cats);

		seg_get(&aspflag, (char *)&af, r_nbr, c_nbr);
		while (af.asp > 0) {
		    r_nbr = r_nbr + asp_r[(int)af.asp];
		    c_nbr = c_nbr + asp_c[(int)af.asp];
		    
		    cseg_get(&stream, &stream_nbr, r_nbr, c_nbr);
		    if (stream_nbr <= 0)
			G_fatal_error(_("Stream id not set while tracing"));

		    Vect_append_point(Points, west_offset + c_nbr * ew_res,
				      north_offset - r_nbr * ns_res, 0);
		    if (stream_nbr != stream_id) {
			/* first point of parent stream */
			break;
		    }
		    seg_get(&aspflag, (char *)&af, r_nbr, c_nbr);
		}

		Vect_write_line(&Out, GV_LINE, Points, Cats);

		top--;
	    }
	}
    }
    G_percent(n_outlets, n_outlets, 1);	/* finish it */

    G_message(_("Writing attribute data..."));

    /* Prepeare strings for use in db_* calls */
    db_init_string(&dbsql);
    db_init_string(&valstr);
    db_init_string(&table_name);
    db_init_handle(&handle);

    /* Preparing database for use */
    /* Create database for new vector map */
    Fi = Vect_default_field_info(&Out, 1, NULL, GV_1TABLE);
    driver = db_start_driver_open_database(Fi->driver,
					   Vect_subst_var(Fi->database,
							          &Out));
    if (driver == NULL) {
	G_fatal_error(_("Unable to start driver <%s>"), Fi->driver);
    }
    db_set_error_handler_driver(driver);

    G_debug(1, "table: %s", Fi->table);
    G_debug(1, "driver: %s", Fi->driver);
    G_debug(1, "database: %s", Fi->database);

    sprintf(buf,
	    "create table %s (%s integer, stream_type varchar(20), type_code integer)",
	    Fi->table, cat_col_name);
    db_set_string(&dbsql, buf);

    if (db_execute_immediate(driver, &dbsql) != DB_OK) {
	db_close_database(driver);
	db_shutdown_driver(driver);
	G_fatal_error(_("Unable to create table: '%s'"), db_get_string(&dbsql));
    }

    if (db_create_index2(driver, Fi->table, cat_col_name) != DB_OK)
	G_warning(_("Unable to create index on table <%s>"), Fi->table);

    if (db_grant_on_table(driver, Fi->table, DB_PRIV_SELECT,
			  DB_GROUP | DB_PUBLIC) != DB_OK)
	G_fatal_error(_("Unable to grant privileges on table <%s>"), Fi->table);

    db_begin_transaction(driver);

    /* stream nodes */
    for (i = 1; i <= n_stream_nodes; i++) {

	sprintf(buf, "insert into %s values ( %lld, \'%s\', %d )",
		Fi->table, i,
		(stream_node[i].n_trib > 0 ? "intermediate" : "start"),
		(stream_node[i].n_trib > 0));

	db_set_string(&dbsql, buf);

	if (db_execute_immediate(driver, &dbsql) != DB_OK) {
	    db_close_database(driver);
	    db_shutdown_driver(driver);
	    G_fatal_error(_("Unable to insert new row: '%s'"),
			  db_get_string(&dbsql));
	}
    }

    db_commit_transaction(driver);
    db_close_database_shutdown_driver(driver);

    Vect_map_add_dblink(&Out, 1, NULL, Fi->table,
			cat_col_name, Fi->database, Fi->driver);

    G_debug(1, "close vector");

    Vect_hist_command(&Out);
    Vect_build(&Out);
    Vect_close(&Out);

    G_free(nodestack);

    return 1;
}
示例#5
0
文件: main.c 项目: GRASS-GIS/grass-ci
int main(int argc, char *argv[])
{
    int i, type, stat;
    int day, yr, Out_proj;
    int out_zone = 0;
    int overwrite;		/* overwrite output map */
    const char *mapset;
    const char *omap_name, *map_name, *iset_name, *iloc_name;
    struct pj_info info_in;
    struct pj_info info_out;
    const char *gbase;
    char date[40], mon[4];
    struct GModule *module;
    struct Option *omapopt, *mapopt, *isetopt, *ilocopt, *ibaseopt, *smax;
    struct Key_Value *in_proj_keys, *in_unit_keys;
    struct Key_Value *out_proj_keys, *out_unit_keys;
    struct line_pnts *Points, *Points2;
    struct line_cats *Cats;
    struct Map_info Map;
    struct Map_info Out_Map;
    struct bound_box src_box, tgt_box;
    int nowrap = 0, recommend_nowrap = 0;
    double lmax;
    struct
    {
	struct Flag *list;	/* list files in source location */
	struct Flag *transformz;	/* treat z as ellipsoidal height */
	struct Flag *wrap;		/* latlon output: wrap to 0,360 */
	struct Flag *no_topol;		/* do not build topology */
    } flag;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("projection"));
    G_add_keyword(_("transformation"));
    G_add_keyword(_("import"));
    module->description = _("Re-projects a vector map from one location to the current location.");

    /* set up the options and flags for the command line parser */

    ilocopt = G_define_standard_option(G_OPT_M_LOCATION);
    ilocopt->required = YES;
    ilocopt->label = _("Location containing input vector map");
    ilocopt->guisection = _("Source");
    
    isetopt = G_define_standard_option(G_OPT_M_MAPSET);
    isetopt->label = _("Mapset containing input vector map");
    isetopt->description = _("Default: name of current mapset");
    isetopt->guisection = _("Source");

    mapopt = G_define_standard_option(G_OPT_V_INPUT);
    mapopt->required = NO;
    mapopt->label = _("Name of input vector map to re-project");
    mapopt->description = NULL;
    mapopt->guisection = _("Source");
    
    ibaseopt = G_define_standard_option(G_OPT_M_DBASE);
    ibaseopt->label = _("Path to GRASS database of input location");
    
    smax = G_define_option();
    smax->key = "smax";
    smax->type = TYPE_DOUBLE;
    smax->required = NO;
    smax->answer = "10000";
    smax->label = _("Maximum segment length in meters in output vector map");
    smax->description = _("Increases accuracy of reprojected shapes, disable with smax=0");
    smax->guisection = _("Target");

    omapopt = G_define_standard_option(G_OPT_V_OUTPUT);
    omapopt->required = NO;
    omapopt->description = _("Name for output vector map (default: input)");
    omapopt->guisection = _("Target");

    flag.list = G_define_flag();
    flag.list->key = 'l';
    flag.list->description = _("List vector maps in input mapset and exit");

    flag.transformz = G_define_flag();
    flag.transformz->key = 'z';
    flag.transformz->description = _("3D vector maps only");
    flag.transformz->label =
	_("Assume z coordinate is ellipsoidal height and "
	  "transform if possible");
    flag.transformz->guisection = _("Target");

    flag.wrap = G_define_flag();
    flag.wrap->key = 'w';
    flag.wrap->description = _("Latlon output only, default is -180,180");
    flag.wrap->label =
	_("Disable wrapping to -180,180 for latlon output");
    flag.transformz->guisection = _("Target");

    flag.no_topol = G_define_flag();
    flag.no_topol->key = 'b';
    flag.no_topol->label = _("Do not build vector topology");
    flag.no_topol->description = _("Recommended for massive point projection");

    /* The parser checks if the map already exists in current mapset,
       we switch out the check and do it
       in the module after the parser */
    overwrite = G_check_overwrite(argc, argv);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    /* start checking options and flags */
    /* set input vector map name and mapset */
    map_name = mapopt->answer;
    if (omapopt->answer)
	omap_name = omapopt->answer;
    else
	omap_name = map_name;
    if (omap_name && !flag.list->answer && !overwrite &&
	G_find_vector2(omap_name, G_mapset()))
	G_fatal_error(_("option <%s>: <%s> exists. To overwrite, use the --overwrite flag"), omapopt->key,
		      omap_name);
    if (isetopt->answer)
	iset_name = isetopt->answer;
    else
	iset_name = G_store(G_mapset());

    iloc_name = ilocopt->answer;

    if (ibaseopt->answer)
	gbase = ibaseopt->answer;
    else
	gbase = G_store(G_gisdbase());

    if (!ibaseopt->answer && strcmp(iloc_name, G_location()) == 0)
	G_fatal_error(_("Input and output locations can not be the same"));

    lmax = atof(smax->answer);
    if (lmax < 0)
	lmax = 0;

    Out_proj = G_projection();
    if (Out_proj == PROJECTION_LL && flag.wrap->answer)
	nowrap = 1;
    
    G_begin_distance_calculations();

    /* Change the location here and then come back */

    select_target_env();
    G_setenv_nogisrc("GISDBASE", gbase);
    G_setenv_nogisrc("LOCATION_NAME", iloc_name);
    stat = G_mapset_permissions(iset_name);
    
    if (stat >= 0) {		/* yes, we can access the mapset */
	/* if requested, list the vector maps in source location - MN 5/2001 */
	if (flag.list->answer) {
	    int i;
	    char **list;
	    G_verbose_message(_("Checking location <%s> mapset <%s>"),
			      iloc_name, iset_name);
	    list = G_list(G_ELEMENT_VECTOR, G_getenv_nofatal("GISDBASE"),
			  G_getenv_nofatal("LOCATION_NAME"), iset_name);
	    if (list[0]) {
		for (i = 0; list[i]; i++) {
		    fprintf(stdout, "%s\n", list[i]);
		}
		fflush(stdout);
	    }
	    else {
		G_important_message(_("No vector maps found"));
	    }
	    exit(EXIT_SUCCESS);	/* leave v.proj after listing */
	}

	if (mapopt->answer == NULL) {
	    G_fatal_error(_("Required parameter <%s> not set"), mapopt->key);
	}

	G_setenv_nogisrc("MAPSET", iset_name);
	/* Make sure map is available */
	mapset = G_find_vector2(map_name, iset_name);
	if (mapset == NULL)
	    G_fatal_error(_("Vector map <%s> in location <%s> mapset <%s> not found"),
			  map_name, iloc_name, iset_name);

	 /*** Get projection info for input mapset ***/
	in_proj_keys = G_get_projinfo();
	if (in_proj_keys == NULL)
	    exit(EXIT_FAILURE);

	/* apparently the +over switch must be set in the input projection,
	 * not the output latlon projection */
	if (Out_proj == PROJECTION_LL && nowrap == 1)
	    G_set_key_value("+over", "defined", in_proj_keys);

	in_unit_keys = G_get_projunits();
	if (in_unit_keys == NULL)
	    exit(EXIT_FAILURE);

	if (pj_get_kv(&info_in, in_proj_keys, in_unit_keys) < 0)
	    exit(EXIT_FAILURE);

	Vect_set_open_level(1);
	G_debug(1, "Open old: location: %s mapset : %s", G_location_path(),
		G_mapset());
	if (Vect_open_old(&Map, map_name, mapset) < 0)
	    G_fatal_error(_("Unable to open vector map <%s>"), map_name);
    }
    else if (stat < 0)
    {				/* allow 0 (i.e. denied permission) */
	/* need to be able to read from others */
	if (stat == 0)
	    G_fatal_error(_("Mapset <%s> in input location <%s> - permission denied"),
			  iset_name, iloc_name);
	else
	    G_fatal_error(_("Mapset <%s> in input location <%s> not found"),
			  iset_name, iloc_name);
    }

    select_current_env();

    /****** get the output projection parameters ******/
    out_proj_keys = G_get_projinfo();
    if (out_proj_keys == NULL)
	exit(EXIT_FAILURE);

    out_unit_keys = G_get_projunits();
    if (out_unit_keys == NULL)
	exit(EXIT_FAILURE);

    if (pj_get_kv(&info_out, out_proj_keys, out_unit_keys) < 0)
	exit(EXIT_FAILURE);

    G_free_key_value(in_proj_keys);
    G_free_key_value(in_unit_keys);
    G_free_key_value(out_proj_keys);
    G_free_key_value(out_unit_keys);

    if (G_verbose() == G_verbose_max()) {
	pj_print_proj_params(&info_in, &info_out);
    }

    /* Initialize the Point / Cat structure */
    Points = Vect_new_line_struct();
    Points2 = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    /* test if latlon wrapping to -180,180 should be disabled */
    if (Out_proj == PROJECTION_LL && nowrap == 0) {
	int first = 1, counter = 0;
	double x, y;
	
	/* Cycle through all lines */
	Vect_rewind(&Map);
	while (1) {
	    type = Vect_read_next_line(&Map, Points, Cats);	/* read line */
	    if (type == 0)
		continue;		/* Dead */

	    if (type == -1)
		G_fatal_error(_("Reading input vector map"));
	    if (type == -2)
		break;
		
	    if (first && Points->n_points > 0) {
		first = 0;
		src_box.E = src_box.W = Points->x[0];
		src_box.N = src_box.S = Points->y[0];
		src_box.T = src_box.B = Points->z[0];
	    }
	    for (i = 0; i < Points->n_points; i++) {
		if (src_box.E < Points->x[i])
		    src_box.E = Points->x[i];
		if (src_box.W > Points->x[i])
		    src_box.W = Points->x[i];
		if (src_box.N < Points->y[i])
		    src_box.N = Points->y[i];
		if (src_box.S > Points->y[i])
		    src_box.S = Points->y[i];
	    }
	    counter++;
	}
	if (counter == 0) {
	    G_warning(_("Input vector map <%s> is empty"), omap_name);
	    exit(EXIT_SUCCESS);
	}
	/* NW corner */
	x = src_box.W;
	y = src_box.N;
	if (pj_do_transform(1, &x, &y, NULL,
			    &info_in, &info_out) < 0) {
	    G_fatal_error(_("Error in pj_do_transform"));
	}
	tgt_box.E = x;
	tgt_box.W = x;
	tgt_box.N = y;
	tgt_box.S = y;
	/* SW corner */
	x = src_box.W;
	y = src_box.S;
	if (pj_do_transform(1, &x, &y, NULL,
			    &info_in, &info_out) < 0) {
	    G_fatal_error(_("Error in pj_do_transform"));
	}
	if (tgt_box.W > x)
	    tgt_box.W = x;
	if (tgt_box.E < x)
	    tgt_box.E = x;
	if (tgt_box.N < y)
	    tgt_box.N = y;
	if (tgt_box.S > y)
	    tgt_box.S = y;
	/* NE corner */
	x = src_box.E;
	y = src_box.N;
	if (pj_do_transform(1, &x, &y, NULL,
			    &info_in, &info_out) < 0) {
	    G_fatal_error(_("Error in pj_do_transform"));
	}
	if (tgt_box.W > x) {
	    tgt_box.E = x + 360;
	    recommend_nowrap = 1;
	}
	if (tgt_box.N < y)
	    tgt_box.N = y;
	if (tgt_box.S > y)
	    tgt_box.S = y;
	/* SE corner */
	x = src_box.E;
	y = src_box.S;
	if (pj_do_transform(1, &x, &y, NULL,
			    &info_in, &info_out) < 0) {
	    G_fatal_error(_("Error in pj_do_transform"));
	}
	if (tgt_box.W > x) {
	    if (tgt_box.E < x + 360)
		tgt_box.E = x + 360;
	    recommend_nowrap = 1;
	}
	if (tgt_box.N < y)
	    tgt_box.N = y;
	if (tgt_box.S > y)
	    tgt_box.S = y;
    }

    G_debug(1, "Open new: location: %s mapset : %s", G_location_path(),
	    G_mapset());

    if (Vect_open_new(&Out_Map, omap_name, Vect_is_3d(&Map)) < 0)
	G_fatal_error(_("Unable to create vector map <%s>"), omap_name);

    Vect_set_error_handler_io(NULL, &Out_Map); /* register standard i/o error handler */
    
    Vect_copy_head_data(&Map, &Out_Map);
    Vect_hist_copy(&Map, &Out_Map);
    Vect_hist_command(&Out_Map);

    out_zone = info_out.zone;
    Vect_set_zone(&Out_Map, out_zone);

    /* Read and write header info */
    sprintf(date, "%s", G_date());
    sscanf(date, "%*s%s%d%*s%d", mon, &day, &yr);
    if (yr < 2000)
	yr = yr - 1900;
    else
	yr = yr - 2000;
    sprintf(date, "%s %d %d", mon, day, yr);
    Vect_set_date(&Out_Map, date);

    /* line densification works only with vector topology */
    if (Map.format != GV_FORMAT_NATIVE)
	lmax = 0;

    /* Cycle through all lines */
    Vect_rewind(&Map);
    i = 0;
    G_message(_("Reprojecting primitives ..."));
    while (TRUE) {
	++i;
	G_progress(i, 1e3);
	type = Vect_read_next_line(&Map, Points, Cats);	/* read line */
	if (type == 0)
	    continue;		/* Dead */

	if (type == -1)
	    G_fatal_error(_("Reading input vector map"));
	if (type == -2)
	    break;

	Vect_line_prune(Points);
	if (lmax > 0 && (type & GV_LINES) && Points->n_points > 1) {
	    double x1, y1, z1, x2, y2, z2;
	    double dx, dy, dz;
	    double l;
	    int i, n;

	    Vect_reset_line(Points2);
	    for (i = 0; i < Points->n_points - 1; i++) {
		x1 = Points->x[i];
		y1 = Points->y[i];
		z1 = Points->z[i];
		n = i + 1;
		x2 = Points->x[n];
		y2 = Points->y[n];
		z2 = Points->z[n];

		dx = x2 - x1;
		dy = y2 - y1;
		dz = z2 - z1;

		if (pj_do_transform(1, &x1, &y1,
				    flag.transformz->answer ? &z1 : NULL,
				    &info_in, &info_out) < 0) {
		  G_fatal_error(_("Unable to re-project vector map <%s> from <%s>"),
				Vect_get_full_name(&Map), ilocopt->answer);
		}

		if (pj_do_transform(1, &x2, &y2,
				    flag.transformz->answer ? &z2 : NULL,
				    &info_in, &info_out) < 0) {
		  G_fatal_error(_("Unable to re-project vector map <%s> from <%s>"),
				Vect_get_full_name(&Map), ilocopt->answer);
		}

		Vect_append_point(Points2, x1, y1, z1);

		l = G_distance(x1, y1, x2, y2);

		if (l > lmax) {
		    int j;
		    double x, y, z;

		    x1 = Points->x[i];
		    y1 = Points->y[i];
		    z1 = Points->z[i];

		    n = ceil(l / lmax);

		    for (j = 1; j < n; j++) {
			x = x1 + dx * j / n;
			y = y1 + dy * j / n;
			z = z1 + dz * j / n;

			if (pj_do_transform(1, &x, &y,
					    flag.transformz->answer ? &z : NULL,
					    &info_in, &info_out) < 0) {
			  G_fatal_error(_("Unable to re-project vector map <%s> from <%s>"),
					Vect_get_full_name(&Map), ilocopt->answer);
			}
			Vect_append_point(Points2, x, y, z);
		    }
		}
	    }
	    Vect_append_point(Points2, x2, y2, z2);
	    Vect_write_line(&Out_Map, type, Points2, Cats);	/* write line */
	}
	else {
	    if (pj_do_transform(Points->n_points, Points->x, Points->y,
				flag.transformz->answer ? Points->z : NULL,
				&info_in, &info_out) < 0) {
	      G_fatal_error(_("Unable to re-project vector map <%s> from <%s>"),
			    Vect_get_full_name(&Map), ilocopt->answer);
	    }

	    Vect_write_line(&Out_Map, type, Points, Cats);	/* write line */
	}
    }				/* end lines section */
    G_progress(1, 1);

    /* Copy tables */
    if (Vect_copy_tables(&Map, &Out_Map, 0))
        G_warning(_("Failed to copy attribute table to output map"));

    Vect_close(&Map);

    if (!flag.no_topol->answer)
        Vect_build(&Out_Map);
    Vect_close(&Out_Map);

    if (recommend_nowrap)
	G_important_message(_("Try to disable wrapping to -180,180 "
			      "if topological errors occurred"));

    exit(EXIT_SUCCESS);
}
示例#6
0
文件: main.c 项目: imincik/pkg-grass
int main(int argc, char *argv[])
{
    struct Map_info In, Out;
    static struct line_pnts *Points;
    struct line_cats *Cats;
    struct GModule *module;	/* GRASS module for parsing arguments */
    struct Option *map_in, *map_out;
    struct Option *cat_opt, *field_opt, *where_opt, *abcol, *afcol;
    struct Option *iter_opt, *error_opt;
    struct Flag *geo_f, *add_f;
    int chcat, with_z;
    int layer, mask_type;
    struct varray *varray;
    dglGraph_s *graph;
    int i, geo, nnodes, nlines, j, max_cat;
    char buf[2000], *covered;

    /* initialize GIS environment */
    G_gisinit(argv[0]);		/* reads grass env, stores program name to G_program_name() */

    /* initialize module */
    module = G_define_module();
    module->keywords = _("vector, network, centrality measures");
    module->description =
	_("Computes degree, centrality, betweeness, closeness and eigenvector "
	 "centrality measures in the network.");

    /* Define the different options as defined in gis.h */
    map_in = G_define_standard_option(G_OPT_V_INPUT);
    field_opt = G_define_standard_option(G_OPT_V_FIELD);

    map_out = G_define_standard_option(G_OPT_V_OUTPUT);

    cat_opt = G_define_standard_option(G_OPT_V_CATS);
    cat_opt->guisection = _("Selection");
    where_opt = G_define_standard_option(G_OPT_WHERE);
    where_opt->guisection = _("Selection");

    afcol = G_define_standard_option(G_OPT_COLUMN);
    afcol->key = "afcolumn";
    afcol->required = NO;
    afcol->description =
	_("Name of arc forward/both direction(s) cost column");
    afcol->guisection = _("Cost");

    abcol = G_define_standard_option(G_OPT_COLUMN);
    abcol->key = "abcolumn";
    abcol->required = NO;
    abcol->description = _("Name of arc backward direction cost column");
    abcol->guisection = _("Cost");

    deg_opt = G_define_standard_option(G_OPT_COLUMN);
    deg_opt->key = "degree";
    deg_opt->required = NO;
    deg_opt->description = _("Name of degree centrality column");
    deg_opt->guisection = _("Columns");

    close_opt = G_define_standard_option(G_OPT_COLUMN);
    close_opt->key = "closeness";
    close_opt->required = NO;
    close_opt->description = _("Name of closeness centrality column");
    close_opt->guisection = _("Columns");

    betw_opt = G_define_standard_option(G_OPT_COLUMN);
    betw_opt->key = "betweenness";
    betw_opt->required = NO;
    betw_opt->description = _("Name of betweenness centrality column");
    betw_opt->guisection = _("Columns");

    eigen_opt = G_define_standard_option(G_OPT_COLUMN);
    eigen_opt->key = "eigenvector";
    eigen_opt->required = NO;
    eigen_opt->description = _("Name of eigenvector centrality column");
    eigen_opt->guisection = _("Columns");

    iter_opt = G_define_option();
    iter_opt->key = "iterations";
    iter_opt->answer = "1000";
    iter_opt->type = TYPE_INTEGER;
    iter_opt->required = NO;
    iter_opt->description =
	_("Maximum number of iterations to compute eigenvector centrality");

    error_opt = G_define_option();
    error_opt->key = "error";
    error_opt->answer = "0.1";
    error_opt->type = TYPE_DOUBLE;
    error_opt->required = NO;
    error_opt->description =
	_("Cummulative error tolerance for eigenvector centrality");

    geo_f = G_define_flag();
    geo_f->key = 'g';
    geo_f->description =
	_("Use geodesic calculation for longitude-latitude locations");

    add_f = G_define_flag();
    add_f->key = 'a';
    add_f->description = _("Add points on nodes");

    /* options and flags parser */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);
    /* TODO: make an option for this */
    mask_type = GV_LINE | GV_BOUNDARY;

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    Vect_check_input_output_name(map_in->answer, map_out->answer,
				 GV_FATAL_EXIT);

    Vect_set_open_level(2);

    if (1 > Vect_open_old(&In, map_in->answer, ""))
	G_fatal_error(_("Unable to open vector map <%s>"), map_in->answer);

    with_z = Vect_is_3d(&In);

    if (0 > Vect_open_new(&Out, map_out->answer, with_z)) {
	Vect_close(&In);
	G_fatal_error(_("Unable to create vector map <%s>"), map_out->answer);
    }


    if (geo_f->answer) {
	geo = 1;
	if (G_projection() != PROJECTION_LL)
	    G_warning(_("The current projection is not longitude-latitude"));
    }
    else
	geo = 0;

    /* parse filter option and select appropriate lines */
    layer = atoi(field_opt->answer);
    chcat =
	(NetA_initialise_varray
	 (&In, layer, mask_type, where_opt->answer, cat_opt->answer,
	  &varray) == 1);

    /* Create table */
    Fi = Vect_default_field_info(&Out, 1, NULL, GV_1TABLE);
    Vect_map_add_dblink(&Out, 1, NULL, Fi->table, "cat", Fi->database,
			Fi->driver);
    db_init_string(&sql);
    driver = db_start_driver_open_database(Fi->driver, Fi->database);
    if (driver == NULL)
	G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
		      Fi->database, Fi->driver);

    db_init_string(&tmp);
    if (deg_opt->answer)
	append_string(&tmp, deg_opt->answer);
    if (close_opt->answer)
	append_string(&tmp, close_opt->answer);
    if (betw_opt->answer)
	append_string(&tmp, betw_opt->answer);
    if (eigen_opt->answer)
	append_string(&tmp, eigen_opt->answer);
    sprintf(buf,
	    "create table %s(cat integer%s)", Fi->table, db_get_string(&tmp));

    db_set_string(&sql, buf);
    G_debug(2, db_get_string(&sql));

    if (db_execute_immediate(driver, &sql) != DB_OK) {
	db_close_database_shutdown_driver(driver);
	G_fatal_error(_("Unable to create table: '%s'"), db_get_string(&sql));
    }

    if (db_create_index2(driver, Fi->table, "cat") != DB_OK)
	G_warning(_("Cannot create index"));

    if (db_grant_on_table
	(driver, Fi->table, DB_PRIV_SELECT, DB_GROUP | DB_PUBLIC) != DB_OK)
	G_fatal_error(_("Cannot grant privileges on table <%s>"), Fi->table);

    db_begin_transaction(driver);

    Vect_copy_head_data(&In, &Out);
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);

    Vect_net_build_graph(&In, mask_type, atoi(field_opt->answer), 0,
			 afcol->answer, abcol->answer, NULL, geo, 0);
    graph = &(In.graph);
    nnodes = dglGet_NodeCount(graph);

    deg = closeness = betw = eigen = NULL;

    covered = (char *)G_calloc(nnodes + 1, sizeof(char));
    if (!covered)
	G_fatal_error(_("Out of memory"));

    if (deg_opt->answer) {
	deg = (double *)G_calloc(nnodes + 1, sizeof(double));
	if (!deg)
	    G_fatal_error(_("Out of memory"));
    }

    if (close_opt->answer) {
	closeness = (double *)G_calloc(nnodes + 1, sizeof(double));
	if (!closeness)
	    G_fatal_error(_("Out of memory"));
    }

    if (betw_opt->answer) {
	betw = (double *)G_calloc(nnodes + 1, sizeof(double));
	if (!betw)
	    G_fatal_error(_("Out of memory"));
    }

    if (eigen_opt->answer) {
	eigen = (double *)G_calloc(nnodes + 1, sizeof(double));
	if (!eigen)
	    G_fatal_error(_("Out of memory"));
    }


    if (deg_opt->answer) {
	G_message(_("Computing degree centrality measure"));
	NetA_degree_centrality(graph, deg);
    }
    if (betw_opt->answer || close_opt->answer) {
	G_message(_("Computing betweenness and/or closeness centrality measure"));
	NetA_betweenness_closeness(graph, betw, closeness);
	if (closeness)
	    for (i = 1; i <= nnodes; i++)
		closeness[i] /= (double)In.cost_multip;
    }
    if (eigen_opt->answer) {
	G_message(_("Computing eigenvector centrality measure"));
	NetA_eigenvector_centrality(graph, atoi(iter_opt->answer),
				    atof(error_opt->answer), eigen);
    }


    nlines = Vect_get_num_lines(&In);
    G_message(_("Writing data into the table..."));
    G_percent_reset();
    for (i = 1; i <= nlines; i++) {
	G_percent(i, nlines, 1);
	int type = Vect_read_line(&In, Points, Cats, i);

	if (type == GV_POINT && (!chcat || varray->c[i])) {
	    int cat, node;

	    if (!Vect_cat_get(Cats, layer, &cat))
		continue;
	    Vect_reset_cats(Cats);
	    Vect_cat_set(Cats, 1, cat);
	    Vect_write_line(&Out, type, Points, Cats);
	    Vect_get_line_nodes(&In, i, &node, NULL);
	    process_node(node, cat);
	    covered[node] = 1;
	}
    }

    if (add_f->answer && !chcat) {
	max_cat = 0;
	for (i = 1; i <= nlines; i++) {
	    Vect_read_line(&In, NULL, Cats, i);
	    for (j = 0; j < Cats->n_cats; j++)
		if (Cats->cat[j] > max_cat)
		    max_cat = Cats->cat[j];
	}
	max_cat++;
	for (i = 1; i <= nnodes; i++)
	    if (!covered[i]) {
		Vect_reset_cats(Cats);
		Vect_cat_set(Cats, 1, max_cat);
		NetA_add_point_on_node(&In, &Out, i, Cats);
		process_node(i, max_cat);
		max_cat++;
	    }

    }

    db_commit_transaction(driver);
    db_close_database_shutdown_driver(driver);

    G_free(covered);
    if (deg)
	G_free(deg);
    if (closeness)
	G_free(closeness);
    if (betw)
	G_free(betw);
    if (eigen)
	G_free(eigen);
    Vect_build(&Out);

    Vect_close(&In);
    Vect_close(&Out);

    exit(EXIT_SUCCESS);
}
示例#7
0
int execute_random(struct rr_state *theState)
{
    long nt;
    long nc;
    struct Cell_head window;
    int nrows, ncols, row, col;
    int infd, cinfd, outfd;
    struct Map_info Out;
    struct field_info *fi;
    dbTable *table;
    dbColumn *column;
    dbString sql;
    dbDriver *driver;
    struct line_pnts *Points;
    struct line_cats *Cats;
    int cat;
    RASTER_MAP_TYPE type;
    int do_check;

    G_get_window(&window);

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* open the data files, input raster should be set-up already */
    if ((infd = theState->fd_old) < 0)
	G_fatal_error(_("Unable to open raster map <%s>"),
		      theState->inraster);
    if (theState->docover == TRUE) {
	if ((cinfd = theState->fd_cold) < 0)
	    G_fatal_error(_("Unable to open raster map <%s>"),
			  theState->inrcover);
    }

    if (theState->outraster != NULL) {
	if (theState->docover == TRUE)
	    type = theState->cover.type;
	else
	    type = theState->buf.type;
	outfd = Rast_open_new(theState->outraster, type);
	theState->fd_new = outfd;

    }

    if (theState->outvector) {
	if (Vect_open_new(&Out, theState->outvector, theState->z_geometry) < 0)
	    G_fatal_error(_("Unable to create vector map <%s>"),
			    theState->outvector);
	Vect_hist_command(&Out);

	fi = Vect_default_field_info(&Out, 1, NULL, GV_1TABLE);

	driver =
	    db_start_driver_open_database(fi->driver,
					  Vect_subst_var(fi->database, &Out));
	if (!driver)
	    G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
			  Vect_subst_var(fi->database, &Out), fi->driver);
        db_set_error_handler_driver(driver);
        
	Vect_map_add_dblink(&Out, 1, NULL, fi->table, GV_KEY_COLUMN, fi->database,
			    fi->driver);

	if (theState->docover == TRUE)
	    table = db_alloc_table(3);
	else
	    table = db_alloc_table(2);
	db_set_table_name(table, fi->table);

	column = db_get_table_column(table, 0);
	db_set_column_name(column, GV_KEY_COLUMN);
	db_set_column_sqltype(column, DB_SQL_TYPE_INTEGER);

	column = db_get_table_column(table, 1);
	db_set_column_name(column, "value");
	db_set_column_sqltype(column, DB_SQL_TYPE_DOUBLE_PRECISION);

	if (theState->docover == TRUE) {
	    column = db_get_table_column(table, 2);
	    db_set_column_name(column, "covervalue");
	    db_set_column_sqltype(column, DB_SQL_TYPE_DOUBLE_PRECISION);
	}
	if (db_create_table(driver, table) != DB_OK)
	    G_warning(_("Cannot create new table"));

	db_begin_transaction(driver);

	Points = Vect_new_line_struct();
	Cats = Vect_new_cats_struct();
	db_init_string(&sql);
    }

    if (theState->outvector && theState->outraster)
	G_message(_("Writing raster map <%s> and vector map <%s> ..."),
		  theState->outraster, theState->outvector);
    else if (theState->outraster)
	G_message(_("Writing raster map <%s> ..."), theState->outraster);
    else if (theState->outvector)
	G_message(_("Writing vector map <%s> ..."), theState->outvector);

    G_percent(0, theState->nRand, 2);

    init_rand();
    nc = (theState->use_nulls) ? theState->nCells :
	theState->nCells - theState->nNulls;
    nt = theState->nRand;	/* Number of points to generate */
    cat = 1;

    /* Execute for loop for every row if nt>1 */
    for (row = 0; row < nrows && nt; row++) {
	Rast_get_row(infd, theState->buf.data.v, row, theState->buf.type);
	if (theState->docover == TRUE) {
	    Rast_get_row(cinfd, theState->cover.data.v, row,
			 theState->cover.type);
	}

	for (col = 0; col < ncols && nt; col++) {
	    do_check = 0;

	    if (theState->use_nulls || !is_null_value(theState->buf, col))
		do_check = 1;
	    if (do_check && theState->docover == TRUE) {	/* skip no data cover points */
		if (!theState->use_nulls &&
		    is_null_value(theState->cover, col))
		    do_check = 0;
	    }

	    if (do_check && make_rand() % nc < nt) {
		nt--;
		if (is_null_value(theState->buf, col))
		    cpvalue(&theState->nulls, 0, &theState->buf, col);
		if (theState->docover == TRUE) {
		    if (is_null_value(theState->cover, col))
			cpvalue(&theState->cnulls, 0, &theState->cover, col);
		}

		if (theState->outvector) {
		    double x, y, val, coverval;
		    char buf[500];

		    Vect_reset_line(Points);
		    Vect_reset_cats(Cats);

		    x = window.west + (col + .5) * window.ew_res;
		    y = window.north - (row + .5) * window.ns_res;

		    val = cell_as_dbl(&theState->buf, col);
		    if (theState->docover == 1)
			coverval = cell_as_dbl(&theState->cover, col);

		    if (theState->z_geometry)
			Vect_append_point(Points, x, y, val);
		    else
			Vect_append_point(Points, x, y, 0.0);
		    Vect_cat_set(Cats, 1, cat);

		    Vect_write_line(&Out, GV_POINT, Points, Cats);

		    if (theState->docover == 1)
			if (is_null_value(theState->cover, col))
			    sprintf(buf,
				    "insert into %s values ( %d, %f, NULL )",
				    fi->table, cat, val);
			else
			    sprintf(buf,
				    "insert into %s values ( %d, %f, %f )",
				    fi->table, cat, val, coverval);
		    else
			sprintf(buf, "insert into %s values ( %d, %f )",
				fi->table, cat, val);
		    db_set_string(&sql, buf);

		    if (db_execute_immediate(driver, &sql) != DB_OK)
			G_fatal_error(_("Cannot insert new record: %s"),
				      db_get_string(&sql));

		    cat++;
		}
		G_percent((theState->nRand - nt), theState->nRand, 2);
	    }
	    else {
		set_to_null(&theState->buf, col);
		if (theState->docover == 1)
		    set_to_null(&theState->cover, col);
	    }

	    if (do_check)
		nc--;
	}

	while (col < ncols) {
	    set_to_null(&theState->buf, col);
	    if (theState->docover == 1)
		set_to_null(&theState->cover, col);
	    col++;
	}

	if (theState->outraster) {
	    if (theState->docover == 1)
		Rast_put_row(outfd, theState->cover.data.v,
				 theState->cover.type);
	    else
		Rast_put_row(outfd, theState->buf.data.v,
				 theState->buf.type);
	}
    }

    /* Catch any remaining rows in the window */
    if (theState->outraster && row < nrows) {
	for (col = 0; col < ncols; col++) {
	    if (theState->docover == 1)
		set_to_null(&theState->cover, col);
	    else
		set_to_null(&theState->buf, col);
	}
	for (; row < nrows; row++) {
	    if (theState->docover == 1)
		Rast_put_row(outfd, theState->cover.data.v,
				 theState->cover.type);
	    else
		Rast_put_row(outfd, theState->buf.data.v,
				 theState->buf.type);
	}
    }

    if (nt > 0)
	G_warning(_("Only [%ld] random points created"),
		  theState->nRand - nt);

    /* close files */
    Rast_close(infd);
    if (theState->docover == TRUE)
	Rast_close(cinfd);
    if (theState->outvector) {
	db_commit_transaction(driver);
	if (db_create_index2(driver, fi->table, GV_KEY_COLUMN) != DB_OK)
	    G_warning(_("Unable to create index"));
	if (db_grant_on_table
	    (driver, fi->table, DB_PRIV_SELECT,
	     DB_GROUP | DB_PUBLIC) != DB_OK) {
	    G_fatal_error(_("Unable to grant privileges on table <%s>"),
			  fi->table);
	}
	db_close_database_shutdown_driver(driver);
	if (theState->notopol != 1)
	    Vect_build(&Out);
	Vect_close(&Out);
    }
    if (theState->outraster)
	Rast_close(outfd);

    return 0;
}				/* execute_random() */
示例#8
0
int main(int argc, char **argv)
{
    double radius;
    double fisher, david, douglas, lloyd, lloydip, morisita;
    int i, nquads, *counts;

    struct Cell_head window;
    struct GModule *module;
    struct
    {
	struct Option *input, *field, *output, *n, *r;
    } parm;
    struct
    {
	struct Flag *g;
    } flag;
    COOR *quads;

    struct Map_info Map;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("statistics"));
    G_add_keyword(_("point pattern"));
    module->description = _("Indices for quadrat counts of vector point lists.");

    parm.input = G_define_standard_option(G_OPT_V_INPUT);

    parm.field = G_define_standard_option(G_OPT_V_FIELD_ALL);
    
    parm.output = G_define_standard_option(G_OPT_V_OUTPUT);
    parm.output->required = NO;
    parm.output->description =
	_("Name for output quadrat centers map (number of points is written as category)");

    parm.n = G_define_option();
    parm.n->key = "nquadrats";
    parm.n->type = TYPE_INTEGER;
    parm.n->required = YES;
    parm.n->description = _("Number of quadrats");

    parm.r = G_define_option();
    parm.r->key = "radius";
    parm.r->type = TYPE_DOUBLE;
    parm.r->required = YES;
    parm.r->description = _("Quadrat radius");

    flag.g = G_define_flag();
    flag.g->key = 'g';
    flag.g->description = _("Print results in shell script style");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    sscanf(parm.n->answer, "%d", &nquads);
    sscanf(parm.r->answer, "%lf", &radius);

    G_get_window(&window);

    /* Open input */
    Vect_set_open_level(2);
    if (Vect_open_old2(&Map, parm.input->answer, "", parm.field->answer) < 0)
	G_fatal_error(_("Unable to open vector map <%s>"), parm.input->answer);

    /* Get the quadrats */
    G_message(_("Finding quadrats..."));

    quads = find_quadrats(nquads, radius, window);

    /* Get the counts per quadrat */
    G_message(_("Counting points quadrats..."));

    counts = (int *)G_malloc(nquads * (sizeof(int)));
    count_sites(quads, nquads, counts, radius, &Map,
		Vect_get_field_number(&Map, parm.field->answer));

    Vect_close(&Map);

    /* output if requested */
    if (parm.output->answer) {
	struct Map_info Out;
	struct line_pnts *Points;
	struct line_cats *Cats;

	Points = Vect_new_line_struct();
	Cats = Vect_new_cats_struct();

	if (Vect_open_new(&Out, parm.output->answer, 0) < 0)
	    G_fatal_error(_("Unable to create vector map <%s>"),
			    parm.output->answer);

	Vect_hist_command(&Out);

	for (i = 0; i < nquads; i++) {
	    Vect_reset_line(Points);
	    Vect_reset_cats(Cats);

	    Vect_append_point(Points, quads[i].x, quads[i].y, 0.0);
	    Vect_cat_set(Cats, 1, counts[i]);

	    Vect_write_line(&Out, GV_POINT, Points, Cats);
	}

	Vect_build(&Out);
	Vect_close(&Out);

    }

    /* Indices if requested */
    qindices(counts, nquads, &fisher, &david, &douglas, &lloyd, &lloydip,
	     &morisita);

    if (!flag.g->answer) {
	fprintf(stdout,
		"-----------------------------------------------------------\n");
	fprintf(stdout,
		"Index                                           Realization\n");
	fprintf(stdout,
		"-----------------------------------------------------------\n");
	fprintf(stdout,
		"Fisher el al (1922) Relative Variance            %g\n",
		fisher);
	fprintf(stdout,
		"David & Moore (1954) Index of Cluster Size       %g\n",
		david);
	fprintf(stdout,
		"Douglas (1975) Index of Cluster Frequency        %g\n",
		douglas);
	fprintf(stdout,
		"Lloyd (1967) \"mean crowding\"                     %g\n",
		lloyd);
	fprintf(stdout,
		"Lloyd (1967) Index of patchiness                 %g\n",
		lloydip);
	fprintf(stdout,
		"Morisita's (1959) I (variability b/n patches)    %g\n",
		morisita);
	fprintf(stdout,
		"-----------------------------------------------------------\n");
    }
    else {
	fprintf(stdout, "fisher=%g\n", fisher);
	fprintf(stdout, "david=%g\n", david);
	fprintf(stdout, "douglas=%g\n", douglas);
	fprintf(stdout, "lloyd=%g\n", lloyd);
	fprintf(stdout, "lloydip=%g\n", lloydip);
	fprintf(stdout, "morisita=%g\n", morisita);
    }



    exit(EXIT_SUCCESS);
}
示例#9
0
/*----------------------------------------------------------------------------------------------------------*/
int main(int argc, char *argv[])
{
    /* Declarations */
    int dim_vect, nparameters, BW, npoints;
    int nsply, nsplx, nsplx_adj, nsply_adj;
    int nsubregion_col, nsubregion_row;
    int subregion = 0, nsubregions = 0;
    const char *dvr, *db, *mapset;
    char table_name[GNAME_MAX];
    char xname[GNAME_MAX], xmapset[GMAPSET_MAX];
    double lambda, mean, stepN, stepE, HighThresh,
	LowThresh;
    double N_extension, E_extension, edgeE, edgeN;

    int i, nterrain, count_terrain;

    int last_row, last_column, flag_auxiliar = FALSE;

    int *lineVect;
    double *TN, *Q, *parVect;	/* Interpolating and least-square vectors */
    double **N, **obsVect, **obsVect_all;	/* Interpolation and least-square matrix */

    struct Map_info In, Out, Terrain;
    struct Option *in_opt, *out_opt, *out_terrain_opt, *stepE_opt,
	*stepN_opt, *lambda_f_opt, *Thresh_A_opt, *Thresh_B_opt;
    struct Flag *spline_step_flag;
    struct GModule *module;

    struct Cell_head elaboration_reg, original_reg;
    struct Reg_dimens dims;
    struct bound_box general_box, overlap_box;

    struct Point *observ;
    struct lidar_cat *lcat;

    dbDriver *driver;

/*----------------------------------------------------------------------------------------------------------*/
    /* Options' declaration */
    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("LIDAR"));
    module->description =
	_("Corrects the v.lidar.growing output. It is the last of the three algorithms for LIDAR filtering.");

    spline_step_flag = G_define_flag();
    spline_step_flag->key = 'e';
    spline_step_flag->label = _("Estimate point density and distance");
    spline_step_flag->description =
	_("Estimate point density and distance for the input vector points within the current region extends and quit");

    in_opt = G_define_standard_option(G_OPT_V_INPUT);
    in_opt->description =
	_("Input observation vector map name (v.lidar.growing output)");

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    out_opt->description = _("Output classified vector map name");

    out_terrain_opt = G_define_option();
    out_terrain_opt->key = "terrain";
    out_terrain_opt->type = TYPE_STRING;
    out_terrain_opt->key_desc = "name";
    out_terrain_opt->required = YES;
    out_terrain_opt->gisprompt = "new,vector,vector";
    out_terrain_opt->description =
	_("Only 'terrain' points output vector map");

    stepE_opt = G_define_option();
    stepE_opt->key = "ew_step";
    stepE_opt->type = TYPE_DOUBLE;
    stepE_opt->required = NO;
    stepE_opt->answer = "25";
    stepE_opt->description =
	_("Length of each spline step in the east-west direction");
    stepE_opt->guisection = _("Settings");

    stepN_opt = G_define_option();
    stepN_opt->key = "ns_step";
    stepN_opt->type = TYPE_DOUBLE;
    stepN_opt->required = NO;
    stepN_opt->answer = "25";
    stepN_opt->description =
	_("Length of each spline step in the north-south direction");
    stepN_opt->guisection = _("Settings");

    lambda_f_opt = G_define_option();
    lambda_f_opt->key = "lambda_c";
    lambda_f_opt->type = TYPE_DOUBLE;
    lambda_f_opt->required = NO;
    lambda_f_opt->description =
	_("Regularization weight in reclassification evaluation");
    lambda_f_opt->answer = "1";

    Thresh_A_opt = G_define_option();
    Thresh_A_opt->key = "tch";
    Thresh_A_opt->type = TYPE_DOUBLE;
    Thresh_A_opt->required = NO;
    Thresh_A_opt->description =
	_("High threshold for object to terrain reclassification");
    Thresh_A_opt->answer = "2";

    Thresh_B_opt = G_define_option();
    Thresh_B_opt->key = "tcl";
    Thresh_B_opt->type = TYPE_DOUBLE;
    Thresh_B_opt->required = NO;
    Thresh_B_opt->description =
	_("Low threshold for terrain to object reclassification");
    Thresh_B_opt->answer = "1";

    /* Parsing */
    G_gisinit(argv[0]);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    stepN = atof(stepN_opt->answer);
    stepE = atof(stepE_opt->answer);
    lambda = atof(lambda_f_opt->answer);
    HighThresh = atof(Thresh_A_opt->answer);
    LowThresh = atof(Thresh_B_opt->answer);

    if (!(db = G_getenv_nofatal2("DB_DATABASE", G_VAR_MAPSET)))
	G_fatal_error(_("Unable to read name of database"));

    if (!(dvr = G_getenv_nofatal2("DB_DRIVER", G_VAR_MAPSET)))
	G_fatal_error(_("Unable to read name of driver"));

    /* Setting auxiliar table's name */
    if (G_name_is_fully_qualified(out_opt->answer, xname, xmapset)) {
	sprintf(table_name, "%s_aux", xname);
    }
    else
	sprintf(table_name, "%s_aux", out_opt->answer);

    /* Something went wrong in a previous v.lidar.correction execution */
    if (db_table_exists(dvr, db, table_name)) {
	/* Start driver and open db */
	driver = db_start_driver_open_database(dvr, db);
	if (driver == NULL)
	    G_fatal_error(_("No database connection for driver <%s> is defined. Run db.connect."),
			  dvr);
        db_set_error_handler_driver(driver);
        
	if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
	    G_fatal_error(_("Old auxiliar table could not be dropped"));
	db_close_database_shutdown_driver(driver);
    }

    /* Checking vector names */
    Vect_check_input_output_name(in_opt->answer, out_opt->answer,
				 G_FATAL_EXIT);

    /* Open input vector */
    if ((mapset = G_find_vector2(in_opt->answer, "")) == NULL)
	G_fatal_error(_("Vector map <%s> not found"), in_opt->answer);

    Vect_set_open_level(1);	/* without topology */
    if (1 > Vect_open_old(&In, in_opt->answer, mapset))
	G_fatal_error(_("Unable to open vector map <%s>"), in_opt->answer);

    /* Input vector must be 3D */
    if (!Vect_is_3d(&In))
	G_fatal_error(_("Input vector map <%s> is not 3D!"), in_opt->answer);

    /* Estimate point density and mean distance for current region */
    if (spline_step_flag->answer) {
	double dens, dist;
	if (P_estimate_splinestep(&In, &dens, &dist) == 0) {
	    G_message("Estimated point density: %.4g", dens);
	    G_message("Estimated mean distance between points: %.4g", dist);
	}
	else
	    G_warning(_("No points in current region!"));
	
	Vect_close(&In);
	exit(EXIT_SUCCESS);
    }

    /* Open output vector */
    if (0 > Vect_open_new(&Out, out_opt->answer, WITH_Z)) {
	Vect_close(&In);
	G_fatal_error(_("Unable to create vector map <%s>"), out_opt->answer);
    }

    if (0 > Vect_open_new(&Terrain, out_terrain_opt->answer, WITH_Z)) {
	Vect_close(&In);
	Vect_close(&Out);
	G_fatal_error(_("Unable to create vector map <%s>"), out_opt->answer);
    }

    /* Copy vector Head File */
    Vect_copy_head_data(&In, &Out);
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);
    Vect_copy_head_data(&In, &Terrain);
    Vect_hist_copy(&In, &Terrain);
    Vect_hist_command(&Terrain);

    /* Start driver and open db */
    driver = db_start_driver_open_database(dvr, db);
    if (driver == NULL)
	G_fatal_error(_("No database connection for driver <%s> is defined. Run db.connect."),
		      dvr);
    db_set_error_handler_driver(driver);

    /* Create auxiliar table */
    if ((flag_auxiliar =
	 P_Create_Aux2_Table(driver, table_name)) == FALSE) {
	Vect_close(&In);
	Vect_close(&Out);
	Vect_close(&Terrain);
	exit(EXIT_FAILURE);
    }

    db_create_index2(driver, table_name, "ID");
    /* sqlite likes that ??? */
    db_close_database_shutdown_driver(driver);
    driver = db_start_driver_open_database(dvr, db);

    /* Setting regions and boxes */
    G_get_set_window(&original_reg);
    G_get_set_window(&elaboration_reg);
    Vect_region_box(&elaboration_reg, &overlap_box);
    Vect_region_box(&elaboration_reg, &general_box);

    /*------------------------------------------------------------------
      | Subdividing and working with tiles: 									
      | Each original region will be divided into several subregions. 
      | Each one will be overlaped by its neighbouring subregions. 
      | The overlapping is calculated as a fixed OVERLAP_SIZE times
      | the largest spline step plus 2 * edge
      ----------------------------------------------------------------*/

    /* Fixing parameters of the elaboration region */
    P_zero_dim(&dims);

    nsplx_adj = NSPLX_MAX;
    nsply_adj = NSPLY_MAX;
    if (stepN > stepE)
	dims.overlap = OVERLAP_SIZE * stepN;
    else
	dims.overlap = OVERLAP_SIZE * stepE;
    P_get_edge(P_BILINEAR, &dims, stepE, stepN);
    P_set_dim(&dims, stepE, stepN, &nsplx_adj, &nsply_adj);

    G_verbose_message(n_("adjusted EW spline %d",
                         "adjusted EW splines %d",
                         nsplx_adj), nsplx_adj);
    G_verbose_message(n_("adjusted NS spline %d",
                         "adjusted NS splines %d",
                         nsply_adj), nsply_adj);

    /* calculate number of subregions */
    edgeE = dims.ew_size - dims.overlap - 2 * dims.edge_v;
    edgeN = dims.sn_size - dims.overlap - 2 * dims.edge_h;

    N_extension = original_reg.north - original_reg.south;
    E_extension = original_reg.east - original_reg.west;

    nsubregion_col = ceil(E_extension / edgeE) + 0.5;
    nsubregion_row = ceil(N_extension / edgeN) + 0.5;

    if (nsubregion_col < 0)
	nsubregion_col = 0;
    if (nsubregion_row < 0)
	nsubregion_row = 0;

    nsubregions = nsubregion_row * nsubregion_col;

    elaboration_reg.south = original_reg.north;
    last_row = FALSE;

    while (last_row == FALSE) {	/* For each row */

	P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
		      GENERAL_ROW);

	if (elaboration_reg.north > original_reg.north) {	/* First row */
	    P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
			  FIRST_ROW);
	}

	if (elaboration_reg.south <= original_reg.south) {	/* Last row */
	    P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
			  LAST_ROW);
	    last_row = TRUE;
	}

	nsply =
	    ceil((elaboration_reg.north -
		  elaboration_reg.south) / stepN) + 0.5;
	/*
	if (nsply > NSPLY_MAX) {
	    nsply = NSPLY_MAX;
	}
	*/
	G_debug(1, _("nsply = %d"), nsply);

	elaboration_reg.east = original_reg.west;
	last_column = FALSE;

	while (last_column == FALSE) {	/* For each column */

	    subregion++;
	    if (nsubregions > 1)
		G_message(_("subregion %d of %d"), subregion, nsubregions);

	    P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
			  GENERAL_COLUMN);

	    if (elaboration_reg.west < original_reg.west) {	/* First column */
		P_set_regions(&elaboration_reg, &general_box, &overlap_box,
			      dims, FIRST_COLUMN);
	    }

	    if (elaboration_reg.east >= original_reg.east) {	/* Last column */
		P_set_regions(&elaboration_reg, &general_box, &overlap_box,
			      dims, LAST_COLUMN);
		last_column = TRUE;
	    }

	    nsplx =
		ceil((elaboration_reg.east - elaboration_reg.west) / stepE) +
		0.5;
	    /*
	    if (nsplx > NSPLX_MAX) {
		nsplx = NSPLX_MAX;
	    }
	    */
	    G_debug(1, _("nsplx = %d"), nsplx);

	    dim_vect = nsplx * nsply;
	    G_debug(1, _("read vector region map"));
	    observ =
		P_Read_Vector_Correction(&In, &elaboration_reg, &npoints,
					 &nterrain, dim_vect, &lcat);

	    G_debug(5, _("npoints = %d, nterrain = %d"), npoints, nterrain);
	    if (npoints > 0) {	/* If there is any point falling into elaboration_reg. */
		count_terrain = 0;
		nparameters = nsplx * nsply;

		/* Mean calculation */
		G_debug(3, _("Mean calculation"));
		mean = P_Mean_Calc(&elaboration_reg, observ, npoints);

		/*Least Squares system */
		BW = P_get_BandWidth(P_BILINEAR, nsply);	/* Bilinear interpolation */
		N = G_alloc_matrix(nparameters, BW);	/* Normal matrix */
		TN = G_alloc_vector(nparameters);	/* vector */
		parVect = G_alloc_vector(nparameters);	/* Bilinear parameters vector */
		obsVect = G_alloc_matrix(nterrain + 1, 3);	/* Observation vector with terrain points */
		obsVect_all = G_alloc_matrix(npoints + 1, 3);	/* Observation vector with all points */
		Q = G_alloc_vector(nterrain + 1);	/* "a priori" var-cov matrix */
		lineVect = G_alloc_ivector(npoints + 1);

		/* Setting obsVect vector & Q matrix */
		G_debug(3, _("Only TERRAIN points"));
		for (i = 0; i < npoints; i++) {
		    if (observ[i].cat == TERRAIN_SINGLE) {
			obsVect[count_terrain][0] = observ[i].coordX;
			obsVect[count_terrain][1] = observ[i].coordY;
			obsVect[count_terrain][2] = observ[i].coordZ - mean;
			Q[count_terrain] = 1;	/* Q=I */
			count_terrain++;
		    }
		    lineVect[i] = observ[i].lineID;
		    obsVect_all[i][0] = observ[i].coordX;
		    obsVect_all[i][1] = observ[i].coordY;
		    obsVect_all[i][2] = observ[i].coordZ - mean;
		}

		G_free(observ);

		G_verbose_message(_("Bilinear interpolation"));
		normalDefBilin(N, TN, Q, obsVect, stepE, stepN, nsplx,
			       nsply, elaboration_reg.west,
			       elaboration_reg.south, nterrain, nparameters,
			       BW);
		nCorrectGrad(N, lambda, nsplx, nsply, stepE, stepN);
		G_math_solver_cholesky_sband(N, parVect, TN, nparameters, BW);

		G_free_matrix(N);
		G_free_vector(TN);
		G_free_vector(Q);
		G_free_matrix(obsVect);

		G_verbose_message( _("Correction and creation of terrain vector"));
		P_Sparse_Correction(&In, &Out, &Terrain, &elaboration_reg,
				    general_box, overlap_box, obsVect_all, lcat,
				    parVect, lineVect, stepN, stepE,
				    dims.overlap, HighThresh, LowThresh,
				    nsplx, nsply, npoints, driver, mean, table_name);

		G_free_vector(parVect);
		G_free_matrix(obsVect_all);
		G_free_ivector(lineVect);
	    }
	    else {
		G_free(observ);
		G_warning(_("No data within this subregion. "
			    "Consider changing the spline step."));
	    }
	    G_free(lcat);
	}			/*! END WHILE; last_column = TRUE */
    }				/*! END WHILE; last_row = TRUE */

    /* Dropping auxiliar table */
    if (npoints > 0) {
	G_debug(1, _("Dropping <%s>"), table_name);
	if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
	    G_fatal_error(_("Auxiliar table could not be dropped"));
    }

    db_close_database_shutdown_driver(driver);

    Vect_close(&In);
    Vect_close(&Out);
    Vect_close(&Terrain);

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}				/*! END MAIN */
示例#10
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    struct GParams params;
    struct Map_info Map;
    struct Map_info **BgMap;	/* backgroud vector maps */
    int nbgmaps;		/* number of registrated background maps */
    enum mode action_mode;
    FILE *ascii;

    int i;
    int move_first, snap;
    int ret, layer;
    double move_x, move_y, move_z, thresh[3];

    struct line_pnts *coord;

    struct ilist *List;

    struct cat_list *Clist;

    ascii = NULL;
    List = NULL;
    BgMap = NULL;
    nbgmaps = 0;
    coord = NULL;
    Clist = NULL;

    G_gisinit(argv[0]);

    module = G_define_module();
    module->overwrite = TRUE;
    G_add_keyword(_("vector"));
    G_add_keyword(_("editing"));
    G_add_keyword(_("geometry"));
    module->description = _("Edits a vector map, allows adding, deleting "
			    "and modifying selected vector features.");

    if (!parser(argc, argv, &params, &action_mode))
	exit(EXIT_FAILURE);

    /* get list of categories */
    Clist = Vect_new_cat_list();
    if (params.cat->answer && Vect_str_to_cat_list(params.cat->answer, Clist)) {
	G_fatal_error(_("Unable to get category list <%s>"),
		      params.cat->answer);
    }

    /* open input file */
    if (params.in->answer) {
	if (strcmp(params.in->answer, "-") != 0) {
	    ascii = fopen(params.in->answer, "r");
	    if (ascii == NULL)
		G_fatal_error(_("Unable to open file <%s>"),
			      params.in->answer);
	}
	else {
	    ascii = stdin;
	}
    }
    if (!ascii && action_mode == MODE_ADD)
	G_fatal_error(_("Required parameter <%s> not set"), params.in->key);
    
    if (action_mode == MODE_CREATE) {
	int overwrite;

	overwrite = G_check_overwrite(argc, argv);
	if (G_find_vector2(params.map->answer, G_mapset())) {
	    if (!overwrite)
		G_fatal_error(_("Vector map <%s> already exists"),
			      params.map->answer);
	}

	/* 3D vector maps? */
	ret = Vect_open_new(&Map, params.map->answer, WITHOUT_Z);
	if (Vect_maptype(&Map) == GV_FORMAT_OGR_DIRECT) {
	    int type;
	    type = Vect_option_to_types(params.type);
	    if (type != GV_POINT && type != GV_LINE &&
		type != GV_BOUNDARY)
		G_fatal_error(_("Supported feature type for OGR layer: "
				"%s, %s or %s"), "point", "line", "boundary");
	    V2_open_new_ogr(&Map, type);
	}
	if (ret == -1) {
	    G_fatal_error(_("Unable to create vector map <%s>"),
			  params.map->answer);
	}

	G_debug(1, "Map created");

	if (ascii) {
	    /* also add new vector features */
	    action_mode = MODE_ADD;
	}
    }
    else {			/* open selected vector file */
	if (action_mode == MODE_ADD)	/* write */
	    ret = Vect_open_update2(&Map, params.map->answer, G_mapset(), params.fld->answer);
	else			/* read-only -- select features */
	    ret = Vect_open_old2(&Map, params.map->answer, G_mapset(), params.fld->answer);

	if (ret < 2)
	    G_fatal_error(_("Unable to open vector map <%s> at topological level %d"),
			  params.map->answer, 2);
    }

    G_debug(1, "Map opened");

    /* open backgroud maps */
    if (params.bmaps->answer) {
	i = 0;

	while (params.bmaps->answers[i]) {
	    const char *bmap = params.bmaps->answers[i];
	    const char *mapset = G_find_vector2(bmap, "");
	    if (!mapset)
		G_fatal_error(_("Vector map <%s> not found"), bmap);

	    if (strcmp(
		    G_fully_qualified_name(params.map->answer, G_mapset()),
		    G_fully_qualified_name(bmap, mapset)) == 0) {
		G_fatal_error(_("Unable to open vector map <%s> as the background map. "
			       "It is given as vector map to be edited."),
			      bmap);
	    }
	    nbgmaps++;
	    BgMap = (struct Map_info **)G_realloc(
		BgMap, nbgmaps * sizeof(struct Map_info *));
	    BgMap[nbgmaps - 1] =
		(struct Map_info *)G_malloc(sizeof(struct Map_info));
	    if (Vect_open_old(BgMap[nbgmaps - 1], bmap, "") == -1)
		G_fatal_error(_("Unable to open vector map <%s>"), bmap);
	    G_verbose_message(_("Background vector map <%s> registered"), bmap);
	    i++;
	}
    }

    layer = Vect_get_field_number(&Map, params.fld->answer);
    i = 0;
    while (params.maxdist->answers[i]) {
	switch (i) {
	case THRESH_COORDS:
	    thresh[THRESH_COORDS] =
		max_distance(atof(params.maxdist->answers[THRESH_COORDS]));
	    thresh[THRESH_SNAP] = thresh[THRESH_QUERY] =
		thresh[THRESH_COORDS];
	    break;
	case THRESH_SNAP:
	    thresh[THRESH_SNAP] =
		max_distance(atof(params.maxdist->answers[THRESH_SNAP]));
	    break;
	case THRESH_QUERY:
	    thresh[THRESH_QUERY] =
		atof(params.maxdist->answers[THRESH_QUERY]);
	    break;
	default:
	    break;
	}
	i++;
    }

    move_first = params.move_first->answer ? 1 : 0;
    snap = NO_SNAP;
    if (strcmp(params.snap->answer, "node") == 0)
	snap = SNAP;
    else if (strcmp(params.snap->answer, "vertex") == 0)
	snap = SNAPVERTEX;
    if (snap != NO_SNAP && thresh[THRESH_SNAP] <= 0) {
	G_warning(_("Threshold for snapping must be > 0. No snapping applied."));
	snap = NO_SNAP;
    }
    
    if (action_mode != MODE_CREATE && action_mode != MODE_ADD) {
	/* select lines */
	List = Vect_new_list();
	G_message(_("Selecting features..."));
	if (action_mode == MODE_COPY && BgMap && BgMap[0]) {
	    List = select_lines(BgMap[0], action_mode, &params, thresh, List);
	}
	else {
	    List = select_lines(&Map, action_mode, &params, thresh, List);
	}
    }

    if ((action_mode != MODE_CREATE && action_mode != MODE_ADD &&
	 action_mode != MODE_SELECT)) {
	if (List->n_values < 1) {
	    G_warning(_("No features selected, nothing to edit"));
	    action_mode = MODE_NONE;
	    ret = 0;
	}
	else {
	    /* reopen the map for updating */
	    if (action_mode == MODE_ZBULK && !Vect_is_3d(&Map)) {
		Vect_close(&Map);
		G_fatal_error(_("Vector map <%s> is not 3D. Tool '%s' requires 3D vector map. "
			       "Please convert the vector map "
			       "to 3D using e.g. %s."), params.map->answer,
			      params.tool->answer, "v.extrude");
	    }
	    Vect_close(&Map);

	    Vect_open_update2(&Map, params.map->answer, G_mapset(), params.fld->answer);
	}
    }

    /* coords option -> array */
    if (params.coord->answers) {
	coord = Vect_new_line_struct();
	int i = 0;
	double east, north;

	while (params.coord->answers[i]) {
	    east = atof(params.coord->answers[i]);
	    north = atof(params.coord->answers[i + 1]);
	    Vect_append_point(coord, east, north, 0.0);
	    i += 2;
	}
    }

    /* perform requested editation */
    switch (action_mode) {
    case MODE_CREATE:
	break;
    case MODE_ADD:
	if (!params.header->answer)
	    Vect_read_ascii_head(ascii, &Map);
	int num_lines;
	num_lines = Vect_get_num_lines(&Map);
	
	ret = Vect_read_ascii(ascii, &Map);
	G_message(_("%d features added"), ret);
	if (ret > 0) {
	    int iline;
	    struct ilist *List_added;
	    
	    List_added = Vect_new_list();
	    for (iline = num_lines + 1; iline <= Vect_get_num_lines(&Map); iline++)
		Vect_list_append(List_added, iline);
	    
	    G_verbose_message(_("Threshold value for snapping is %.2f"),
			      thresh[THRESH_SNAP]);
	    if (snap != NO_SNAP) { /* apply snapping */
		/* snap to vertex ? */
		Vedit_snap_lines(&Map, BgMap, nbgmaps, List_added,
				 thresh[THRESH_SNAP],
				 snap == SNAP ? FALSE : TRUE); 
	    }
	    if (params.close->answer) {	/* close boundaries */
		int nclosed;

		nclosed = close_lines(&Map, GV_BOUNDARY, thresh[THRESH_SNAP]);
		G_message(_("%d boundaries closed"), nclosed);
	    }
	    Vect_destroy_list(List_added);
	}
	break;
    case MODE_DEL:
	ret = Vedit_delete_lines(&Map, List);
	G_message(_("%d features deleted"), ret);
	break;
    case MODE_MOVE:
	move_x = atof(params.move->answers[0]);
	move_y = atof(params.move->answers[1]);
	move_z = atof(params.move->answers[2]);
	G_verbose_message(_("Threshold value for snapping is %.2f"),
			  thresh[THRESH_SNAP]);
	ret = Vedit_move_lines(&Map, BgMap, nbgmaps, List, move_x, move_y, move_z, snap, thresh[THRESH_SNAP]);
	G_message(_("%d features moved"), ret);
	break;
    case MODE_VERTEX_MOVE:
	move_x = atof(params.move->answers[0]);
	move_y = atof(params.move->answers[1]);
	move_z = atof(params.move->answers[2]);
	G_verbose_message(_("Threshold value for snapping is %.2f"),
			  thresh[THRESH_SNAP]);
	ret = Vedit_move_vertex(&Map, BgMap, nbgmaps, List, coord, thresh[THRESH_COORDS], thresh[THRESH_SNAP], move_x, move_y, move_z, move_first, snap);
	G_message(_("%d vertices moved"), ret);
	break;
    case MODE_VERTEX_ADD:
	ret = Vedit_add_vertex(&Map, List, coord, thresh[THRESH_COORDS]);
	G_message(_("%d vertices added"), ret);
	break;
    case MODE_VERTEX_DELETE:
	ret = Vedit_remove_vertex(&Map, List, coord, thresh[THRESH_COORDS]);
	G_message(_("%d vertices removed"), ret);
	break;
    case MODE_BREAK:
	if (params.coord->answer) {
	    ret = Vedit_split_lines(&Map, List,
				    coord, thresh[THRESH_COORDS], NULL);
	}
	else {
	    ret = Vect_break_lines_list(&Map, List, NULL, GV_LINES, NULL);
	}
	G_message(_("%d lines broken"), ret);
	break;
    case MODE_CONNECT:
	G_verbose_message(_("Threshold value for snapping is %.2f"),
			  thresh[THRESH_SNAP]);
	ret = Vedit_connect_lines(&Map, List, thresh[THRESH_SNAP]);
	G_message(_("%d lines connected"), ret);
	break;
    case MODE_MERGE:
	ret = Vedit_merge_lines(&Map, List);
	G_message(_("%d lines merged"), ret);
	break;
    case MODE_SELECT:
	ret = print_selected(List);
	break;
    case MODE_CATADD:
	ret = Vedit_modify_cats(&Map, List, layer, 0, Clist);
	G_message(_("%d features modified"), ret);
	break;
    case MODE_CATDEL:
	ret = Vedit_modify_cats(&Map, List, layer, 1, Clist);
	G_message(_("%d features modified"), ret);
	break;
    case MODE_COPY:
	if (BgMap && BgMap[0]) {
	    if (nbgmaps > 1)
		G_warning(_("Multiple background maps were given. "
			    "Selected features will be copied only from "
			    "vector map <%s>."),
			  Vect_get_full_name(BgMap[0]));

	    ret = Vedit_copy_lines(&Map, BgMap[0], List);
	}
	else {
	    ret = Vedit_copy_lines(&Map, NULL, List);
	}
	G_message(_("%d features copied"), ret);
	break;
    case MODE_SNAP:
	G_verbose_message(_("Threshold value for snapping is %.2f"),
			  thresh[THRESH_SNAP]);
	ret = snap_lines(&Map, List, thresh[THRESH_SNAP]);
	break;
    case MODE_FLIP:
	ret = Vedit_flip_lines(&Map, List);
	G_message(_("%d lines flipped"), ret);
	break;
    case MODE_NONE:
	break;
    case MODE_ZBULK:{
	    double start, step;
	    double x1, y1, x2, y2;

	    start = atof(params.zbulk->answers[0]);
	    step = atof(params.zbulk->answers[1]);

	    x1 = atof(params.bbox->answers[0]);
	    y1 = atof(params.bbox->answers[1]);
	    x2 = atof(params.bbox->answers[2]);
	    y2 = atof(params.bbox->answers[3]);

	    ret = Vedit_bulk_labeling(&Map, List,
				      x1, y1, x2, y2, start, step);

	    G_message(_("%d lines labeled"), ret);
	    break;
	}
    case MODE_CHTYPE:{
	    ret = Vedit_chtype_lines(&Map, List);

	    if (ret > 0) {
		G_message(_("%d features converted"), ret);
	    }
	    else {
		G_message(_("No feature modified"));
	    }
	    break;
	}
    default:
	G_warning(_("Operation not implemented"));
	ret = -1;
	break;
    }
    
    Vect_hist_command(&Map);

    /* build topology only if requested or if tool!=select */
    if (!(action_mode == MODE_SELECT || params.topo->answer == 1 ||
	 !MODE_NONE)) {
	Vect_build_partial(&Map, GV_BUILD_NONE);
	Vect_build(&Map);
    }

    if (List)
	Vect_destroy_list(List);

    Vect_close(&Map);

    G_debug(1, "Map closed");

    /* close background maps */
    for (i = 0; i < nbgmaps; i++) {
	Vect_close(BgMap[i]);
	G_free((void *)BgMap[i]);
    }
    G_free((void *)BgMap);

    if (coord)
	Vect_destroy_line_struct(coord);

    if (Clist)
	Vect_destroy_cat_list(Clist);

    G_done_msg(" ");

    if (ret > -1) {
	exit(EXIT_SUCCESS);
    }
    else {
	exit(EXIT_FAILURE);
    }
}
示例#11
0
/*--------------------------------------------------------------------*/
int main(int argc, char *argv[])
{
    /* Variables declarations */
    int nsplx_adj, nsply_adj;
    int nsubregion_col, nsubregion_row;
    int subregion = 0, nsubregions = 0;
    double N_extension, E_extension, edgeE, edgeN;
    int dim_vect, nparameters, BW, npoints;
    double mean, lambda;
    const char *dvr, *db, *mapset;
    char table_name[GNAME_MAX];
    char xname[GNAME_MAX], xmapset[GMAPSET_MAX];

    int last_row, last_column, flag_auxiliar = FALSE;
    int filter_mode;

    int *lineVect;
    double *TN, *Q, *parVect;	/* Interpolating and least-square vectors */
    double **N, **obsVect;	/* Interpolation and least-square matrix */

    /* Structs declarations */
    struct Map_info In, Out, Outlier, Qgis;
    struct Option *in_opt, *out_opt, *outlier_opt, *qgis_opt, *stepE_opt,
	*stepN_opt, *lambda_f_opt, *Thres_O_opt, *filter_opt;
    struct Flag *spline_step_flag;
    struct GModule *module;

    struct Reg_dimens dims;
    struct Cell_head elaboration_reg, original_reg;
    struct bound_box general_box, overlap_box;

    struct Point *observ;

    dbDriver *driver;

    /*----------------------------------------------------------------*/
    /* Options declaration */
    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("statistics"));
    G_add_keyword(_("extract"));
    G_add_keyword(_("select"));
    G_add_keyword(_("filter"));
    module->description = _("Removes outliers from vector point data.");

    spline_step_flag = G_define_flag();
    spline_step_flag->key = 'e';
    spline_step_flag->label = _("Estimate point density and distance");
    spline_step_flag->description =
	_("Estimate point density and distance for the input vector points within the current region extends and quit");

    in_opt = G_define_standard_option(G_OPT_V_INPUT);

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);

    outlier_opt = G_define_option();
    outlier_opt->key = "outlier";
    outlier_opt->type = TYPE_STRING;
    outlier_opt->key_desc = "name";
    outlier_opt->required = YES;
    outlier_opt->gisprompt = "new,vector,vector";
    outlier_opt->description = _("Name of output outlier vector map");

    qgis_opt = G_define_option();
    qgis_opt->key = "qgis";
    qgis_opt->type = TYPE_STRING;
    qgis_opt->key_desc = "name";
    qgis_opt->required = NO;
    qgis_opt->gisprompt = "new,vector,vector";
    qgis_opt->description = _("Name of vector map for visualization in QGIS");

    stepE_opt = G_define_option();
    stepE_opt->key = "ew_step";
    stepE_opt->type = TYPE_DOUBLE;
    stepE_opt->required = NO;
    stepE_opt->answer = "10";
    stepE_opt->description =
	_("Length of each spline step in the east-west direction");
    stepE_opt->guisection = _("Settings");

    stepN_opt = G_define_option();
    stepN_opt->key = "ns_step";
    stepN_opt->type = TYPE_DOUBLE;
    stepN_opt->required = NO;
    stepN_opt->answer = "10";
    stepN_opt->description =
	_("Length of each spline step in the north-south direction");
    stepN_opt->guisection = _("Settings");

    lambda_f_opt = G_define_option();
    lambda_f_opt->key = "lambda";
    lambda_f_opt->type = TYPE_DOUBLE;
    lambda_f_opt->required = NO;
    lambda_f_opt->description = _("Tykhonov regularization weight");
    lambda_f_opt->answer = "0.1";
    lambda_f_opt->guisection = _("Settings");

    Thres_O_opt = G_define_option();
    Thres_O_opt->key = "threshold";
    Thres_O_opt->type = TYPE_DOUBLE;
    Thres_O_opt->required = NO;
    Thres_O_opt->description = _("Threshold for the outliers");
    Thres_O_opt->answer = "50";

    filter_opt = G_define_option();
    filter_opt->key = "filter";
    filter_opt->type = TYPE_STRING;
    filter_opt->required = NO;
    filter_opt->description = _("Filtering option");
    filter_opt->options = "both,positive,negative";
    filter_opt->answer = "both";

    /* Parsing */
    G_gisinit(argv[0]);
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    if (!(db = G_getenv_nofatal2("DB_DATABASE", G_VAR_MAPSET)))
	G_fatal_error(_("Unable to read name of database"));

    if (!(dvr = G_getenv_nofatal2("DB_DRIVER", G_VAR_MAPSET)))
	G_fatal_error(_("Unable to read name of driver"));

    stepN = atof(stepN_opt->answer);
    stepE = atof(stepE_opt->answer);
    lambda = atof(lambda_f_opt->answer);
    Thres_Outlier = atof(Thres_O_opt->answer);

    filter_mode = 0;
    if (strcmp(filter_opt->answer, "positive") == 0)
	filter_mode = 1;
    else if (strcmp(filter_opt->answer, "negative") == 0)
	filter_mode = -1;
    P_set_outlier_fn(filter_mode);

    flag_auxiliar = FALSE;

    /* Checking vector names */
    Vect_check_input_output_name(in_opt->answer, out_opt->answer,
				 G_FATAL_EXIT);

    if ((mapset = G_find_vector2(in_opt->answer, "")) == NULL) {
	G_fatal_error(_("Vector map <%s> not found"), in_opt->answer);
    }

    /* Setting auxiliar table's name */
    if (G_name_is_fully_qualified(out_opt->answer, xname, xmapset)) {
	sprintf(table_name, "%s_aux", xname);
    }
    else
	sprintf(table_name, "%s_aux", out_opt->answer);

    /* Something went wrong in a previous v.outlier execution */
    if (db_table_exists(dvr, db, table_name)) {
	/* Start driver and open db */
	driver = db_start_driver_open_database(dvr, db);
	if (driver == NULL)
	    G_fatal_error(_("No database connection for driver <%s> is defined. Run db.connect."),
			  dvr);
        db_set_error_handler_driver(driver);

	if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
	    G_fatal_error(_("Old auxiliar table could not be dropped"));
	db_close_database_shutdown_driver(driver);
    }

    /* Open input vector */
    Vect_set_open_level(1);	/* WITHOUT TOPOLOGY */
    if (1 > Vect_open_old(&In, in_opt->answer, mapset))
	G_fatal_error(_("Unable to open vector map <%s> at the topological level"),
		      in_opt->answer);

    /* Input vector must be 3D */
    if (!Vect_is_3d(&In))
	G_fatal_error(_("Input vector map <%s> is not 3D!"), in_opt->answer);

    /* Estimate point density and mean distance for current region */
    if (spline_step_flag->answer) {
	double dens, dist;
	if (P_estimate_splinestep(&In, &dens, &dist) == 0) {
	    G_message("Estimated point density: %.4g", dens);
	    G_message("Estimated mean distance between points: %.4g", dist);
	}
	else
	    G_warning(_("No points in current region!"));
	
	Vect_close(&In);
	exit(EXIT_SUCCESS);
    }

    /* Open output vector */
    if (qgis_opt->answer)
	if (0 > Vect_open_new(&Qgis, qgis_opt->answer, WITHOUT_Z))
	    G_fatal_error(_("Unable to create vector map <%s>"),
			  qgis_opt->answer);

    if (0 > Vect_open_new(&Out, out_opt->answer, WITH_Z)) {
	Vect_close(&Qgis);
	G_fatal_error(_("Unable to create vector map <%s>"), out_opt->answer);
    }

    if (0 > Vect_open_new(&Outlier, outlier_opt->answer, WITH_Z)) {
	Vect_close(&Out);
	Vect_close(&Qgis);
	G_fatal_error(_("Unable to create vector map <%s>"), out_opt->answer);
    }

    /* Copy vector Head File */
    Vect_copy_head_data(&In, &Out);
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);

    Vect_copy_head_data(&In, &Outlier);
    Vect_hist_copy(&In, &Outlier);
    Vect_hist_command(&Outlier);

    if (qgis_opt->answer) {
	Vect_copy_head_data(&In, &Qgis);
	Vect_hist_copy(&In, &Qgis);
	Vect_hist_command(&Qgis);
    }

    /* Open driver and database */
    driver = db_start_driver_open_database(dvr, db);
    if (driver == NULL)
	G_fatal_error(_("No database connection for driver <%s> is defined. Run db.connect."),
		      dvr);
    db_set_error_handler_driver(driver);

    /* Create auxiliar table */
    if ((flag_auxiliar =
	 P_Create_Aux2_Table(driver, table_name)) == FALSE)
	G_fatal_error(_("It was impossible to create <%s> table."), table_name);

    db_create_index2(driver, table_name, "ID");
    /* sqlite likes that ??? */
    db_close_database_shutdown_driver(driver);
    driver = db_start_driver_open_database(dvr, db);

    /* Setting regions and boxes */
    G_get_set_window(&original_reg);
    G_get_set_window(&elaboration_reg);
    Vect_region_box(&elaboration_reg, &overlap_box);
    Vect_region_box(&elaboration_reg, &general_box);

    /*------------------------------------------------------------------
      | Subdividing and working with tiles: 									
      | Each original region will be divided into several subregions. 
      | Each one will be overlaped by its neighbouring subregions. 
      | The overlapping is calculated as a fixed OVERLAP_SIZE times
      | the largest spline step plus 2 * edge
      ----------------------------------------------------------------*/

    /* Fixing parameters of the elaboration region */
    P_zero_dim(&dims);		/* Set dim struct to zero */

    nsplx_adj = NSPLX_MAX;
    nsply_adj = NSPLY_MAX;
    if (stepN > stepE)
	dims.overlap = OVERLAP_SIZE * stepN;
    else
	dims.overlap = OVERLAP_SIZE * stepE;
    P_get_edge(P_BILINEAR, &dims, stepE, stepN);
    P_set_dim(&dims, stepE, stepN, &nsplx_adj, &nsply_adj);

    G_verbose_message(_("Adjusted EW splines %d"), nsplx_adj);
    G_verbose_message(_("Adjusted NS splines %d"), nsply_adj);

    /* calculate number of subregions */
    edgeE = dims.ew_size - dims.overlap - 2 * dims.edge_v;
    edgeN = dims.sn_size - dims.overlap - 2 * dims.edge_h;

    N_extension = original_reg.north - original_reg.south;
    E_extension = original_reg.east - original_reg.west;

    nsubregion_col = ceil(E_extension / edgeE) + 0.5;
    nsubregion_row = ceil(N_extension / edgeN) + 0.5;

    if (nsubregion_col < 0)
	nsubregion_col = 0;
    if (nsubregion_row < 0)
	nsubregion_row = 0;

    nsubregions = nsubregion_row * nsubregion_col;

    elaboration_reg.south = original_reg.north;
    last_row = FALSE;

    while (last_row == FALSE) {	/* For each row */

	P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
		      GENERAL_ROW);

	if (elaboration_reg.north > original_reg.north) {	/* First row */

	    P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
			  FIRST_ROW);
	}

	if (elaboration_reg.south <= original_reg.south) {	/* Last row */

	    P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
			  LAST_ROW);
	    last_row = TRUE;
	}

	nsply =
	    ceil((elaboration_reg.north -
		  elaboration_reg.south) / stepN) + 0.5;
	/*
	if (nsply > NSPLY_MAX)
	    nsply = NSPLY_MAX;
	*/
	G_debug(1, "nsply = %d", nsply);

	elaboration_reg.east = original_reg.west;
	last_column = FALSE;

	while (last_column == FALSE) {	/* For each column */

	    subregion++;
	    if (nsubregions > 1)
		G_message(_("Processing subregion %d of %d..."), subregion, nsubregions);
	    else /* v.outlier -e will report mean point distance: */
		G_warning(_("No subregions found! Check values for 'ew_step' and 'ns_step' parameters"));

	    P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
			  GENERAL_COLUMN);

	    if (elaboration_reg.west < original_reg.west) {	/* First column */

		P_set_regions(&elaboration_reg, &general_box, &overlap_box,
			      dims, FIRST_COLUMN);
	    }

	    if (elaboration_reg.east >= original_reg.east) {	/* Last column */

		P_set_regions(&elaboration_reg, &general_box, &overlap_box,
			      dims, LAST_COLUMN);
		last_column = TRUE;
	    }
	    nsplx =
		ceil((elaboration_reg.east -
		      elaboration_reg.west) / stepE) + 0.5;
	    /*
	    if (nsplx > NSPLX_MAX)
		nsplx = NSPLX_MAX;
	    */
	    G_debug(1, "nsplx = %d", nsplx);

	    /*Setting the active region */
	    dim_vect = nsplx * nsply;
	    observ =
		P_Read_Vector_Region_Map(&In, &elaboration_reg, &npoints,
					 dim_vect, 1);

	    if (npoints > 0) {	/* If there is any point falling into elaboration_reg... */
		int i;

		nparameters = nsplx * nsply;

		/* Mean calculation */
		mean = P_Mean_Calc(&elaboration_reg, observ, npoints);

		/* Least Squares system */
		G_debug(1, "Allocation memory for bilinear interpolation");
		BW = P_get_BandWidth(P_BILINEAR, nsply);	/* Bilinear interpolation */
		N = G_alloc_matrix(nparameters, BW);	/* Normal matrix */
		TN = G_alloc_vector(nparameters);	/* vector */
		parVect = G_alloc_vector(nparameters);	/* Bicubic parameters vector */
		obsVect = G_alloc_matrix(npoints, 3);	/* Observation vector */
		Q = G_alloc_vector(npoints);	/* "a priori" var-cov matrix */
		lineVect = G_alloc_ivector(npoints);

		/* Setting obsVect vector & Q matrix */
		for (i = 0; i < npoints; i++) {
		    obsVect[i][0] = observ[i].coordX;
		    obsVect[i][1] = observ[i].coordY;
		    obsVect[i][2] = observ[i].coordZ - mean;
		    lineVect[i] = observ[i].lineID;
		    Q[i] = 1;	/* Q=I */
		}

		G_free(observ);

		G_verbose_message(_("Bilinear interpolation"));
		normalDefBilin(N, TN, Q, obsVect, stepE, stepN, nsplx,
			       nsply, elaboration_reg.west,
			       elaboration_reg.south, npoints, nparameters,
			       BW);
		nCorrectGrad(N, lambda, nsplx, nsply, stepE, stepN);
		G_math_solver_cholesky_sband(N, parVect, TN, nparameters, BW);

		G_free_matrix(N);
		G_free_vector(TN);
		G_free_vector(Q);

		G_verbose_message(_("Outlier detection"));
		if (qgis_opt->answer)
		    P_Outlier(&Out, &Outlier, &Qgis, elaboration_reg,
			      general_box, overlap_box, obsVect, parVect,
			      mean, dims.overlap, lineVect, npoints,
			      driver, table_name);
		else
		    P_Outlier(&Out, &Outlier, NULL, elaboration_reg,
			      general_box, overlap_box, obsVect, parVect,
			      mean, dims.overlap, lineVect, npoints,
			      driver, table_name);


		G_free_vector(parVect);
		G_free_matrix(obsVect);
		G_free_ivector(lineVect);

	    }			/*! END IF; npoints > 0 */
	    else {
		G_free(observ);
		G_warning(_("No data within this subregion. "
			    "Consider increasing spline step values."));
	    }
	}			/*! END WHILE; last_column = TRUE */
    }				/*! END WHILE; last_row = TRUE */

    /* Drop auxiliar table */
    if (npoints > 0) {
	G_debug(1, "%s: Dropping <%s>", argv[0], table_name);
	if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
	    G_fatal_error(_("Auxiliary table could not be dropped"));
    }

    db_close_database_shutdown_driver(driver);

    Vect_close(&In);
    Vect_close(&Out);
    Vect_close(&Outlier);
    if (qgis_opt->answer) {
	Vect_build(&Qgis);
	Vect_close(&Qgis);
    }

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}				/*END MAIN */
示例#12
0
int main(int argc, char **argv)
{
    int type, cat;
    struct Option *out_opt, *type_opt, *cat_opt;
    struct GModule *module;
    struct Map_info Out;
    struct Cell_head window;
    struct line_cats *Cats;
    struct line_pnts *Points;
    double diff_long, mid_long;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("geometry"));
    module->description = _("Create a new vector from the current region.");

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);

    type_opt = G_define_standard_option(G_OPT_V_TYPE);
    type_opt->multiple = NO;
    type_opt->options = "line,area";
    type_opt->answer = "area";
    type_opt->description = _("Select type: line or area");

    cat_opt = G_define_standard_option(G_OPT_V_CAT);
    cat_opt->answer = "1";

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    Cats = Vect_new_cats_struct();
    Points = Vect_new_line_struct();

    type = Vect_option_to_types(type_opt);
    cat = atoi(cat_opt->answer);

    G_get_window(&window);
    diff_long = window.east - window.west;
    mid_long = (window.west + window.east) / 2;

    /* Open output segments */
    Vect_open_new(&Out, out_opt->answer, 0);
    Vect_hist_command(&Out);

    /* Rectangle */

    Vect_append_point(Points, window.west, window.south, 0.0);
    if (window.proj == PROJECTION_LL && diff_long >= 179)
	Vect_append_point(Points, mid_long, window.south, 0.0);
    Vect_append_point(Points, window.east, window.south, 0.0);
    Vect_append_point(Points, window.east, window.north, 0.0);
    if (window.proj == PROJECTION_LL && diff_long >= 179)
	Vect_append_point(Points, mid_long, window.north, 0.0);
    Vect_append_point(Points, window.west, window.north, 0.0);
    Vect_append_point(Points, window.west, window.south, 0.0);


    if (type == GV_AREA) {
	Vect_write_line(&Out, GV_BOUNDARY, Points, Cats);

	Vect_reset_line(Points);
	Vect_append_point(Points, (window.west + window.east) / 2,
			  (window.south + window.north) / 2, 0.0);

	Vect_cat_set(Cats, 1, cat);
	Vect_write_line(&Out, GV_CENTROID, Points, Cats);
    }
    else {			/* GV_LINE */
	Vect_cat_set(Cats, 1, cat);
	Vect_write_line(&Out, GV_LINE, Points, Cats);
    }

    Vect_build(&Out);
    Vect_close(&Out);

    exit(EXIT_SUCCESS);
}
示例#13
0
/*
    Create GRASS vector output map.
    Create attribute table.
    Calculate geometries and write them into the output map.
    Calculate attributes and write them into the output map's attribute table.
*/
void writeMap()
{
    int i, j;
    
    double xlength, ylength, zlength;
    double length, flatLength, bailLength;
    double xoffset, yoffset, zoffset;
    double xys[12];
    int ratio;
    double zRatio;
       
    /* attributes to be written to output map */
    int boneID;
    int skelID;
    int unitID;
    int oldID;
    int cat;
    
    char *organization;
    
    char buf[MAXSTR];
   
    
    
    if ( numPoints < 2 ) {
        G_fatal_error ("Less than two valid measurement points in input file");
    }
    

    G_message (_("Constructing geometries for %i valid points:"), numPoints );
    
    /* CREATE OUTPUT VECTOR MAP */
    
    if (Vect_legal_filename(output->answer) < 0) {
	G_fatal_error(_("Use '%s' option to change vector map name"), output->key);
    }
    
    Map = (struct Map_info *) G_malloc (sizeof ( struct Map_info ) );
    if (Vect_open_new(Map, output->answer, WITH_Z) < 0) {
	G_fatal_error(_("Unable to create vector map <%s>"), output->answer);
    }

    Vect_set_map_name(Map, output->answer);

    Vect_hist_command(Map);    
  
    if ((organization = getenv("GRASS_ORGANIZATION"))) {
	Vect_set_organization(Map, organization);
    } else {
	Vect_set_organization(Map, "UNKNOWN ORGANIZATION");
    }
    Vect_set_date(Map, G_date());
    Vect_set_person(Map, G_whoami());
    Vect_set_map_date(Map, "");
    Vect_set_scale(Map, 2400);
    Vect_set_comment(Map, "");
    Vect_set_zone(Map, 0);
    Vect_set_thresh(Map, 0.0);
    
    
    /* START DBMS INTERFACE */
    
    /* prepare strings for use in db_* calls */
    db_init_string(&sql);
 	
    /* start default database driver */
    Fi = Vect_default_field_info(Map, 1, NULL, GV_1TABLE);
    driver = db_start_driver_open_database(Fi->driver,Vect_subst_var(Fi->database, Map));
    if (driver == NULL) {
	Vect_delete(output->answer);
        G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
			      Vect_subst_var(Fi->database, Map), Fi->driver);
    }
    
    /* create attribute table */
    db_begin_transaction ( driver );
    sprintf(buf, "create table %s (cat integer, skel_id integer, bone_id integer, unit_id integer, GRASSRGB varchar(11),BONERGB varchar(11));",
                  Fi->table);
    
    if ( DEBUG ) {
        fprintf ( stderr, "Creating attribute table: %s\n", buf );
    }
    
    db_set_string(&sql, buf);
    if (db_execute_immediate(driver, &sql) != DB_OK) {
        Vect_delete(output->answer);
	G_fatal_error(_("Unable to create attribute table: %s"), db_get_string(&sql));
    }
        
    if (db_grant_on_table
	(driver, output->answer, DB_PRIV_SELECT, DB_GROUP | DB_PUBLIC) != DB_OK) {
	Vect_delete(output->answer);
	G_fatal_error(_("Unable to grant privileges on table <%s>"), output->answer);
    }
    
    if (db_create_index2(driver, output->answer, "cat") != DB_OK) {
	G_warning(_("Unable to create index for table <%s>, key <%s>"), output->answer, "cat");
    }

    /* link vector map to attribute table */
    if (Vect_map_add_dblink(Map, 1, NULL, Fi->table, "cat", Fi->database, Fi->driver) ) {
        Vect_delete(output->answer);
	G_fatal_error(_("Unable to add database link for vector map <%s>"), Vect_get_full_name(Map));
    }
            
    
    /* PROCESS POINTS AND WRITE GEOMETRIES */
    /* Now process point measurements and write geometries into output vector map. */    
    /* At this stage, the global points array has an even number of valid points. */
    oldID = pointTable[0].SKEL_ID;
    unitID = 1;
    cat = 0;
    for ( i = 0; i < numPoints; i = i + 2 ) {
        /* This boneID is a generalized ID that does not differentiate 
	   between start and end measurement. */
        boneID = (int) pointTable[i+1].BONE_ID / 2;
        skelID = pointTable[i+1].SKEL_ID;

	/* get coordinates for top and bottom of bone */
        ax = pointTable[i].X;
        ay = pointTable[i].Y;
        az = pointTable[i].Z;
	
        bx = pointTable[i+1].X;
        by = pointTable[i+1].Y;
        bz = pointTable[i+1].Z;
	
        /* get vector lengths */
        xlength = fabs (ax - bx);
        ylength = fabs (ay - by);
        zlength = fabs (az - bz);
		
        /* get real length */
        length = sqrt ( (xlength*xlength) + (ylength*ylength) + (zlength*zlength) );
		
        /* get length in x/y plane */
        flatLength = sqrt ( (xlength*xlength) + (ylength*ylength) );
	
        /* determine ratio for triangles, depending on bone type */
        ratio = 12; /* default */
	for ( j = 0; j < NUM_RATIOS; j ++ ) {
	    if ( boneID == RATIO_ID[j] ) {
	        ratio = RATIO_VAL[j];
	    }
	}
			
	/* get bail length */
	bailLength = (double) ( length / (double) ratio);
	
        /* calculate bail offsets from top point (one bail is mirror of the other) */
        xoffset = (bailLength * ylength) / flatLength;
        yoffset = ( (bailLength * xlength) / flatLength ) * (-1);
        zoffset = 0;
						
        xys[0]= ax + xoffset;
        xys[1]= ay + yoffset;
        xys[2]= az + zoffset;
        xys[6]= ax - xoffset;
        xys[7]= ay - yoffset;
        xys[8]= az - zoffset;		
			
        /* get 3rd axis offsets */
        zRatio = (zlength/ratio) / flatLength;
        xoffset = xlength * zRatio;
        yoffset = ylength * zRatio;
        zoffset = (flatLength/ratio) * (-1);
	
        xys[3]= ax + xoffset;
        xys[4]= ay + yoffset;
        xys[5]= az + zoffset;
        xys[9]= ax - xoffset;
        xys[10]= ay - yoffset;
        xys[11]= az - zoffset;
	
        /* Increase unit ID by "1", if we have another skeleton ID */
        if ( oldID != pointTable[i+1].SKEL_ID ) {
            unitID ++;
            oldID = pointTable[i+1].SKEL_ID;
	    /* switch to next colour for next geometry */
            RGBNUM ++;
            if ( RGBNUM == RGBMAX ) {
                RGBNUM = 0;
            }	    
        }
	
	/* write geometries */
        if ( MODE == MODE_DARTS ) {
            writeTriangle ( cat, skelID, boneID, unitID, xys, 0, 6 );
	    cat ++;
            writeTriangle ( cat, skelID, boneID, unitID, xys, 3, 9 );
	    cat ++;
        }	
        if ( MODE == MODE_LINES ) {
            writeLine ( cat, skelID, boneID, unitID );
	    cat ++;
        }
        if ( MODE == MODE_PLANES_H ) {
	    writeTriangle ( cat, skelID, boneID, unitID, xys, 0, 6 );
	    cat ++;
	}
        if ( MODE == MODE_PLANES_V ) {
	    writeTriangle ( cat, skelID, boneID, unitID, xys, 3, 9 );
	    cat ++;
        }
	if ( MODE == MODE_POINTS ) {
            writePoints ( cat, skelID, boneID, unitID );	
	    cat = cat + 2;
	}
	if ( MODE == MODE_PYRAMIDS ) {
            writeTriangle ( cat, skelID, boneID, unitID, xys, 0, 3 );
	    cat ++;
            writeTriangle ( cat, skelID, boneID, unitID, xys, 3, 6 );
	    cat ++;
            writeTriangle ( cat, skelID, boneID, unitID, xys, 6, 9 );
	    cat ++;
            writeTriangle ( cat, skelID, boneID, unitID, xys, 9, 0 );
	    cat ++;
            writeSquare ( cat, skelID, boneID, unitID, xys );	
	    cat ++;
        }
	
	/* switch to next colour for bone colouring */
	RGBNUM_BONE ++;
        if ( RGBNUM_BONE == RGBMAX ) {
            RGBNUM_BONE = 0;
        }
	
	G_percent ( i, numPoints - 2, 1 );	    
	
     }
     fprintf ( stdout, "\n" );
    
    /* commit DBMS actions */
    db_commit_transaction(driver);
    db_close_database_shutdown_driver(driver);
    
    if (!Vect_build(Map)) {
        G_warning("Building topology failed");
    }
    
    Vect_close(Map);  
    db_free_string(&sql);
}
示例#14
0
文件: main.c 项目: imincik/pkg-grass
int main(int argc, char **argv)
{
    struct GModule *module;
    struct opts opt;
    struct Map_info In, Out;
    BOUND_BOX box;
    int field, type;
    int ret;
    
    G_gisinit(argv[0]);

    module = G_define_module();
    module->keywords = _("vector, transformation, 3D");
    module->description =
	_("Performs transformation of 2D vector features to 3D.");

    parse_args(&opt);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    field = atoi(opt.field->answer);
    type = Vect_option_to_types(opt.type);

    if (!opt.reverse->answer) {
	if ((!opt.height->answer && !opt.column->answer) ||
	    (opt.height->answer && opt.column->answer)) {
	    G_fatal_error(_("Either '%s' or '%s' parameter have to be used"),
			  opt.height->key, opt.column->key);
	}
    }
    else {
	if (opt.height->answer) {
	    G_warning(_("Parameters '%s' ignored"), opt.height->key);
	}
    }

    if (opt.reverse->answer && opt.table->answer) {
	G_fatal_error(_("Attribute table required"));
    }

    Vect_check_input_output_name(opt.input->answer, opt.output->answer,
				 GV_FATAL_EXIT);

    /* open input vector, topology not needed */
    Vect_set_open_level(1);
    if (Vect_open_old(&In, opt.input->answer, "") < 1)
	G_fatal_error(_("Unable to open vector map <%s>"), opt.input->answer);

    if (opt.reverse->answer && !Vect_is_3d(&In)) {
	Vect_close(&In);
	G_fatal_error(_("Vector map <%s> is 2D"), opt.input->answer);
    }

    if (!opt.reverse->answer && Vect_is_3d(&In)) {
	Vect_close(&In);
	G_fatal_error(_("Vector map <%s> is 3D"), opt.input->answer);
    }

    /* create output vector */
    Vect_set_open_level(2);
    if (Vect_open_new(&Out, opt.output->answer,
		      opt.reverse->answer ? WITHOUT_Z : WITH_Z) == -1)
	G_fatal_error(_("Unable to create vector map <%s>"),
		      opt.output->answer);

    /* copy history & header */
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);
    Vect_copy_head_data(&In, &Out);

    if (opt.reverse->answer && !opt.table->answer) {
	G_message(_("Copying attributes..."));
	if (Vect_copy_tables(&In, &Out, 0) == -1) {
	    G_warning(_("Unable to copy attributes"));
	}
    }

    G_message(_("Transforming features..."));
    ret = 0;
    if (opt.reverse->answer) {
	/* 3d -> 2d */
	ret = trans3d(&In, &Out, type, field, opt.column->answer);
    }
    else {
	/* 2d -> 3d */
	double height = 0.;

	if (opt.height->answer) {
	    height = atof(opt.height->answer);
	}
	ret = trans2d(&In, &Out, type, height, field, opt.column->answer);
    }

    if (ret < 0) {
	Vect_close(&In);
	Vect_close(&Out);
	Vect_delete(opt.output->answer);
	G_fatal_error(_("%s failed"), G_program_name());
    }

    if (!opt.reverse->answer && !opt.table->answer) {
	G_message(_("Copying attributes..."));
	if (Vect_copy_tables(&In, &Out, 0) == -1) {
	    G_warning(_("Unable to copy attributes"));
	}
    }

    Vect_close(&In);
    Vect_build(&Out);

    if (!opt.reverse->answer) {
	Vect_get_map_box(&Out, &box);
	G_message(_("Vertical extent of vector map <%s>: B: %f T: %f"),
		  opt.output->answer, box.B, box.T);
    }

    Vect_close(&Out);

    exit(EXIT_SUCCESS);
}
示例#15
0
int main(int argc, char **argv)
{
    int line;
    struct line_pnts *points;
    struct line_cats *Cats;

    struct Map_info map, Out;
    struct GModule *module;
    struct Option *input;
    struct Option *output;
    struct Option *cats;
    struct Option *type_opt;
    char *desc;

    int polyline;
    int *lines_visited;
    int points_in_polyline;
    int start_line;
    int nlines;
    int write_cats, copy_tables;

    int type, ltype;

    /*  Initialize the GIS calls */
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("topology"));
    G_add_keyword(_("geometry"));
    G_add_keyword(_("line"));
    G_add_keyword(_("node"));
    G_add_keyword(_("vertex"));
    module->description = _("Builds polylines from lines or boundaries.");

    /* Define the options */

    input = G_define_standard_option(G_OPT_V_INPUT);
    output = G_define_standard_option(G_OPT_V_OUTPUT);

    cats = G_define_option();
    cats->key = "cats";
    cats->type = TYPE_STRING;
    cats->description = _("Category number mode");
    cats->options = "no,first,multi,same";
    desc = NULL;
    G_asprintf(&desc,
	       "no;%s;first;%s;multi;%s;same;%s",
	       _("Do not assign any category number to polyline"),
	       _("Assign category number of first line to polyline"),
	       _("Assign multiple category numbers to polyline"),
	       _("Create polyline from lines with same categories"));
    cats->descriptions = desc;
    cats->answer = "no";

    type_opt = G_define_standard_option(G_OPT_V_TYPE);
    type_opt->options = "line,boundary";
    type_opt->answer = "line,boundary";

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    Vect_check_input_output_name(input->answer, output->answer,
				 G_FATAL_EXIT);

    /* Open binary vector map at level 2 */
    Vect_set_open_level(2);
    if (Vect_open_old(&map, input->answer, "") < 0)
	G_fatal_error(_("Unable to open vector map <%s>"), input->answer);

    /* Open new vector */
    G_find_vector2(output->answer, "");
    if (Vect_open_new(&Out, output->answer, Vect_is_3d(&map)) < 0)
	G_fatal_error(_("Unable to create vector map <%s>"), output->answer);

    /* Copy header info. */
    Vect_copy_head_data(&map, &Out);

    /* History */
    Vect_hist_copy(&map, &Out);
    Vect_hist_command(&Out);

    /* Get the number of lines in the binary map and set up record of lines visited */

    lines_visited =
	(int *)G_calloc(Vect_get_num_lines(&map) + 1, sizeof(int));

    /* Set up points structure and coordinate arrays */
    points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    /* Write cats */
    if (strcmp(cats->answer, "no") == 0)
	write_cats = NO_CATS;
    else if (strcmp(cats->answer, "first") == 0)
	write_cats = ONE_CAT;
    else
	write_cats = MULTI_CATS;

    if (type_opt->answer)
	type = Vect_option_to_types(type_opt);
    else
	type = GV_LINES;

    /* Step over all lines in binary map */
    polyline = 0;
    nlines = 0;

    copy_tables = (write_cats != NO_CATS);

    for (line = 1; line <= Vect_get_num_lines(&map); line++) {
	Vect_reset_cats(Cats);
	ltype = Vect_read_line(&map, NULL, NULL, line);

	if ((ltype & GV_LINES) && (ltype & type))
	    nlines++;
	else {
	    /* copy points to output as they are, with cats */
	    Vect_read_line(&map, points, Cats, line);
	    Vect_write_line(&Out, ltype, points, Cats);
	    if (Cats->n_cats > 0)
		copy_tables = 1;
	    continue;
	}

	/* Skip line if already visited from another */
	if (lines_visited[line])
	    continue;

	/* Only get here if line is not previously visited */

	/* Find start of this polyline */
	start_line = walk_back(&map, line, ltype);

	G_debug(1, "Polyline %d: start line = %d", polyline, start_line);

	/* Walk forward and pick up coordinates */
	points_in_polyline =
	    walk_forward_and_pick_up_coords(&map, start_line, ltype, points,
					    lines_visited, Cats, write_cats);

	/* Write the line (type of the first line is used) */
	Vect_write_line(&Out, ltype, points, Cats);

	polyline++;
    }

    G_verbose_message(n_("%d line or boundaries found in input vector map",
                         "%d lines or boundaries found in input vector map",
                         nlines),
		      nlines, Vect_get_name(&map), Vect_get_mapset(&map));
    G_verbose_message(n_("%d polyline stored in output vector map",
                         "%d polylines stored in output vector map",
                         polyline),
		      polyline, Vect_get_name(&Out), Vect_get_mapset(&Out));

    /* Copy (all linked) tables if needed */
    if (copy_tables) {
        if (Vect_copy_tables(&map, &Out, 0))
            G_warning(_("Failed to copy attribute table to output map"));
    }

    /* Tidy up */
    Vect_destroy_line_struct(points);
    Vect_destroy_cats_struct(Cats);
    G_free(lines_visited);
    Vect_close(&map);

    Vect_build(&Out);
    Vect_close(&Out);

    exit(EXIT_SUCCESS);
}
示例#16
0
文件: main.c 项目: rkrug/grass-ci
/*--------------------------------------------------------------------*/
int main(int argc, char *argv[])
{
    /* Variable declarations */
    int nsply, nsplx, nrows, ncols, nsplx_adj, nsply_adj;
    int nsubregion_col, nsubregion_row, subregion_row, subregion_col;
    int subregion = 0, nsubregions = 0;
    int last_row, last_column, grid, bilin, ext, flag_auxiliar, cross;	/* booleans */
    double stepN, stepE, lambda, mean;
    double N_extension, E_extension, edgeE, edgeN;

    const char *mapset, *drv, *db, *vector, *map;
    char table_name[GNAME_MAX], title[64];
    char xname[GNAME_MAX], xmapset[GMAPSET_MAX];

    int dim_vect, nparameters, BW;
    int *lineVect;		/* Vector restoring primitive's ID */
    double *TN, *Q, *parVect;	/* Interpolating and least-square vectors */
    double **N, **obsVect;	/* Interpolation and least-square matrix */

    SEGMENT out_seg, mask_seg;
    const char *out_file, *mask_file;
    int out_fd, mask_fd;
    double seg_size;
    int seg_mb, segments_in_memory;
    int have_mask;

    /* Structs declarations */
    int raster;
    struct Map_info In, In_ext, Out;
    struct History history;

    struct GModule *module;
    struct Option *in_opt, *in_ext_opt, *out_opt, *out_map_opt, *stepE_opt,
               *stepN_opt, *lambda_f_opt, *type_opt, *dfield_opt, *col_opt, *mask_opt,
               *memory_opt, *solver, *error, *iter;
    struct Flag *cross_corr_flag, *spline_step_flag;

    struct Reg_dimens dims;
    struct Cell_head elaboration_reg, original_reg;
    struct bound_box general_box, overlap_box, original_box;

    struct Point *observ;
    struct line_cats *Cats;
    dbCatValArray cvarr;

    int with_z;
    int nrec, ctype = 0;
    struct field_info *Fi;
    dbDriver *driver, *driver_cats;

    /*----------------------------------------------------------------*/
    /* Options declarations */
    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("surface"));
    G_add_keyword(_("interpolation"));
    G_add_keyword(_("LIDAR"));
    module->description =
        _("Performs bicubic or bilinear spline interpolation with Tykhonov regularization.");

    cross_corr_flag = G_define_flag();
    cross_corr_flag->key = 'c';
    cross_corr_flag->description =
        _("Find the best Tykhonov regularizing parameter using a \"leave-one-out\" cross validation method");

    spline_step_flag = G_define_flag();
    spline_step_flag->key = 'e';
    spline_step_flag->label = _("Estimate point density and distance");
    spline_step_flag->description =
        _("Estimate point density and distance for the input vector points within the current region extends and quit");

    in_opt = G_define_standard_option(G_OPT_V_INPUT);
    in_opt->label = _("Name of input vector point map");

    dfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    dfield_opt->guisection = _("Settings");

    col_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    col_opt->required = NO;
    col_opt->label =
        _("Name of the attribute column with values to be used for approximation");
    col_opt->description = _("If not given and input is 3D vector map then z-coordinates are used.");
    col_opt->guisection = _("Settings");

    in_ext_opt = G_define_standard_option(G_OPT_V_INPUT);
    in_ext_opt->key = "sparse_input";
    in_ext_opt->required = NO;
    in_ext_opt->label =
        _("Name of input vector map with sparse points");

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    out_opt->required = NO;
    out_opt->guisection = _("Outputs");

    out_map_opt = G_define_standard_option(G_OPT_R_OUTPUT);
    out_map_opt->key = "raster_output";
    out_map_opt->required = NO;
    out_map_opt->guisection = _("Outputs");

    mask_opt = G_define_standard_option(G_OPT_R_INPUT);
    mask_opt->key = "mask";
    mask_opt->label = _("Raster map to use for masking (applies to raster output only)");
    mask_opt->description = _("Only cells that are not NULL and not zero are interpolated");
    mask_opt->required = NO;

    stepE_opt = G_define_option();
    stepE_opt->key = "ew_step";
    stepE_opt->type = TYPE_DOUBLE;
    stepE_opt->required = NO;
    stepE_opt->answer = "4";
    stepE_opt->description =
        _("Length of each spline step in the east-west direction");
    stepE_opt->guisection = _("Settings");

    stepN_opt = G_define_option();
    stepN_opt->key = "ns_step";
    stepN_opt->type = TYPE_DOUBLE;
    stepN_opt->required = NO;
    stepN_opt->answer = "4";
    stepN_opt->description =
        _("Length of each spline step in the north-south direction");
    stepN_opt->guisection = _("Settings");

    type_opt = G_define_option();
    type_opt->key = "method";
    type_opt->description = _("Spline interpolation algorithm");
    type_opt->type = TYPE_STRING;
    type_opt->options = "bilinear,bicubic";
    type_opt->answer = "bilinear";
    type_opt->guisection = _("Settings");
    G_asprintf((char **) &(type_opt->descriptions),
               "bilinear;%s;bicubic;%s",
               _("Bilinear interpolation"),
               _("Bicubic interpolation"));

    lambda_f_opt = G_define_option();
    lambda_f_opt->key = "lambda_i";
    lambda_f_opt->type = TYPE_DOUBLE;
    lambda_f_opt->required = NO;
    lambda_f_opt->description = _("Tykhonov regularization parameter (affects smoothing)");
    lambda_f_opt->answer = "0.01";
    lambda_f_opt->guisection = _("Settings");

    solver = N_define_standard_option(N_OPT_SOLVER_SYMM);
    solver->options = "cholesky,cg";
    solver->answer = "cholesky";

    iter = N_define_standard_option(N_OPT_MAX_ITERATIONS);

    error = N_define_standard_option(N_OPT_ITERATION_ERROR);

    memory_opt = G_define_option();
    memory_opt->key = "memory";
    memory_opt->type = TYPE_INTEGER;
    memory_opt->required = NO;
    memory_opt->answer = "300";
    memory_opt->label = _("Maximum memory to be used (in MB)");
    memory_opt->description = _("Cache size for raster rows");

    /*----------------------------------------------------------------*/
    /* Parsing */
    G_gisinit(argv[0]);
    if (G_parser(argc, argv))
        exit(EXIT_FAILURE);

    vector = out_opt->answer;
    map = out_map_opt->answer;

    if (vector && map)
        G_fatal_error(_("Choose either vector or raster output, not both"));

    if (!vector && !map && !cross_corr_flag->answer)
        G_fatal_error(_("No raster or vector or cross-validation output"));

    if (!strcmp(type_opt->answer, "linear"))
        bilin = P_BILINEAR;
    else
        bilin = P_BICUBIC;

    stepN = atof(stepN_opt->answer);
    stepE = atof(stepE_opt->answer);
    lambda = atof(lambda_f_opt->answer);

    flag_auxiliar = FALSE;

    drv = db_get_default_driver_name();
    if (!drv) {
        if (db_set_default_connection() != DB_OK)
            G_fatal_error(_("Unable to set default DB connection"));
        drv = db_get_default_driver_name();
    }
    db = db_get_default_database_name();
    if (!db)
        G_fatal_error(_("No default DB defined"));

    /* Set auxiliary table's name */
    if (vector) {
        if (G_name_is_fully_qualified(out_opt->answer, xname, xmapset)) {
            sprintf(table_name, "%s_aux", xname);
        }
        else
            sprintf(table_name, "%s_aux", out_opt->answer);
    }

    /* Something went wrong in a previous v.surf.bspline execution */
    if (db_table_exists(drv, db, table_name)) {
        /* Start driver and open db */
        driver = db_start_driver_open_database(drv, db);
        if (driver == NULL)
            G_fatal_error(_("No database connection for driver <%s> is defined. Run db.connect."),
                          drv);
        db_set_error_handler_driver(driver);

        if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
            G_fatal_error(_("Old auxiliary table could not be dropped"));
        db_close_database_shutdown_driver(driver);
    }

    /* Open input vector */
    if ((mapset = G_find_vector2(in_opt->answer, "")) == NULL)
        G_fatal_error(_("Vector map <%s> not found"), in_opt->answer);

    Vect_set_open_level(1);	/* WITHOUT TOPOLOGY */
    if (1 > Vect_open_old(&In, in_opt->answer, mapset))
        G_fatal_error(_("Unable to open vector map <%s> at the topological level"),
                      in_opt->answer);

    bspline_field = 0; /* assume 3D input */
    bspline_column = col_opt->answer;

    with_z = !bspline_column && Vect_is_3d(&In);

    if (Vect_is_3d(&In)) {
        if (!with_z)
            G_verbose_message(_("Input is 3D: using attribute values instead of z-coordinates for approximation"));
        else
            G_verbose_message(_("Input is 3D: using z-coordinates for approximation"));
    }
    else { /* 2D */
        if (!bspline_column)
            G_fatal_error(_("Input vector map is 2D. Parameter <%s> required."), col_opt->key);
    }

    if (!with_z) {
        bspline_field = Vect_get_field_number(&In, dfield_opt->answer);
    }

    /* Estimate point density and mean distance for current region */
    if (spline_step_flag->answer) {
        double dens, dist;
        if (P_estimate_splinestep(&In, &dens, &dist) == 0) {
            fprintf(stdout, _("Estimated point density: %.4g"), dens);
            fprintf(stdout, _("Estimated mean distance between points: %.4g"), dist);
        }
        else {
            fprintf(stdout, _("No points in current region"));
        }

        Vect_close(&In);
        exit(EXIT_SUCCESS);
    }

    /*----------------------------------------------------------------*/
    /* Cross-correlation begins */
    if (cross_corr_flag->answer) {
        G_debug(1, "CrossCorrelation()");
        cross = cross_correlation(&In, stepE, stepN);

        if (cross != TRUE)
            G_fatal_error(_("Cross validation didn't finish correctly"));
        else {
            G_debug(1, "Cross validation finished correctly");

            Vect_close(&In);

            G_done_msg(_("Cross validation finished for ew_step = %f and ns_step = %f"), stepE, stepN);
            exit(EXIT_SUCCESS);
        }
    }

    /* Open input ext vector */
    ext = FALSE;
    if (in_ext_opt->answer) {
        ext = TRUE;
        G_message(_("Vector map <%s> of sparse points will be interpolated"),
                  in_ext_opt->answer);

        if ((mapset = G_find_vector2(in_ext_opt->answer, "")) == NULL)
            G_fatal_error(_("Vector map <%s> not found"), in_ext_opt->answer);

        Vect_set_open_level(1);	/* WITHOUT TOPOLOGY */
        if (1 > Vect_open_old(&In_ext, in_ext_opt->answer, mapset))
            G_fatal_error(_("Unable to open vector map <%s> at the topological level"),
                          in_opt->answer);
    }

    /* Open output map */
    /* vector output */
    if (vector && !map) {
        if (strcmp(drv, "dbf") == 0)
            G_fatal_error(_("Sorry, the <%s> driver is not compatible with "
                            "the vector output of this module. "
                            "Try with raster output or another driver."), drv);

        Vect_check_input_output_name(in_opt->answer, out_opt->answer,
                                     G_FATAL_EXIT);
        grid = FALSE;

        if (0 > Vect_open_new(&Out, out_opt->answer, WITH_Z))
            G_fatal_error(_("Unable to create vector map <%s>"),
                          out_opt->answer);

        /* Copy vector Head File */
        if (ext == FALSE) {
            Vect_copy_head_data(&In, &Out);
            Vect_hist_copy(&In, &Out);
        }
        else {
            Vect_copy_head_data(&In_ext, &Out);
            Vect_hist_copy(&In_ext, &Out);
        }
        Vect_hist_command(&Out);

        G_verbose_message(_("Points in input vector map <%s> will be interpolated"),
                          vector);
    }


    /* read z values from attribute table */
    if (bspline_field > 0) {
        G_message(_("Reading values from attribute table..."));
        db_CatValArray_init(&cvarr);
        Fi = Vect_get_field(&In, bspline_field);
        if (Fi == NULL)
            G_fatal_error(_("Cannot read layer info"));

        driver_cats = db_start_driver_open_database(Fi->driver, Fi->database);
        /*G_debug (0, _("driver=%s db=%s"), Fi->driver, Fi->database); */

        if (driver_cats == NULL)
            G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
                          Fi->database, Fi->driver);
        db_set_error_handler_driver(driver_cats);

        nrec =
            db_select_CatValArray(driver_cats, Fi->table, Fi->key,
                                  col_opt->answer, NULL, &cvarr);
        G_debug(3, "nrec = %d", nrec);

        ctype = cvarr.ctype;
        if (ctype != DB_C_TYPE_INT && ctype != DB_C_TYPE_DOUBLE)
            G_fatal_error(_("Column type not supported"));

        if (nrec < 0)
            G_fatal_error(_("Unable to select data from table"));

        G_verbose_message(_("%d records selected from table"), nrec);

        db_close_database_shutdown_driver(driver_cats);
    }

    /*----------------------------------------------------------------*/
    /* Interpolation begins */
    G_debug(1, "Interpolation()");

    /* Open driver and database */
    driver = db_start_driver_open_database(drv, db);
    if (driver == NULL)
        G_fatal_error(_("No database connection for driver <%s> is defined. "
                        "Run db.connect."), drv);
    db_set_error_handler_driver(driver);

    /* Create auxiliary table */
    if (vector) {
        if ((flag_auxiliar = P_Create_Aux4_Table(driver, table_name)) == FALSE) {
            P_Drop_Aux_Table(driver, table_name);
            G_fatal_error(_("Interpolation: Creating table: "
                            "It was impossible to create table <%s>."),
                          table_name);
        }
        /* db_create_index2(driver, table_name, "ID"); */
        /* sqlite likes that ??? */
        db_close_database_shutdown_driver(driver);
        driver = db_start_driver_open_database(drv, db);
    }

    /* raster output */
    raster = -1;
    Rast_set_fp_type(DCELL_TYPE);
    if (!vector && map) {
        grid = TRUE;
        raster = Rast_open_fp_new(out_map_opt->answer);

        G_verbose_message(_("Cells for raster map <%s> will be interpolated"),
                          map);
    }

    /* Setting regions and boxes */
    G_debug(1, "Interpolation: Setting regions and boxes");
    G_get_window(&original_reg);
    G_get_window(&elaboration_reg);
    Vect_region_box(&original_reg, &original_box);
    Vect_region_box(&elaboration_reg, &overlap_box);
    Vect_region_box(&elaboration_reg, &general_box);

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* Alloc raster matrix */
    have_mask = 0;
    out_file = mask_file = NULL;
    out_fd = mask_fd = -1;
    if (grid == TRUE) {
        int row;
        DCELL *drastbuf;

        seg_mb = atoi(memory_opt->answer);
        if (seg_mb < 3)
            G_fatal_error(_("Memory in MB must be >= 3"));

        if (mask_opt->answer)
            seg_size = sizeof(double) + sizeof(char);
        else
            seg_size = sizeof(double);

        seg_size = (seg_size * SEGSIZE * SEGSIZE) / (1 << 20);
        segments_in_memory = seg_mb / seg_size + 0.5;
        G_debug(1, "%d %dx%d segments held in memory", segments_in_memory, SEGSIZE, SEGSIZE);

        out_file = G_tempfile();
        out_fd = creat(out_file, 0666);
        if (Segment_format(out_fd, nrows, ncols, SEGSIZE, SEGSIZE, sizeof(double)) != 1)
            G_fatal_error(_("Can not create temporary file"));
        close(out_fd);

        out_fd = open(out_file, 2);
        if (Segment_init(&out_seg, out_fd, segments_in_memory) != 1)
            G_fatal_error(_("Can not initialize temporary file"));

        /* initialize output */
        G_message(_("Initializing output..."));

        drastbuf = Rast_allocate_buf(DCELL_TYPE);
        Rast_set_d_null_value(drastbuf, ncols);
        for (row = 0; row < nrows; row++) {
            G_percent(row, nrows, 2);
            Segment_put_row(&out_seg, drastbuf, row);
        }
        G_percent(row, nrows, 2);

        if (mask_opt->answer) {
            int row, col, maskfd;
            DCELL dval, *drastbuf;
            char mask_val;

            G_message(_("Load masking map"));

            mask_file = G_tempfile();
            mask_fd = creat(mask_file, 0666);
            if (Segment_format(mask_fd, nrows, ncols, SEGSIZE, SEGSIZE, sizeof(char)) != 1)
                G_fatal_error(_("Can not create temporary file"));
            close(mask_fd);

            mask_fd = open(mask_file, 2);
            if (Segment_init(&mask_seg, mask_fd, segments_in_memory) != 1)
                G_fatal_error(_("Can not initialize temporary file"));

            maskfd = Rast_open_old(mask_opt->answer, "");
            drastbuf = Rast_allocate_buf(DCELL_TYPE);

            for (row = 0; row < nrows; row++) {
                G_percent(row, nrows, 2);
                Rast_get_d_row(maskfd, drastbuf, row);
                for (col = 0; col < ncols; col++) {
                    dval = drastbuf[col];
                    if (Rast_is_d_null_value(&dval) || dval == 0)
                        mask_val = 0;
                    else
                        mask_val = 1;

                    Segment_put(&mask_seg, &mask_val, row, col);
                }
            }

            G_percent(row, nrows, 2);
            G_free(drastbuf);
            Rast_close(maskfd);

            have_mask = 1;
        }
    }

    /*------------------------------------------------------------------
      | Subdividing and working with tiles:
      | Each original region will be divided into several subregions.
      | Each one will be overlaped by its neighbouring subregions.
      | The overlapping is calculated as a fixed OVERLAP_SIZE times
      | the largest spline step plus 2 * edge
      ----------------------------------------------------------------*/

    /* Fixing parameters of the elaboration region */
    P_zero_dim(&dims);		/* Set dim struct to zero */

    nsplx_adj = NSPLX_MAX;
    nsply_adj = NSPLY_MAX;
    if (stepN > stepE)
        dims.overlap = OVERLAP_SIZE * stepN;
    else
        dims.overlap = OVERLAP_SIZE * stepE;
    P_get_edge(bilin, &dims, stepE, stepN);
    P_set_dim(&dims, stepE, stepN, &nsplx_adj, &nsply_adj);

    G_verbose_message(_("Adjusted EW splines %d"), nsplx_adj);
    G_verbose_message(_("Adjusted NS splines %d"), nsply_adj);

    /* calculate number of subregions */
    edgeE = dims.ew_size - dims.overlap - 2 * dims.edge_v;
    edgeN = dims.sn_size - dims.overlap - 2 * dims.edge_h;

    N_extension = original_reg.north - original_reg.south;
    E_extension = original_reg.east - original_reg.west;

    nsubregion_col = ceil(E_extension / edgeE) + 0.5;
    nsubregion_row = ceil(N_extension / edgeN) + 0.5;

    if (nsubregion_col < 0)
        nsubregion_col = 0;
    if (nsubregion_row < 0)
        nsubregion_row = 0;

    nsubregions = nsubregion_row * nsubregion_col;

    /* Creating line and categories structs */
    Cats = Vect_new_cats_struct();
    Vect_cat_set(Cats, 1, 0);

    subregion_row = 0;
    elaboration_reg.south = original_reg.north;
    last_row = FALSE;

    while (last_row == FALSE) {	/* For each subregion row */
        subregion_row++;
        P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
                      GENERAL_ROW);

        if (elaboration_reg.north > original_reg.north) {	/* First row */

            P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
                          FIRST_ROW);
        }

        if (elaboration_reg.south <= original_reg.south) {	/* Last row */

            P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
                          LAST_ROW);
            last_row = TRUE;
        }

        nsply =
            ceil((elaboration_reg.north -
                  elaboration_reg.south) / stepN) + 0.5;
        G_debug(1, "Interpolation: nsply = %d", nsply);
        /*
        if (nsply > NSPLY_MAX)
            nsply = NSPLY_MAX;
        */
        elaboration_reg.east = original_reg.west;
        last_column = FALSE;
        subregion_col = 0;

        /* TODO: process each subregion using its own thread (via OpenMP or pthreads) */
        /*     I'm not sure about pthreads, but you can tell OpenMP to start all at the
        	same time and it will keep num_workers supplied with the next job as free
        	cpus become available */
        while (last_column == FALSE) {	/* For each subregion column */
            int npoints = 0;
            /* needed for sparse points interpolation */
            int npoints_ext, *lineVect_ext = NULL;
            double **obsVect_ext;	/*, mean_ext = .0; */
            struct Point *observ_ext;

            subregion_col++;
            subregion++;
            if (nsubregions > 1)
                G_message(_("Processing subregion %d of %d..."), subregion, nsubregions);

            P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
                          GENERAL_COLUMN);

            if (elaboration_reg.west < original_reg.west) {	/* First column */

                P_set_regions(&elaboration_reg, &general_box, &overlap_box,
                              dims, FIRST_COLUMN);
            }

            if (elaboration_reg.east >= original_reg.east) {	/* Last column */

                P_set_regions(&elaboration_reg, &general_box, &overlap_box,
                              dims, LAST_COLUMN);
                last_column = TRUE;
            }
            nsplx =
                ceil((elaboration_reg.east -
                      elaboration_reg.west) / stepE) + 0.5;
            G_debug(1, "Interpolation: nsplx = %d", nsplx);
            /*
            if (nsplx > NSPLX_MAX)
            nsplx = NSPLX_MAX;
            */
            G_debug(1, "Interpolation: (%d,%d): subregion bounds",
                    subregion_row, subregion_col);
            G_debug(1, "Interpolation: \t\tNORTH:%.2f\t",
                    elaboration_reg.north);
            G_debug(1, "Interpolation: WEST:%.2f\t\tEAST:%.2f",
                    elaboration_reg.west, elaboration_reg.east);
            G_debug(1, "Interpolation: \t\tSOUTH:%.2f",
                    elaboration_reg.south);

#ifdef DEBUG_SUBREGIONS
            fprintf(stdout, "B 5\n");
            fprintf(stdout, " %.11g %.11g\n", elaboration_reg.east, elaboration_reg.north);
            fprintf(stdout, " %.11g %.11g\n", elaboration_reg.west, elaboration_reg.north);
            fprintf(stdout, " %.11g %.11g\n", elaboration_reg.west, elaboration_reg.south);
            fprintf(stdout, " %.11g %.11g\n", elaboration_reg.east, elaboration_reg.south);
            fprintf(stdout, " %.11g %.11g\n", elaboration_reg.east, elaboration_reg.north);
            fprintf(stdout, "C 1 1\n");
            fprintf(stdout, " %.11g %.11g\n", (elaboration_reg.west + elaboration_reg.east) / 2,
                    (elaboration_reg.south + elaboration_reg.north) / 2);
            fprintf(stdout, " 1 %d\n", subregion);
#endif



            /* reading points in interpolation region */
            dim_vect = nsplx * nsply;
            observ_ext = NULL;
            if (grid == FALSE && ext == TRUE) {
                observ_ext =
                    P_Read_Vector_Region_Map(&In_ext,
                                             &elaboration_reg,
                                             &npoints_ext, dim_vect,
                                             1);
            }
            else
                npoints_ext = 1;

            if (grid == TRUE && have_mask) {
                /* any unmasked cells in general region ? */
                mean = 0;
                observ_ext =
                    P_Read_Raster_Region_masked(&mask_seg, &original_reg,
                                                original_box, general_box,
                                                &npoints_ext, dim_vect, mean);
            }

            observ = NULL;
            if (npoints_ext > 0) {
                observ =
                    P_Read_Vector_Region_Map(&In, &elaboration_reg, &npoints,
                                             dim_vect, bspline_field);
            }
            else
                npoints = 1;

            G_debug(1,
                    "Interpolation: (%d,%d): Number of points in <elaboration_box> is %d",
                    subregion_row, subregion_col, npoints);
            if (npoints > 0)
                G_verbose_message(_("%d points found in this subregion"), npoints);
            /* only interpolate if there are any points in current subregion */
            if (npoints > 0 && npoints_ext > 0) {
                int i;

                nparameters = nsplx * nsply;
                BW = P_get_BandWidth(bilin, nsply);

                /* Least Squares system */
                N = G_alloc_matrix(nparameters, BW);	/* Normal matrix */
                TN = G_alloc_vector(nparameters);	/* vector */
                parVect = G_alloc_vector(nparameters);	/* Parameters vector */
                obsVect = G_alloc_matrix(npoints, 3);	/* Observation vector */
                Q = G_alloc_vector(npoints);	/* "a priori" var-cov matrix */
                lineVect = G_alloc_ivector(npoints);	/*  */

                for (i = 0; i < npoints; i++) {	/* Setting obsVect vector & Q matrix */
                    double dval;

                    Q[i] = 1;	/* Q=I */
                    lineVect[i] = observ[i].lineID;
                    obsVect[i][0] = observ[i].coordX;
                    obsVect[i][1] = observ[i].coordY;

                    /* read z coordinates from attribute table */
                    if (bspline_field > 0) {
                        int cat, ival, ret;

                        cat = observ[i].cat;
                        if (cat < 0)
                            continue;

                        if (ctype == DB_C_TYPE_INT) {
                            ret =
                                db_CatValArray_get_value_int(&cvarr, cat,
                                                             &ival);
                            obsVect[i][2] = ival;
                            observ[i].coordZ = ival;
                        }
                        else {	/* DB_C_TYPE_DOUBLE */
                            ret =
                                db_CatValArray_get_value_double(&cvarr, cat,
                                                                &dval);
                            obsVect[i][2] = dval;
                            observ[i].coordZ = dval;
                        }
                        if (ret != DB_OK) {
                            G_warning(_("Interpolation: (%d,%d): No record for point (cat = %d)"),
                                      subregion_row, subregion_col, cat);
                            continue;
                        }
                    }
                    /* use z coordinates of 3D vector */
                    else {
                        obsVect[i][2] = observ[i].coordZ;
                    }
                }

                /* Mean calculation for every point */
                mean = P_Mean_Calc(&elaboration_reg, observ, npoints);

                G_debug(1, "Interpolation: (%d,%d): mean=%lf",
                        subregion_row, subregion_col, mean);

                G_free(observ);

                for (i = 0; i < npoints; i++)
                    obsVect[i][2] -= mean;

                /* Bilinear interpolation */
                if (bilin) {
                    G_debug(1,
                            "Interpolation: (%d,%d): Bilinear interpolation...",
                            subregion_row, subregion_col);
                    normalDefBilin(N, TN, Q, obsVect, stepE, stepN, nsplx,
                                   nsply, elaboration_reg.west,
                                   elaboration_reg.south, npoints,
                                   nparameters, BW);
                    nCorrectGrad(N, lambda, nsplx, nsply, stepE, stepN);
                }
                /* Bicubic interpolation */
                else {
                    G_debug(1,
                            "Interpolation: (%d,%d): Bicubic interpolation...",
                            subregion_row, subregion_col);
                    normalDefBicubic(N, TN, Q, obsVect, stepE, stepN, nsplx,
                                     nsply, elaboration_reg.west,
                                     elaboration_reg.south, npoints,
                                     nparameters, BW);
                    nCorrectGrad(N, lambda, nsplx, nsply, stepE, stepN);
                }

                if(G_strncasecmp(solver->answer, "cg", 2) == 0)
                    G_math_solver_cg_sband(N, parVect, TN, nparameters, BW, atoi(iter->answer), atof(error->answer));
                else
                    G_math_solver_cholesky_sband(N, parVect, TN, nparameters, BW);


                G_free_matrix(N);
                G_free_vector(TN);
                G_free_vector(Q);

                if (grid == TRUE) {	/* GRID INTERPOLATION ==> INTERPOLATION INTO A RASTER */
                    G_debug(1, "Interpolation: (%d,%d): Regular_Points...",
                            subregion_row, subregion_col);

                    if (!have_mask) {
                        P_Regular_Points(&elaboration_reg, &original_reg, general_box,
                                         overlap_box, &out_seg, parVect,
                                         stepN, stepE, dims.overlap, mean,
                                         nsplx, nsply, nrows, ncols, bilin);
                    }
                    else {
                        P_Sparse_Raster_Points(&out_seg,
                                               &elaboration_reg, &original_reg,
                                               general_box, overlap_box,
                                               observ_ext, parVect,
                                               stepE, stepN,
                                               dims.overlap, nsplx, nsply,
                                               npoints_ext, bilin, mean);
                    }
                }
                else {		/* OBSERVATION POINTS INTERPOLATION */
                    if (ext == FALSE) {
                        G_debug(1, "Interpolation: (%d,%d): Sparse_Points...",
                                subregion_row, subregion_col);
                        P_Sparse_Points(&Out, &elaboration_reg, general_box,
                                        overlap_box, obsVect, parVect,
                                        lineVect, stepE, stepN,
                                        dims.overlap, nsplx, nsply, npoints,
                                        bilin, Cats, driver, mean,
                                        table_name);
                    }
                    else {	/* FLAG_EXT == TRUE */

                        /* done that earlier */
                        /*
                        int npoints_ext, *lineVect_ext = NULL;
                        double **obsVect_ext;
                        struct Point *observ_ext;

                        observ_ext =
                            P_Read_Vector_Region_Map(&In_ext,
                        			     &elaboration_reg,
                        			     &npoints_ext, dim_vect,
                        			     1);
                        */

                        obsVect_ext = G_alloc_matrix(npoints_ext, 3);	/* Observation vector_ext */
                        lineVect_ext = G_alloc_ivector(npoints_ext);

                        for (i = 0; i < npoints_ext; i++) {	/* Setting obsVect_ext vector & Q matrix */
                            obsVect_ext[i][0] = observ_ext[i].coordX;
                            obsVect_ext[i][1] = observ_ext[i].coordY;
                            obsVect_ext[i][2] = observ_ext[i].coordZ - mean;
                            lineVect_ext[i] = observ_ext[i].lineID;
                        }

                        G_free(observ_ext);

                        G_debug(1, "Interpolation: (%d,%d): Sparse_Points...",
                                subregion_row, subregion_col);
                        P_Sparse_Points(&Out, &elaboration_reg, general_box,
                                        overlap_box, obsVect_ext, parVect,
                                        lineVect_ext, stepE, stepN,
                                        dims.overlap, nsplx, nsply,
                                        npoints_ext, bilin, Cats, driver,
                                        mean, table_name);

                        G_free_matrix(obsVect_ext);
                        G_free_ivector(lineVect_ext);
                    }		/* END FLAG_EXT == TRUE */
                }		/* END GRID == FALSE */
                G_free_vector(parVect);
                G_free_matrix(obsVect);
                G_free_ivector(lineVect);
            }
            else {
                if (observ)
                    G_free(observ);
                if (observ_ext)
                    G_free(observ_ext);
                if (npoints == 0)
                    G_warning(_("No data within this subregion. "
                                "Consider increasing spline step values."));
            }
        }			/*! END WHILE; last_column = TRUE */
    }				/*! END WHILE; last_row = TRUE */

    G_verbose_message(_("Writing output..."));
    /* Writing the output raster map */
    if (grid == TRUE) {
        int row, col;
        DCELL *drastbuf, dval;


        if (have_mask) {
            Segment_release(&mask_seg);	/* release memory  */
            close(mask_fd);
            unlink(mask_file);
        }

        drastbuf = Rast_allocate_buf(DCELL_TYPE);
        for (row = 0; row < nrows; row++) {
            G_percent(row, nrows, 2);
            for (col = 0; col < ncols; col++) {
                Segment_get(&out_seg, &dval, row, col);
                drastbuf[col] = dval;
            }
            Rast_put_d_row(raster, drastbuf);
        }

        Rast_close(raster);

        Segment_release(&out_seg);	/* release memory  */
        close(out_fd);
        unlink(out_file);
        /* set map title */
        sprintf(title, "%s interpolation with Tykhonov regularization",
                type_opt->answer);
        Rast_put_cell_title(out_map_opt->answer, title);
        /* write map history */
        Rast_short_history(out_map_opt->answer, "raster", &history);
        Rast_command_history(&history);
        Rast_write_history(out_map_opt->answer, &history);
    }
    /* Writing to the output vector map the points from the overlapping zones */
    else if (flag_auxiliar == TRUE) {
        if (ext == FALSE)
            P_Aux_to_Vector(&In, &Out, driver, table_name);
        else
            P_Aux_to_Vector(&In_ext, &Out, driver, table_name);

        /* Drop auxiliary table */
        G_debug(1, "%s: Dropping <%s>", argv[0], table_name);
        if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
            G_fatal_error(_("Auxiliary table could not be dropped"));
    }

    db_close_database_shutdown_driver(driver);

    Vect_close(&In);
    if (ext != FALSE)
        Vect_close(&In_ext);
    if (vector)
        Vect_close(&Out);

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}				/*END MAIN */
示例#17
0
文件: main.c 项目: imincik/pkg-grass
int main(int argc, char *argv[])
{
    struct dxf_file *dxf;
    struct Map_info *Map;
    char *output = NULL;

    struct GModule *module;
    struct
    {
	struct Flag *list;
	struct Flag *extent;
	struct Flag *table;
	struct Flag *topo;
	struct Flag *invert;
	struct Flag *one_layer;
	struct Flag *frame;
    } flag;
    struct
    {
	struct Option *input;
	struct Option *output;
	struct Option *layers;
    } opt;

    G_gisinit(argv[0]);

    module = G_define_module();
    module->keywords = _("vector, import");
    module->description =
	_("Converts files in DXF format to GRASS vector map format.");

    flag.extent = G_define_flag();
    flag.extent->key = 'e';
    flag.extent->description = _("Ignore the map extent of DXF file");

    flag.table = G_define_flag();
    flag.table->key = 't';
    flag.table->description = _("Do not create attribute tables");

    flag.topo = G_define_flag();
    flag.topo->key = 'b';
    flag.topo->description = _("Do not build topology");

    flag.frame = G_define_flag();
    flag.frame->key = 'f';
    flag.frame->description = _("Import polyface meshes as 3D wire frame");

    flag.list = G_define_flag();
    flag.list->key = 'l';
    flag.list->description = _("List available layers and exit");
    flag.list->guisection = _("DXF layers");

    flag.invert = G_define_flag();
    flag.invert->key = 'i';
    flag.invert->description =
	_("Invert selection by layers (don't import layers in list)");
    flag.invert->guisection = _("DXF layers");

    flag.one_layer = G_define_flag();
    flag.one_layer->key = '1';
    flag.one_layer->description = _("Import all objects into one layer");
    flag.one_layer->guisection = _("DXF layers");

    opt.input = G_define_standard_option(G_OPT_F_INPUT);
    opt.input->description = _("Name of input DXF file");

    opt.output = G_define_standard_option(G_OPT_V_OUTPUT);
    opt.output->required = NO;

    opt.layers = G_define_option();
    opt.layers->key = "layers";
    opt.layers->type = TYPE_STRING;
    opt.layers->required = NO;
    opt.layers->multiple = YES;
    opt.layers->description = _("List of layers to import");
    opt.layers->guisection = _("DXF layers");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    flag_list = flag.list->answer;
    flag_extent = flag.extent->answer;
    flag_table = flag.table->answer;
    flag_invert = flag.invert->answer;
    flag_one_layer = flag.one_layer->answer;
    flag_frame = flag.frame->answer;

    /* open DXF file */
    if (!(dxf = dxf_open(opt.input->answer)))
	G_fatal_error(_("Unable to open DXF file <%s>"), opt.input->answer);

    if (flag_list) {
	num_layers = 0;
	layers = NULL;
	Map = NULL;
    }
    else {
	/* make vector map name SQL compliant */
	if (opt.output->answer) {
	    output = G_store(opt.output->answer);
	}
	else {
	    char *p, *p2;

	    if ((p = G_rindex(dxf->name, '/')))
		p++;
	    else
		p = dxf->name;
	    output = G_store(p);
	    if ((p2 = G_rindex(p, '.')))
		output[p2 - p] = 0;
	}
	{
	    char *p;

	    for (p = output; *p; p++)
		if (*p == '.')
		    *p = '_';
	}

	layers = opt.layers->answers;

	if (!G_check_overwrite(argc, argv) &&
	    G_find_vector2(output, G_mapset())) {
	    G_fatal_error(_("Option <%s>: <%s> exists."), opt.output->key,
			  output);
	}

	if (Vect_legal_filename(output) < 0)
	    G_fatal_error(_("Use '%s' option to change vector map name"),
			  opt.output->key);

	/* create vector map */
	Map = (struct Map_info *)G_malloc(sizeof(struct Map_info));
	if (Vect_open_new(Map, output, 1) < 0)
	    G_fatal_error(_("Unable to create vector map <%s>"), output);

	Vect_set_map_name(Map, output);

	Vect_hist_command(Map);
    }

    /* import */
    dxf_to_vect(dxf, Map);

    dxf_close(dxf);

    if (flag_list)
	init_list();
    else {
	Vect_close(Map);

	if (found_layers) {
	    if (Vect_open_old(Map, output, G_mapset())) {
		if (!flag_topo)
		    if (!Vect_build(Map))
			G_warning(_("Building topology failed"));
		Vect_close(Map);
	    }
	}
	else {
	    Vect_delete(output);
	    G_fatal_error(_("Failed to import DXF file!"));
	}

	G_free(output);
	G_free(Map);
    }

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}
示例#18
0
文件: main.c 项目: caomw/grass
int main(int argc, char **argv)
{
    int i, j, ret, centre, line, centre1, centre2, tfield, tucfield;
    int nlines, nnodes, type, ltype, afield, nfield, geo, cat;
    int node, node1, node2;
    double cost, e1cost, e2cost, n1cost, n2cost, s1cost, s2cost, l, l1;
    struct Option *map, *output;
    struct Option *afield_opt, *nfield_opt, *afcol, *abcol, *ncol, *type_opt,
	*term_opt, *cost_opt, *tfield_opt, *tucfield_opt;
    struct Flag *geo_f, *turntable_f;
    struct GModule *module;
    struct Map_info Map, Out;
    struct cat_list *catlist;
    CENTER *Centers = NULL;
    int acentres = 0, ncentres = 0;
    NODE *Nodes;
    struct line_cats *Cats;
    struct line_pnts *Points, *SPoints;
    int niso, aiso;
    double *iso;
    int npnts1, apnts1 = 0, npnts2, apnts2 = 0;
    ISOPOINT *pnts1 = NULL, *pnts2 = NULL;
    int next_iso;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("network"));
    G_add_keyword(_("isolines"));
    module->label = _("Splits net by cost isolines.");
    module->description =
	_
	("Splits net to bands between cost isolines (direction from center). "
	 "Center node must be opened (costs >= 0). "
	 "Costs of center node are used in calculation.");

    map = G_define_standard_option(G_OPT_V_INPUT);
    output = G_define_standard_option(G_OPT_V_OUTPUT);

    term_opt = G_define_standard_option(G_OPT_V_CATS);
    term_opt->key = "ccats";
    term_opt->required = YES;
    term_opt->description =
	_("Categories of centers (points on nodes) to which net "
	  "will be allocated, "
	  "layer for this categories is given by nlayer option");

    cost_opt = G_define_option();
    cost_opt->key = "costs";
    cost_opt->type = TYPE_INTEGER;
    cost_opt->multiple = YES;
    cost_opt->required = YES;
    cost_opt->description = _("Costs for isolines");

    afield_opt = G_define_standard_option(G_OPT_V_FIELD);
    afield_opt->key = "alayer";
    afield_opt->answer = "1";
    afield_opt->required = YES;
    afield_opt->label = _("Arc layer");

    type_opt = G_define_standard_option(G_OPT_V_TYPE);
    type_opt->options = "line,boundary";
    type_opt->answer = "line,boundary";
    type_opt->required = YES;
    type_opt->label = _("Arc type");

    nfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    nfield_opt->key = "nlayer";
    nfield_opt->answer = "2";
    nfield_opt->required = YES;
    nfield_opt->label = _("Node layer");

    afcol = G_define_standard_option(G_OPT_DB_COLUMN);
    afcol->key = "afcolumn";
    afcol->description =
	_("Arc forward/both direction(s) cost column (number)");
    afcol->guisection = _("Cost");

    abcol = G_define_standard_option(G_OPT_DB_COLUMN);
    abcol->key = "abcolumn";
    abcol->description = _("Arc backward direction cost column (number)");
    abcol->guisection = _("Cost");

    ncol = G_define_standard_option(G_OPT_DB_COLUMN);
    ncol->key = "ncolumn";
    ncol->description = _("Node cost column (number)");
    ncol->guisection = _("Cost");

    turntable_f = G_define_flag();
    turntable_f->key = 't';
    turntable_f->description = _("Use turntable");
    turntable_f->guisection = _("Turntable");

    tfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    tfield_opt->key = "tlayer";
    tfield_opt->answer = "3";
    tfield_opt->label = _("Layer with turntable");
    tfield_opt->description =
	_("Relevant only with -t flag");
    tfield_opt->guisection = _("Turntable");

    tucfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    tucfield_opt->key = "tuclayer";
    tucfield_opt->answer = "4";
    tucfield_opt->label = _("Layer with unique categories used in turntable");
    tucfield_opt->description =
	_("Relevant only with -t flag");
    tucfield_opt->guisection = _("Turntable");

    geo_f = G_define_flag();
    geo_f->key = 'g';
    geo_f->description =
	_("Use geodesic calculation for longitude-latitude locations");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    Vect_check_input_output_name(map->answer, output->answer, G_FATAL_EXIT);

    Cats = Vect_new_cats_struct();
    Points = Vect_new_line_struct();
    SPoints = Vect_new_line_struct();

    type = Vect_option_to_types(type_opt);

    catlist = Vect_new_cat_list();
    Vect_str_to_cat_list(term_opt->answer, catlist);

    /* Iso costs */
    aiso = 1;
    iso = (double *)G_malloc(aiso * sizeof(double));
    /* Set first iso to 0 */
    iso[0] = 0;
    niso = 1;
    i = 0;
    while (cost_opt->answers[i]) {
	if (niso == aiso) {
	    aiso += 1;
	    iso = (double *)G_realloc(iso, aiso * sizeof(double));
	}
	iso[niso] = atof(cost_opt->answers[i]);
	if (iso[niso] <= 0)
	    G_fatal_error(_("Wrong iso cost: %f"), iso[niso]);

	if (iso[niso] <= iso[niso - 1])
	    G_fatal_error(_("Iso cost: %f less than previous"), iso[niso]);

	G_verbose_message(_("Iso cost %d: %f"), niso, iso[niso]);
	niso++;
	i++;
    }

    /* Should not happen: */
    if (niso < 2)
	G_warning(_
		  ("Not enough costs, everything reachable falls to first band"));

    if (geo_f->answer)
	geo = 1;
    else
	geo = 0;

    Vect_set_open_level(2);
    if (Vect_open_old(&Map, map->answer, "") < 0)
	G_fatal_error(_("Unable to open vector map <%s>"), map->answer);

    afield = Vect_get_field_number(&Map, afield_opt->answer);
    nfield = Vect_get_field_number(&Map, nfield_opt->answer);
    tfield = Vect_get_field_number(&Map, tfield_opt->answer);
    tucfield = Vect_get_field_number(&Map, tucfield_opt->answer);

    /* Build graph */
    if (turntable_f->answer)
	Vect_net_ttb_build_graph(&Map, type, afield, nfield, tfield, tucfield,
				 afcol->answer, abcol->answer, ncol->answer,
				 geo, 0);
    else
	Vect_net_build_graph(&Map, type, afield, nfield, afcol->answer,
			     abcol->answer, ncol->answer, geo, 0);

    nnodes = Vect_get_num_nodes(&Map);
    nlines = Vect_get_num_lines(&Map);

    /* Create list of centres based on list of categories */
    for (i = 1; i <= nlines; i++) {
	ltype = Vect_get_line_type(&Map, i);
	if (!(ltype & GV_POINT))
	    continue;

	Vect_read_line(&Map, Points, Cats, i);
	node =
	    Vect_find_node(&Map, Points->x[0], Points->y[0], Points->z[0], 0,
			   0);
	if (!node) {
	    G_warning(_("Point is not connected to the network"));
	    continue;
	}
	if (!(Vect_cat_get(Cats, nfield, &cat)))
	    continue;
	if (Vect_cat_in_cat_list(cat, catlist)) {
	    Vect_net_get_node_cost(&Map, node, &n1cost);
	    if (n1cost == -1) {	/* closed */
		G_warning(_("Centre at closed node (costs = -1) ignored"));
	    }
	    else {
		if (acentres == ncentres) {
		    acentres += 1;
		    Centers =
			(CENTER *) G_realloc(Centers,
					     acentres * sizeof(CENTER));
		}
		Centers[ncentres].cat = cat;
		Centers[ncentres].node = node;
		G_debug(2, "centre = %d node = %d cat = %d", ncentres,
			node, cat);
		ncentres++;
	    }
	}
    }

    G_message(_("Number of centres: %d (nlayer %d)"), ncentres, nfield);

    if (ncentres == 0)
	G_warning(_
		  ("Not enough centres for selected nlayer. Nothing will be allocated."));

    /* alloc and reset space for all nodes */
    if (turntable_f->answer) {
	/* if turntable is used we are looking for lines as destinations, instead of the intersections (nodes) */
	Nodes = (NODE *) G_calloc((nlines * 2 + 2), sizeof(NODE));
	for (i = 2; i <= (nlines * 2 + 2); i++) {
	    Nodes[i].centre = -1;/* NOTE: first two items of Nodes are not used */
	}

    }
    else {
	Nodes = (NODE *) G_calloc((nnodes + 1), sizeof(NODE));
	for (i = 1; i <= nnodes; i++) {
	    Nodes[i].centre = -1;
	}
    }

    apnts1 = 1;
    pnts1 = (ISOPOINT *) G_malloc(apnts1 * sizeof(ISOPOINT));

    apnts2 = 1;
    pnts2 = (ISOPOINT *) G_malloc(apnts2 * sizeof(ISOPOINT));

    /* Fill Nodes by neares centre and costs from that centre */
    for (centre = 0; centre < ncentres; centre++) {
	node1 = Centers[centre].node;
	Vect_net_get_node_cost(&Map, node1, &n1cost);
	G_debug(2, "centre = %d node = %d cat = %d", centre, node1,
		Centers[centre].cat);
	G_message(_("Calculating costs from centre %d..."), centre + 1);
	if (turntable_f->answer)
	    for (line = 1; line <= nlines; line++) {
		G_debug(5, "  node1 = %d line = %d", node1, line);
		Vect_net_get_node_cost(&Map, line, &n2cost);
		/* closed, left it as not attached */

		if (Vect_read_line(&Map, Points, Cats, line) < 0)
		    continue;
		if (Vect_get_line_type(&Map, line) != GV_LINE)
		    continue;
		if (!Vect_cat_get(Cats, tucfield, &cat))
		    continue;

		for (j = 0; j < 2; j++) {
		    if (j == 1)
			cat *= -1;

		    ret =
			Vect_net_ttb_shortest_path(&Map, node1, 0, cat, 1,
						   tucfield, NULL,
						   &cost);
		    if (ret == -1) {
			continue;
		    }		/* node unreachable */

		    /* We must add centre node costs (not calculated by Vect_net_shortest_path() ), but
	             *  only if centre and node are not identical, because at the end node cost is add later */
		    if (ret != 1)
			cost += n1cost;

		    G_debug(5,
			    "Arc nodes: %d %d cost: %f (x old cent: %d old cost %f",
			    node1, line, cost, Nodes[line * 2 + j].centre,
			    Nodes[line * 2 + j].cost);
		    if (Nodes[line * 2 + j].centre == -1 ||
			cost < Nodes[line * 2 + j].cost) {
			Nodes[line * 2 + j].cost = cost;
			Nodes[line * 2 + j].centre = centre;
		    }
		}
	    }
	else
	    for (node2 = 1; node2 <= nnodes; node2++) {
		G_percent(node2, nnodes, 1);
		G_debug(5, "  node1 = %d node2 = %d", node1, node2);
		Vect_net_get_node_cost(&Map, node2, &n2cost);
		if (n2cost == -1) {
		    continue;
		}		/* closed, left it as not attached */

		ret = Vect_net_shortest_path(&Map, node1, node2, NULL, &cost);
		if (ret == -1) {
		    continue;
		}		/* node unreachable */

		/* We must add centre node costs (not calculated by Vect_net_shortest_path() ), but
		 *  only if centre and node are not identical, because at the end node cost is add later */
		if (node1 != node2)
		    cost += n1cost;
		G_debug(5,
			"Arc nodes: %d %d cost: %f (x old cent: %d old cost %f",
			node1, node2, cost, Nodes[node2].centre,
			Nodes[node2].cost);
		if (Nodes[node2].centre == -1 || cost < Nodes[node2].cost) {
		    Nodes[node2].cost = cost;
		    Nodes[node2].centre = centre;
		}
	    }
    }

    /* Write arcs to new map */
    if (Vect_open_new(&Out, output->answer, Vect_is_3d(&Map)) < 0)
	G_fatal_error(_("Unable to create vector map <%s>"), output->answer);

    Vect_hist_command(&Out);

    G_message("Generating isolines...");
    nlines = Vect_get_num_lines(&Map);
    for (line = 1; line <= nlines; line++) {
	G_percent(line, nlines, 2);

	ltype = Vect_read_line(&Map, Points, NULL, line);
	if (!(ltype & type)) {
	    continue;
	}

	l = Vect_line_length(Points);
	if (l == 0)
	    continue;

	if (turntable_f->answer) {
	    centre1 = Nodes[line * 2].centre;
	    centre2 = Nodes[line * 2 + 1].centre;
	    s1cost = Nodes[line * 2].cost;
	    s2cost = Nodes[line * 2 + 1].cost;
	    n1cost = n2cost = 0;
	}
	else {
	    Vect_get_line_nodes(&Map, line, &node1, &node2);
	    centre1 = Nodes[node1].centre;
	    centre2 = Nodes[node2].centre;
	    s1cost = Nodes[node1].cost;
	    s2cost = Nodes[node2].cost;

	    Vect_net_get_node_cost(&Map, node1, &n1cost);
	    Vect_net_get_node_cost(&Map, node2, &n2cost);

	}

	Vect_net_get_line_cost(&Map, line, GV_FORWARD, &e1cost);
	Vect_net_get_line_cost(&Map, line, GV_BACKWARD, &e2cost);

	G_debug(3, "Line %d : length = %f", line, l);
	G_debug(3, "Arc centres: %d %d (nodes: %d %d)", centre1, centre2,
		node1, node2);

	G_debug(3, "  s1cost = %f n1cost = %f e1cost = %f", s1cost, n1cost,
		e1cost);
	G_debug(3, "  s2cost = %f n2cost = %f e2cost = %f", s2cost, n2cost,
		e2cost);


	/* First check if arc is reachable from at least one side */
	if ((centre1 != -1 && n1cost != -1 && e1cost != -1) ||
	    (centre2 != -1 && n2cost != -1 && e2cost != -1)) {
	    /* Line is reachable at least from one side */
	    G_debug(3, "  -> arc is reachable");

	    /* Add costs of node to starting costs */
	    s1cost += n1cost;
	    s2cost += n2cost;

	    e1cost /= l;
	    e2cost /= l;

	    /* Find points on isolines along the line in both directions, add them to array,
	     *  first point is placed at the beginning/end of line */
	    /* Forward */
	    npnts1 = 0;		/* in case this direction is closed */
	    if (centre1 != -1 && n1cost != -1 && e1cost != -1) {
		/* Find iso for beginning of the line */
		next_iso = 0;
		for (i = niso - 1; i >= 0; i--) {
		    if (iso[i] <= s1cost) {
			next_iso = i;
			break;
		    }
		}
		/* Add first */
		pnts1[0].iso = next_iso;
		pnts1[0].distance = 0;
		npnts1++;
		next_iso++;

		/* Calculate distances for points along line */
		while (next_iso < niso) {
		    if (e1cost == 0)
			break;	/* Outside line */
		    l1 = (iso[next_iso] - s1cost) / e1cost;
		    if (l1 >= l)
			break;	/* Outside line */

		    if (npnts1 == apnts1) {
			apnts1 += 1;
			pnts1 =
			    (ISOPOINT *) G_realloc(pnts1,
						   apnts1 * sizeof(ISOPOINT));
		    }
		    pnts1[npnts1].iso = next_iso;
		    pnts1[npnts1].distance = l1;
		    G_debug(3,
			    "  forward %d : iso %d : distance %f : cost %f",
			    npnts1, next_iso, l1, iso[next_iso]);
		    npnts1++;
		    next_iso++;
		}
	    }
	    G_debug(3, "  npnts1 = %d", npnts1);

	    /* Backward */
	    npnts2 = 0;
	    if (centre2 != -1 && n2cost != -1 && e2cost != -1) {
		/* Find iso for beginning of the line */
		next_iso = 0;
		for (i = niso - 1; i >= 0; i--) {
		    if (iso[i] <= s2cost) {
			next_iso = i;
			break;
		    }
		}
		/* Add first */
		pnts2[0].iso = next_iso;
		pnts2[0].distance = l;
		npnts2++;
		next_iso++;

		/* Calculate distances for points along line */
		while (next_iso < niso) {
		    if (e2cost == 0)
			break;	/* Outside line */
		    l1 = (iso[next_iso] - s2cost) / e2cost;
		    if (l1 >= l)
			break;	/* Outside line */

		    if (npnts2 == apnts2) {
			apnts2 += 1;
			pnts2 =
			    (ISOPOINT *) G_realloc(pnts2,
						   apnts2 * sizeof(ISOPOINT));
		    }
		    pnts2[npnts2].iso = next_iso;
		    pnts2[npnts2].distance = l - l1;
		    G_debug(3,
			    "  backward %d : iso %d : distance %f : cost %f",
			    npnts2, next_iso, l - l1, iso[next_iso]);
		    npnts2++;
		    next_iso++;
		}
	    }
	    G_debug(3, "  npnts2 = %d", npnts2);

	    /* Limit number of points by maximum costs in reverse direction, this may remove
	     *  also the first point in one direction, but not in both */
	    /* Forward */
	    if (npnts2 > 0) {
		for (i = 0; i < npnts1; i++) {
		    G_debug(3,
			    "  pnt1 = %d dist1 = %f iso1 = %d max iso2 = %d",
			    i, pnts1[i].distance, pnts1[i].iso,
			    pnts2[npnts2 - 1].iso);
		    if (pnts2[npnts2 - 1].iso < pnts1[i].iso) {
			G_debug(3, "    -> cut here");
			npnts1 = i;
			break;
		    }
		}
	    }
	    G_debug(3, "  npnts1 cut = %d", npnts1);

	    /* Backward */
	    if (npnts1 > 0) {
		for (i = 0; i < npnts2; i++) {
		    G_debug(3,
			    "  pnt2 = %d dist2 = %f iso2 = %d max iso1 = %d",
			    i, pnts2[i].distance, pnts2[i].iso,
			    pnts1[npnts1 - 1].iso);
		    if (pnts1[npnts1 - 1].iso < pnts2[i].iso) {
			G_debug(3, "    -> cut here");
			npnts2 = i;
			break;
		    }
		}
	    }
	    G_debug(3, "  npnts2 cut = %d", npnts2);

	    /* Biggest cost shoud be equal if exist (npnts > 0). Cut out overlapping segments,
	     *  this can cut only points on line but not first points */
	    if (npnts1 > 1 && npnts2 > 1) {
		while (npnts1 > 1 && npnts2 > 1) {
		    if (pnts1[npnts1 - 1].distance >= pnts2[npnts2 - 1].distance) {	/* overlap */
			npnts1--;
			npnts2--;
		    }
		    else {
			break;
		    }
		}
	    }
	    G_debug(3, "  npnts1 2. cut = %d", npnts1);
	    G_debug(3, "  npnts2 2. cut = %d", npnts2);

	    /* Now we have points in both directions which may not overlap, npoints in one
	     *  direction may be 0 but not both */

	    /* Join both arrays, iso of point is for next segment (point is at the beginning) */
	    /* In case npnts1 == 0 add point at distance 0 */
	    if (npnts1 == 0) {
		G_debug(3,
			"  npnts1 = 0 -> add first at distance 0, cat = %d",
			pnts2[npnts2 - 1].iso);
		pnts1[0].iso = pnts2[npnts2 - 1].iso;	/* use last point iso in reverse direction */
		pnts1[0].distance = 0;
		npnts1++;
	    }
	    for (i = npnts2 - 1; i >= 0; i--) {
		/* Check if identical */
		if (pnts1[npnts1 - 1].distance == pnts2[i].distance)
		    continue;

		if (npnts1 == apnts1) {
		    apnts1 += 1;
		    pnts1 =
			(ISOPOINT *) G_realloc(pnts1,
					       apnts1 * sizeof(ISOPOINT));
		}
		pnts1[npnts1].iso = pnts2[i].iso - 1;	/* last may be -1, but it is not used */
		pnts1[npnts1].distance = pnts2[i].distance;
		npnts1++;
	    }
	    /* In case npnts2 == 0 add point at the end */
	    if (npnts2 == 0) {
		pnts1[npnts1].iso = 0;	/* not used */
		pnts1[npnts1].distance = l;
		npnts1++;
	    }

	    /* Create line segments. */
	    for (i = 1; i < npnts1; i++) {
		cat = pnts1[i - 1].iso + 1;
		G_debug(3, "  segment %f - %f cat %d", pnts1[i - 1].distance,
			pnts1[i].distance, cat);
		ret =
		    Vect_line_segment(Points, pnts1[i - 1].distance,
				      pnts1[i].distance, SPoints);
		if (ret == 0) {
		    G_warning(_
			      ("Cannot get line segment, segment out of line"));
		}
		else {
		    Vect_reset_cats(Cats);
		    Vect_cat_set(Cats, 1, cat);
		    Vect_write_line(&Out, ltype, SPoints, Cats);
		}
	    }
	}
	else {
	    /* arc is not reachable */
	    G_debug(3, "  -> arc is not reachable");
	    Vect_reset_cats(Cats);
	    Vect_write_line(&Out, ltype, Points, Cats);
	}
    }

    Vect_build(&Out);

    /* Free, ... */
    G_free(Nodes);
    G_free(Centers);
    Vect_close(&Map);
    Vect_close(&Out);

    exit(EXIT_SUCCESS);
}
示例#19
0
int main(int argc, char **argv)
{
    struct Option *input_opt, *output_opt, *afield_opt, *nfield_opt,
	*tfield_opt, *tucfield_opt, *afcol, *abcol, *ncol, *type_opt;
    struct Option *max_dist, *file_opt;
    struct Flag *geo_f, *segments_f, *turntable_f;
    struct GModule *module;
    struct Map_info In, Out;
    int type, afield, nfield, tfield, tucfield, geo;
    double maxdist;

    /* Initialize the GIS calls */
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("network"));
    G_add_keyword(_("shortest path"));
    module->description = _("Finds shortest path on vector network.");

    input_opt = G_define_standard_option(G_OPT_V_INPUT);
    output_opt = G_define_standard_option(G_OPT_V_OUTPUT);

    afield_opt = G_define_standard_option(G_OPT_V_FIELD);
    afield_opt->key = "arc_layer";
    afield_opt->answer = "1";
    afield_opt->required = YES;
    afield_opt->label = _("Arc layer");

    type_opt = G_define_standard_option(G_OPT_V_TYPE);
    type_opt->key = "arc_type";
    type_opt->options = "line,boundary";
    type_opt->answer = "line,boundary";
    type_opt->required = YES;
    type_opt->label = _("Arc type");

    nfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    nfield_opt->key = "node_layer";
    nfield_opt->answer = "2";
    nfield_opt->required = YES;
    nfield_opt->label = _("Node layer");

    file_opt = G_define_standard_option(G_OPT_F_INPUT);
    file_opt->key = "file";
    file_opt->required = NO;
    file_opt->description = _("Name of file containing start and end points. "
			      "If not given, read from stdin");

    afcol = G_define_option();
    afcol->key = "arc_column";
    afcol->type = TYPE_STRING;
    afcol->required = NO;
    afcol->description = _("Arc forward/both direction(s) cost column (number)");
    afcol->guisection = _("Cost");

    abcol = G_define_option();
    abcol->key = "arc_backward_column";
    abcol->type = TYPE_STRING;
    abcol->required = NO;
    abcol->description = _("Arc backward direction cost column (number)");
    abcol->guisection = _("Cost");

    ncol = G_define_option();
    ncol->key = "node_column";
    ncol->type = TYPE_STRING;
    ncol->required = NO;
    ncol->description = _("Node cost column (number)");
    ncol->guisection = _("Cost");

    max_dist = G_define_option();
    max_dist->key = "dmax";
    max_dist->type = TYPE_DOUBLE;
    max_dist->required = NO;
    max_dist->answer = "1000";
    max_dist->label = _("Maximum distance to the network");
    max_dist->description = _("If start/end are given as coordinates. "
			      "If start/end point is outside this threshold, "
			      "the path is not found "
			      "and error message is printed. To speed up the process, keep this "
			      "value as low as possible.");

    turntable_f = G_define_flag();
    turntable_f->key = 't';
    turntable_f->description = _("Use turntable");
    turntable_f->guisection = _("Turntable");

    tfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    tfield_opt->key = "turn_layer";
    tfield_opt->answer = "3";
    tfield_opt->label = _("Layer with turntable");
    tfield_opt->description =
	_("Relevant only with -t flag");
    tfield_opt->guisection = _("Turntable");

    tucfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    tucfield_opt->key = "turn_cat_layer";
    tucfield_opt->answer = "4";
    tucfield_opt->label = _("Layer with unique categories used in turntable");
    tucfield_opt->description =
	_("Relevant only with -t flag");
    tucfield_opt->guisection = _("Turntable");

    geo_f = G_define_flag();
    geo_f->key = 'g';
    geo_f->description =
	_("Use geodesic calculation for longitude-latitude locations");

    segments_f = G_define_flag();
    segments_f->key = 's';
    segments_f->description = _("Write output as original input segments, "
				"not each path as one line.");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    type = Vect_option_to_types(type_opt);
    maxdist = atof(max_dist->answer);

    if (geo_f->answer) {
	geo = 1;
	if (G_projection() != PROJECTION_LL)
	    G_warning(_("The current projection is not longitude-latitude"));
    }
    else
	geo = 0;

    Vect_check_input_output_name(input_opt->answer, output_opt->answer,
				 G_FATAL_EXIT);

    Vect_set_open_level(2);
    if (Vect_open_old(&In, input_opt->answer, "") < 0)
	G_fatal_error(_("Unable to open vector map <%s>"), input_opt->answer);

    afield = Vect_get_field_number(&In, afield_opt->answer);
    nfield = Vect_get_field_number(&In, nfield_opt->answer);
    tfield = Vect_get_field_number(&In, tfield_opt->answer);
    tucfield = Vect_get_field_number(&In, tucfield_opt->answer);

    if (1 > Vect_open_new(&Out, output_opt->answer, Vect_is_3d(&In))) {
	Vect_close(&In);
	G_fatal_error(_("Unable to create vector map <%s>"),
		      output_opt->answer);
    }
    Vect_hist_command(&Out);

    if (turntable_f->answer)
	Vect_net_ttb_build_graph(&In, type, afield, nfield, tfield, tucfield,
				 afcol->answer, abcol->answer, ncol->answer,
				 geo, 0);
    else
	Vect_net_build_graph(&In, type, afield, nfield, afcol->answer,
			     abcol->answer, ncol->answer, geo, 0);

    path(&In, &Out, file_opt->answer, nfield, maxdist, segments_f->answer,
	 tucfield, turntable_f->answer);

    Vect_close(&In);

    Vect_build(&Out);
    Vect_close(&Out);

    exit(EXIT_SUCCESS);
}
示例#20
0
文件: main.c 项目: imincik/pkg-grass
int main(int argc, char *argv[])
{
    struct file_info Current, Trans, Coord;

    struct GModule *module;

    struct Option *vold, *vnew, *pointsfile, *xshift, *yshift, *zshift,
	*xscale, *yscale, *zscale, *zrot, *columns, *table, *field;
    struct Flag *quiet_flag, *tozero_flag, *shift_flag, *print_mat_flag;

    char *mapset, mon[4], date[40], buf[1000];
    struct Map_info Old, New;
    int ifield;
    int day, yr;
    BOUND_BOX box;

    double ztozero;
    double trans_params[7];	/* xshift, ..., xscale, ..., zrot */

    /* columns */
    unsigned int i;
    int idx, out3d;
    char **tokens;
    char *columns_name[7];	/* xshift, yshift, zshift, xscale, yscale, zscale, zrot */

    G_gisinit(argv[0]);

    module = G_define_module();
    module->keywords = _("vector, transformation");
    module->description =
	_("Performs an affine transformation (shift, scale and rotate, "
	  "or GPCs) on vector map.");

    /* remove in GRASS7 */
    quiet_flag = G_define_flag();
    quiet_flag->key = 'q';
    quiet_flag->description =
	_("Suppress display of residuals or other information");

    tozero_flag = G_define_flag();
    tozero_flag->key = 't';
    tozero_flag->description = _("Shift all z values to bottom=0");
    tozero_flag->guisection = _("Custom");

    print_mat_flag = G_define_flag();
    print_mat_flag->key = 'm';
    print_mat_flag->description =
	_("Print the transformation matrix to stdout");
    
    shift_flag = G_define_flag();
    shift_flag->key = 's';
    shift_flag->description =
	_("Instead of points use transformation parameters "
	  "(xshift, yshift, zshift, xscale, yscale, zscale, zrot)");
    shift_flag->guisection = _("Custom");
	
    vold = G_define_standard_option(G_OPT_V_INPUT);

    field = G_define_standard_option(G_OPT_V_FIELD);
    field->answer = "-1";
    
    vnew = G_define_standard_option(G_OPT_V_OUTPUT);

    pointsfile = G_define_standard_option(G_OPT_F_INPUT);
    pointsfile->key = "pointsfile";
    pointsfile->required = NO;
    pointsfile->label = _("ASCII file holding transform coordinates");
    pointsfile->description = _("If not given, transformation parameters "
				"(xshift, yshift, zshift, xscale, yscale, zscale, zrot) are used instead");

    pointsfile->gisprompt = "old_file,file,points";
    pointsfile->guisection = _("Points");
    
    xshift = G_define_option();
    xshift->key = "xshift";
    xshift->type = TYPE_DOUBLE;
    xshift->required = NO;
    xshift->multiple = NO;
    xshift->description = _("Shifting value for x coordinates");
    xshift->answer = "0.0";
    xshift->guisection = _("Custom");

    yshift = G_define_option();
    yshift->key = "yshift";
    yshift->type = TYPE_DOUBLE;
    yshift->required = NO;
    yshift->multiple = NO;
    yshift->description = _("Shifting value for y coordinates");
    yshift->answer = "0.0";
    yshift->guisection = _("Custom");

    zshift = G_define_option();
    zshift->key = "zshift";
    zshift->type = TYPE_DOUBLE;
    zshift->required = NO;
    zshift->multiple = NO;
    zshift->description = _("Shifting value for z coordinates");
    zshift->answer = "0.0";
    zshift->guisection = _("Custom");

    xscale = G_define_option();
    xscale->key = "xscale";
    xscale->type = TYPE_DOUBLE;
    xscale->required = NO;
    xscale->multiple = NO;
    xscale->description = _("Scaling factor for x coordinates");
    xscale->answer = "1.0";
    xscale->guisection = _("Custom");

    yscale = G_define_option();
    yscale->key = "yscale";
    yscale->type = TYPE_DOUBLE;
    yscale->required = NO;
    yscale->multiple = NO;
    yscale->description = _("Scaling factor for y coordinates");
    yscale->answer = "1.0";
    yscale->guisection = _("Custom");

    zscale = G_define_option();
    zscale->key = "zscale";
    zscale->type = TYPE_DOUBLE;
    zscale->required = NO;
    zscale->multiple = NO;
    zscale->description = _("Scaling factor for z coordinates");
    zscale->answer = "1.0";
    zscale->guisection = _("Custom");

    zrot = G_define_option();
    zrot->key = "zrot";
    zrot->type = TYPE_DOUBLE;
    zrot->required = NO;
    zrot->multiple = NO;
    zrot->description =
	_("Rotation around z axis in degrees counterclockwise");
    zrot->answer = "0.0";
    zrot->guisection = _("Custom");

    table = G_define_standard_option(G_OPT_TABLE);
    table->description =
	_("Name of table containing transformation parameters");
    table->guisection = _("Attributes");

    columns = G_define_option();
    columns->key = "columns";
    columns->type = TYPE_STRING;
    columns->required = NO;
    columns->multiple = NO;
    columns->label =
	_("Name of attribute column(s) used as transformation parameters");
    columns->description =
	_("Format: parameter:column, e.g. xshift:xs,yshift:ys,zrot:zr");
    columns->guisection = _("Attributes");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    G_strcpy(Current.name, vold->answer);
    G_strcpy(Trans.name, vnew->answer);

    Vect_check_input_output_name(vold->answer, vnew->answer, GV_FATAL_EXIT);
    
    out3d = WITHOUT_Z;
    
    ifield = atoi(field->answer);

    if (shift_flag->answer)
	G_warning(_("The '%c' flag is deprecated and will be removed in future. "
		   "Transformation parameters are used automatically when no pointsfile is given."),
		  shift_flag->key);

    /* please remove in GRASS7 */
    if (quiet_flag->answer) {
	G_warning(_("The '%c' flag is deprecated and will be removed in future. "
		   "Please use '--quiet' instead."), quiet_flag->key);
	G_putenv("GRASS_VERBOSE", "0");
    }

    /* if a table is specified, require columns and layer */
    /* if columns are specified, but no table, require layer > 0 and use 
     * the table attached to that layer */
    if (table->answer && !columns->answer) {
	G_fatal_error(_("Column names are not defined. Please use '%s' parameter."),
		      columns->key);
    }

    if ((columns->answer || table->answer) && ifield < 1) {
	G_fatal_error(_("Please specify a valid layer with '%s' parameter."),
		      field->key);
    }

    if (table->answer && strcmp(vnew->answer, table->answer) == 0) {
	G_fatal_error(_("Name of table and name for output vector map must be different. "
		       "Otherwise the table is overwritten."));
    }

    if (!columns->answer && !table->answer)
	ifield = -1;

    if (pointsfile->answer != NULL && !shift_flag->answer) {
	G_strcpy(Coord.name, pointsfile->answer);
    }
    else {
	Coord.name[0] = '\0';
    }

    /* open coord file */
    if (Coord.name[0] != '\0') {
	if ((Coord.fp = fopen(Coord.name, "r")) == NULL)
	    G_fatal_error(_("Unable to open file with coordinates <%s>"),
			  Coord.name);
    }

    /* tokenize columns names */
    for (i = 0; i <= IDX_ZROT; i++) {
	columns_name[i] = NULL;
    }
    i = 0;
    if (columns->answer) {
	while (columns->answers[i]) {
	    tokens = G_tokenize(columns->answers[i], ":");
	    if (G_number_of_tokens(tokens) == 2) {
		if (strcmp(tokens[0], xshift->key) == 0)
		    idx = IDX_XSHIFT;
		else if (strcmp(tokens[0], yshift->key) == 0)
		    idx = IDX_YSHIFT;
		else if (strcmp(tokens[0], zshift->key) == 0)
		    idx = IDX_ZSHIFT;
		else if (strcmp(tokens[0], xscale->key) == 0)
		    idx = IDX_XSCALE;
		else if (strcmp(tokens[0], yscale->key) == 0)
		    idx = IDX_YSCALE;
		else if (strcmp(tokens[0], zscale->key) == 0)
		    idx = IDX_ZSCALE;
		else if (strcmp(tokens[0], zrot->key) == 0)
		    idx = IDX_ZROT;
		else
		    idx = -1;

		if (idx != -1)
		    columns_name[idx] = G_store(tokens[1]);

		G_free_tokens(tokens);
	    }
	    else {
		G_fatal_error(_("Unable to tokenize column string: [%s]"),
			      columns->answers[i]);
	    }
	    i++;
	}
    }

    /* determine transformation parameters */
    trans_params[IDX_XSHIFT] = atof(xshift->answer);
    trans_params[IDX_YSHIFT] = atof(yshift->answer);
    trans_params[IDX_ZSHIFT] = atof(zshift->answer);
    trans_params[IDX_XSCALE] = atof(xscale->answer);
    trans_params[IDX_YSCALE] = atof(yscale->answer);
    trans_params[IDX_ZSCALE] = atof(zscale->answer);
    trans_params[IDX_ZROT] = atof(zrot->answer);

    /* open vector maps */
    if ((mapset = G_find_vector2(vold->answer, "")) == NULL)
	G_fatal_error(_("Vector map <%s> not found"), vold->answer);

    Vect_open_old(&Old, vold->answer, mapset);
    
    /* should output be 3D ? 
     * note that z-scale and ztozero have no effect with input 2D */
    if (Vect_is_3d(&Old) || trans_params[IDX_ZSHIFT] != 0. ||
	columns_name[IDX_ZSHIFT])
	out3d = WITH_Z;

    Vect_open_new(&New, vnew->answer, out3d);
    
    /* copy and set header */
    Vect_copy_head_data(&Old, &New);

    Vect_hist_copy(&Old, &New);
    Vect_hist_command(&New);

    sprintf(date, "%s", G_date());
    sscanf(date, "%*s%s%d%*s%d", mon, &day, &yr);
    sprintf(date, "%s %d %d", mon, day, yr);
    Vect_set_date(&New, date);

    Vect_set_person(&New, G_whoami());

    sprintf(buf, "transformed from %s", vold->answer);
    Vect_set_map_name(&New, buf);

    Vect_set_scale(&New, 1);
    Vect_set_zone(&New, 0);
    Vect_set_thresh(&New, 0.0);

    /* points file */
    if (Coord.name[0]) {
	create_transform_from_file(&Coord, quiet_flag->answer);

	if (Coord.name[0] != '\0')
	    fclose(Coord.fp);
    }

    Vect_get_map_box(&Old, &box);

    /* z to zero */
    if (tozero_flag->answer)
	ztozero = 0 - box.B;
    else
	ztozero = 0;

    /* do the transformation */
    transform_digit_file(&Old, &New, Coord.name[0] ? 1 : 0,
			 ztozero, trans_params,
			 table->answer, columns_name, ifield);

    if (Vect_copy_tables(&Old, &New, 0))
        G_warning(_("Failed to copy attribute table to output map"));
    Vect_close(&Old);
    Vect_build(&New);

    if (!quiet_flag->answer) {
	Vect_get_map_box(&New, &box);
	G_message(_("\nNew vector map <%s> boundary coordinates:"),
		  vnew->answer);
	G_message(_(" N: %-10.3f    S: %-10.3f"), box.N, box.S);
	G_message(_(" E: %-10.3f    W: %-10.3f"), box.E, box.W);
	G_message(_(" B: %6.3f    T: %6.3f"), box.B, box.T);

	/* print the transformation matrix if requested */
	if (print_mat_flag->answer)
	    print_transform_matrix();
    }

    Vect_close(&New);

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}
示例#21
0
int main(int argc, char *argv[])
{
    struct Option *vector_opt, *seed_opt, *flowlines_opt, *flowacc_opt, *sampled_opt,
	*scalar_opt, *unit_opt, *step_opt, *limit_opt, *skip_opt, *dir_opt,
	*error_opt;
    struct Flag *table_fl;
    struct GModule *module;
    RASTER3D_Region region;
    RASTER3D_Map *flowacc, *sampled;
    struct Integration integration;
    struct Seed seed;
    struct Gradient_info gradient_info;
    struct Map_info seed_Map;
    struct line_pnts *seed_points;
    struct line_cats *seed_cats;
    struct Map_info fl_map;
    struct line_cats *fl_cats;	/* for flowlines */
    struct line_pnts *fl_points;	/* for flowlines */
    struct field_info *finfo;
    dbDriver *driver;
    int cat;			/* cat of flowlines */
    int if_table;
    int i, r, c, d;
    char *desc;
    int n_seeds, seed_count, ltype;
    int skip[3];

    G_gisinit(argv[0]);
    module = G_define_module();
    G_add_keyword(_("raster3d"));
    G_add_keyword(_("hydrology"));
    G_add_keyword(_("voxel"));
    module->description =
	_("Computes 3D flow lines and 3D flow accumulation.");


    scalar_opt = G_define_standard_option(G_OPT_R3_INPUT);
    scalar_opt->required = NO;
    scalar_opt->guisection = _("Input");

    vector_opt = G_define_standard_option(G_OPT_R3_INPUTS);
    vector_opt->key = "vector_field";
    vector_opt->required = NO;
    vector_opt->description = _("Names of three 3D raster maps describing "
				"x, y, z components of vector field");
    vector_opt->guisection = _("Input");

    seed_opt = G_define_standard_option(G_OPT_V_INPUT);
    seed_opt->required = NO;
    seed_opt->key = "seed_points";
    seed_opt->description = _("If no map is provided, "
			      "flow lines are generated "
			      "from each cell of the input 3D raster");
    seed_opt->label = _("Name of vector map with points "
			"from which flow lines are generated");
    seed_opt->guisection = _("Input");

    flowlines_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    flowlines_opt->key = "flowline";
    flowlines_opt->required = NO;
    flowlines_opt->description = _("Name for vector map of flow lines");
    flowlines_opt->guisection = _("Output");

    flowacc_opt = G_define_standard_option(G_OPT_R3_OUTPUT);
    flowacc_opt->key = "flowaccumulation";
    flowacc_opt->required = NO;
    flowacc_opt->description =
	_("Name for output flowaccumulation 3D raster");
    flowacc_opt->guisection = _("Output");

    sampled_opt = G_define_standard_option(G_OPT_R3_INPUT);
    sampled_opt->key = "sampled";
    sampled_opt->required = NO;
    sampled_opt->label =
            _("Name for 3D raster sampled by flowlines");
    sampled_opt->description =
            _("Values of this 3D raster will be stored "
              "as attributes of flowlines segments");

    unit_opt = G_define_option();
    unit_opt->key = "unit";
    unit_opt->type = TYPE_STRING;
    unit_opt->required = NO;
    unit_opt->answer = "cell";
    unit_opt->options = "time,length,cell";
    desc = NULL;
    G_asprintf(&desc,
	       "time;%s;"
	       "length;%s;"
	       "cell;%s",
	       _("elapsed time"),
	       _("length in map units"), _("length in cells (voxels)"));
    unit_opt->descriptions = desc;
    unit_opt->label = _("Unit of integration step");
    unit_opt->description = _("Default unit is cell");
    unit_opt->guisection = _("Integration");

    step_opt = G_define_option();
    step_opt->key = "step";
    step_opt->type = TYPE_DOUBLE;
    step_opt->required = NO;
    step_opt->answer = "0.25";
    step_opt->label = _("Integration step in selected unit");
    step_opt->description = _("Default step is 0.25 cell");
    step_opt->guisection = _("Integration");

    limit_opt = G_define_option();
    limit_opt->key = "limit";
    limit_opt->type = TYPE_INTEGER;
    limit_opt->required = NO;
    limit_opt->answer = "2000";
    limit_opt->description = _("Maximum number of steps");
    limit_opt->guisection = _("Integration");

    error_opt = G_define_option();
    error_opt->key = "max_error";
    error_opt->type = TYPE_DOUBLE;
    error_opt->required = NO;
    error_opt->answer = "1e-5";
    error_opt->label = _("Maximum error of integration");
    error_opt->description = _("Influences step, increase maximum error "
			       "to allow bigger steps");
    error_opt->guisection = _("Integration");

    skip_opt = G_define_option();
    skip_opt->key = "skip";
    skip_opt->type = TYPE_INTEGER;
    skip_opt->required = NO;
    skip_opt->multiple = YES;
    skip_opt->description =
	_("Number of cells between flow lines in x, y and z direction");

    dir_opt = G_define_option();
    dir_opt->key = "direction";
    dir_opt->type = TYPE_STRING;
    dir_opt->required = NO;
    dir_opt->multiple = NO;
    dir_opt->options = "up,down,both";
    dir_opt->answer = "down";
    dir_opt->description = _("Compute flowlines upstream, "
			     "downstream or in both direction.");

    table_fl = G_define_flag();
    table_fl->key = 'a';
    table_fl->description = _("Create and fill attribute table");

    G_option_required(scalar_opt, vector_opt, NULL);
    G_option_exclusive(scalar_opt, vector_opt, NULL);
    G_option_required(flowlines_opt, flowacc_opt, NULL);
    G_option_requires(seed_opt, flowlines_opt, NULL);
    G_option_requires(table_fl, flowlines_opt, NULL);
    G_option_requires(sampled_opt, table_fl, NULL);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    driver = NULL;
    finfo = NULL;

    if_table = table_fl->answer ? TRUE : FALSE;

    check_vector_input_maps(vector_opt, seed_opt);

    Rast3d_init_defaults();
    Rast3d_get_window(&region);

    /* set up integration variables */
    if (step_opt->answer) {
	integration.step = atof(step_opt->answer);
	integration.unit = unit_opt->answer;
    }
    else {
	integration.unit = "cell";
	integration.step = 0.25;
    }
    integration.max_error = atof(error_opt->answer);
    integration.max_step = 5 * integration.step;
    integration.min_step = integration.step / 5;
    integration.limit = atof(limit_opt->answer);
    if (strcmp(dir_opt->answer, "up") == 0)
	integration.direction_type = FLOWDIR_UP;
    else if (strcmp(dir_opt->answer, "down") == 0)
	integration.direction_type = FLOWDIR_DOWN;
    else
	integration.direction_type = FLOWDIR_BOTH;


    /* cell size is the diagonal */
    integration.cell_size = sqrt(region.ns_res * region.ns_res +
				 region.ew_res * region.ew_res +
				 region.tb_res * region.tb_res);

    /* set default skip if needed */
    if (skip_opt->answers) {
	for (i = 0; i < 3; i++) {
	    if (skip_opt->answers[i] != NULL) {
		skip[i] = atoi(skip_opt->answers[i]);
	    }
	    else {
		G_fatal_error(_("Please provide 3 integer values for skip option."));
	    }
	}
    }
    else {
	skip[0] = fmax(1, region.cols / 10);
	skip[1] = fmax(1, region.rows / 10);
	skip[2] = fmax(1, region.depths / 10);

    }

    /* open raster 3D maps of velocity components */
    gradient_info.initialized = FALSE;
    load_input_raster3d_maps(scalar_opt, vector_opt, &gradient_info, &region);


    /* open new 3D raster map of flowacumulation */
    if (flowacc_opt->answer) {
	flowacc = Rast3d_open_new_opt_tile_size(flowacc_opt->answer,
						RASTER3D_USE_CACHE_DEFAULT,
						&region, FCELL_TYPE, 32);


	if (!flowacc)
	    Rast3d_fatal_error(_("Unable to open 3D raster map <%s>"),
			       flowacc_opt->answer);
	init_flowaccum(&region, flowacc);
    }

    /* open 3D raster map used for sampling */
    if (sampled_opt->answer) {
	sampled = Rast3d_open_cell_old(sampled_opt->answer,
				       G_find_raster3d(sampled_opt->answer, ""),
				       &region, RASTER3D_TILE_SAME_AS_FILE,
				       RASTER3D_USE_CACHE_DEFAULT);
	if (!sampled)
	    Rast3d_fatal_error(_("Unable to open 3D raster map <%s>"),
			       sampled_opt->answer);
    }
    else
	sampled = NULL;

    /* open new vector map of flowlines */
    if (flowlines_opt->answer) {
	fl_cats = Vect_new_cats_struct();
	fl_points = Vect_new_line_struct();
	if (Vect_open_new(&fl_map, flowlines_opt->answer, TRUE) < 0)
	    G_fatal_error(_("Unable to create vector map <%s>"),
			  flowlines_opt->answer);

	Vect_hist_command(&fl_map);

	if (if_table) {
	    create_table(&fl_map, &finfo, &driver,
			 gradient_info.compute_gradient, sampled ? 1 : 0);
	}
    }

    n_seeds = 0;
    /* open vector map of seeds */
    if (seed_opt->answer) {
	if (Vect_open_old2(&seed_Map, seed_opt->answer, "", "1") < 0)
	    G_fatal_error(_("Unable to open vector map <%s>"),
			  seed_opt->answer);
	if (!Vect_is_3d(&seed_Map))
	    G_fatal_error(_("Vector map <%s> is not 3D"), seed_opt->answer);

	n_seeds = Vect_get_num_primitives(&seed_Map, GV_POINT);
    }
    if (flowacc_opt->answer || (!seed_opt->answer && flowlines_opt->answer)) {
	if (flowacc_opt->answer)
	    n_seeds += region.cols * region.rows * region.depths;
	else {
	    n_seeds += ceil(region.cols / (double)skip[0]) *
		ceil(region.rows / (double)skip[1]) *
		ceil(region.depths / (double)skip[2]);
	}
    }
    G_debug(1, "Number of seeds is %d", n_seeds);

    seed_count = 0;
    cat = 1;
    if (seed_opt->answer) {

	seed_points = Vect_new_line_struct();
	seed_cats = Vect_new_cats_struct();

	/* compute flowlines from vector seed map */
	while (TRUE) {
	    ltype = Vect_read_next_line(&seed_Map, seed_points, seed_cats);
	    if (ltype == -1) {
		Vect_close(&seed_Map);
		G_fatal_error(_("Error during reading seed vector map"));
	    }
	    else if (ltype == -2) {
		break;
	    }
	    else if (ltype == GV_POINT) {
		seed.x = seed_points->x[0];
		seed.y = seed_points->y[0];
		seed.z = seed_points->z[0];
		seed.flowline = TRUE;
		seed.flowaccum = FALSE;
	    }
	    G_percent(seed_count, n_seeds, 1);
	    if (integration.direction_type == FLOWDIR_UP ||
		integration.direction_type == FLOWDIR_BOTH) {
		integration.actual_direction = FLOWDIR_UP;
		compute_flowline(&region, &seed, &gradient_info, flowacc, sampled,
				 &integration, &fl_map, fl_cats, fl_points,
				 &cat, if_table, finfo, driver);
	    }
	    if (integration.direction_type == FLOWDIR_DOWN ||
		integration.direction_type == FLOWDIR_BOTH) {
		integration.actual_direction = FLOWDIR_DOWN;
		compute_flowline(&region, &seed, &gradient_info, flowacc, sampled,
				 &integration, &fl_map, fl_cats, fl_points,
				 &cat, if_table, finfo, driver);
	    }
	    seed_count++;
	}

	Vect_destroy_line_struct(seed_points);
	Vect_destroy_cats_struct(seed_cats);
	Vect_close(&seed_Map);
    }
    if (flowacc_opt->answer || (!seed_opt->answer && flowlines_opt->answer)) {
	/* compute flowlines from points on grid */
	for (r = region.rows; r > 0; r--) {
	    for (c = 0; c < region.cols; c++) {
		for (d = 0; d < region.depths; d++) {
		    seed.x =
			region.west + c * region.ew_res + region.ew_res / 2;
		    seed.y =
			region.south + r * region.ns_res - region.ns_res / 2;
		    seed.z =
			region.bottom + d * region.tb_res + region.tb_res / 2;
		    seed.flowline = FALSE;
		    seed.flowaccum = FALSE;
		    if (flowacc_opt->answer)
			seed.flowaccum = TRUE;

		    if (flowlines_opt->answer && !seed_opt->answer &&
		       (c % skip[0] == 0) && (r % skip[1] == 0) && (d % skip[2] == 0))
			seed.flowline = TRUE;

		    if (seed.flowaccum || seed.flowline) {
			G_percent(seed_count, n_seeds, 1);

			if (integration.direction_type == FLOWDIR_UP ||
			    integration.direction_type == FLOWDIR_BOTH) {
			    integration.actual_direction = FLOWDIR_UP;
			    compute_flowline(&region, &seed, &gradient_info,
					     flowacc, sampled, &integration, &fl_map,
					     fl_cats, fl_points, &cat,
					     if_table, finfo, driver);
			}
			if (integration.direction_type == FLOWDIR_DOWN ||
			    integration.direction_type == FLOWDIR_BOTH) {
			    integration.actual_direction = FLOWDIR_DOWN;
			    compute_flowline(&region, &seed, &gradient_info,
					     flowacc, sampled, &integration, &fl_map,
					     fl_cats, fl_points, &cat,
					     if_table, finfo, driver);
			}
			seed_count++;
		    }
		}
	    }
	}
    }
    G_percent(1, 1, 1);
    if (flowlines_opt->answer) {
	if (if_table) {
	    db_commit_transaction(driver);
	    db_close_database_shutdown_driver(driver);
	}
	Vect_destroy_line_struct(fl_points);
	Vect_destroy_cats_struct(fl_cats);
	Vect_build(&fl_map);
	Vect_close(&fl_map);
    }

    if (flowacc_opt->answer)
	Rast3d_close(flowacc);


    return EXIT_SUCCESS;
}
示例#22
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    struct Option *out_opt, *in_opt;
    struct Flag *z_flag, *circle_flag, *l_flag, *int_flag;
    char buf[2000];

    /* DWG */
    char path[2000];
    short initerror, entset, retval;
    AD_OBJHANDLE pspace, mspace;
    PAD_ENT_HDR adenhd;
    PAD_ENT aden;
    AD_VMADDR entlist;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("import"));
    module->description = _("Converts DWG/DXF to GRASS vector map");

    in_opt = G_define_standard_option(G_OPT_F_INPUT);
    in_opt->description = _("Name of DWG or DXF file");

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    out_opt->required = YES;

    layers_opt = G_define_option();
    layers_opt->key = "layers";
    layers_opt->type = TYPE_STRING;
    layers_opt->required = NO;
    layers_opt->multiple = YES;
    layers_opt->description = _("List of layers to import");

    invert_flag = G_define_flag();
    invert_flag->key = 'i';
    invert_flag->description =
	_("Invert selection by layers (don't import layers in list)");

    z_flag = G_define_flag();
    z_flag->key = 'z';
    z_flag->description = _("Create 3D vector map");

    circle_flag = G_define_flag();
    circle_flag->key = 'c';
    circle_flag->description = _("Write circles as points (centre)");

    l_flag = G_define_flag();
    l_flag->key = 'l';
    l_flag->description = _("List available layers and exit");

    int_flag = G_define_flag();
    int_flag->key = 'n';
    int_flag->description = _("Use numeric type for attribute \"layer\"");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    db_init_string(&sql);
    db_init_string(&str);
    adenhd = (PAD_ENT_HDR) G_malloc(sizeof(AD_ENT_HDR));
    aden = (PAD_ENT) G_malloc(sizeof(AD_ENT));
    Layer = (PAD_LAY) G_malloc(sizeof(AD_LAY));
    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();
    Block = NULL;

    atrans = 20;		/* nested, recursive levels */
    Trans = (TRANS *) G_malloc(atrans * sizeof(TRANS));

    /* Init OpenDWG */
    sprintf(path, "%s/etc/adinit.dat", G_gisbase());
    if (!adInitAd2(path, &initerror)) {
	sprintf(buf, _("Unable to initialize OpenDWG Toolkit, error: %d: %s."),
		initerror, adErrorStr(initerror));
	if (initerror == AD_UNABLE_TO_OPEN_INIT_FILE)
	    sprintf(buf, _("%s Cannot open %s"), buf, path);
	G_fatal_error(buf);
    }
    adSetupDwgRead();
    adSetupDxfRead();

    /* Open input file */
    if ((dwghandle = adLoadFile(in_opt->answer, AD_PRELOAD_ALL, 1)) == NULL) {
	G_fatal_error(_("Unable to open input file <%s>. Error %d: %s"),
		      in_opt->answer, adError(),
		      adErrorStr(adError()));
    }

    if (l_flag->answer) {	/* List layers */
	PAD_TB adtb;
	AD_DWGHDR adhd;
	int i;
	char on, frozen, vpfrozen, locked;

	adtb = (PAD_TB) G_malloc(sizeof(AD_TB));

	G_debug(2, "%d layers", (int)adNumLayers(dwghandle));
	adReadHeaderBlock(dwghandle, &adhd);
	adStartLayerGet(dwghandle);

	fprintf(stdout, "%d layers:\n", (int)adNumLayers(dwghandle));
	for (i = 0; i < (int)adNumLayers(dwghandle); i++) {
	    adGetLayer(dwghandle, &(adtb->lay));
	    if (!adtb->lay.purgedflag) {
		fprintf(stdout, "%s COLOR %d, ", adtb->lay.name,
			adtb->lay.color);
	    }
	    adGetLayerState(dwghandle, adtb->lay.objhandle, &on, &frozen,
			    &vpfrozen, &locked);
	    if (on)
		fprintf(stdout, "ON, ");
	    else
		fprintf(stdout, "OFF, ");
	    if (frozen)
		fprintf(stdout, "FROZEN, ");
	    else
		fprintf(stdout, "THAWED, ");
	    if (vpfrozen)
		fprintf(stdout, "VPFROZEN, ");
	    else
		fprintf(stdout, "VPTHAWED, ");
	    if (locked)
		fprintf(stdout, "LOCKED\n");
	    else
		fprintf(stdout, "UNLOCKED\n");
	}
	adCloseFile(dwghandle);
	adCloseAd2();
	exit(EXIT_SUCCESS);
    }


    /* open output vector */
    if (Vect_open_new(&Map, out_opt->answer, z_flag->answer) < 0)
	G_fatal_error(_("Unable to create vector map <%s>"), out_opt->answer);

    Vect_hist_command(&Map);

    /* Add DB link */
    Fi = Vect_default_field_info(&Map, 1, NULL, GV_1TABLE);
    Vect_map_add_dblink(&Map, 1, NULL, Fi->table, GV_KEY_COLUMN, Fi->database,
			Fi->driver);

    driver =
	db_start_driver_open_database(Fi->driver,
				      Vect_subst_var(Fi->database, &Map));
    if (driver == NULL) {
	G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
		      Vect_subst_var(Fi->database, &Map), Fi->driver);
    }
    db_set_error_handler_driver(driver);

    db_begin_transaction(driver);

    /* Create table */
    if (int_flag->answer) {	/* List layers */
	sprintf(buf,
		"create table %s ( cat integer, entity_name varchar(20), color int, weight int, "
		"layer real, block varchar(100), txt varchar(100) )",
		Fi->table);

    }
    else {
	sprintf(buf,
		"create table %s ( cat integer, entity_name varchar(20), color int, weight int, "
		"layer varchar(100), block varchar(100), txt varchar(100) )",
		Fi->table);
    }
    db_set_string(&sql, buf);
    G_debug(3, db_get_string(&sql));

    if (db_execute_immediate(driver, &sql) != DB_OK) {
	db_close_database(driver);
	db_shutdown_driver(driver);
	G_fatal_error(_("Unable to create table: '%s'"), db_get_string(&sql));
    }

    if (db_create_index2(driver, Fi->table, GV_KEY_COLUMN) != DB_OK)
	G_warning(_("Unable to create index for table <%s>, key <%s>"),
		  Fi->table, GV_KEY_COLUMN);

    if (db_grant_on_table
	(driver, Fi->table, DB_PRIV_SELECT, DB_GROUP | DB_PUBLIC) != DB_OK)
	G_fatal_error(_("Unable to grant privileges on table <%s>"),
		      Fi->table);

    cat = 1;
    n_elements = n_skipped = 0;
    /* Write each entity. Some entities may be composed by other entities (like INSERT or BLOCK) */
    /* Set transformation for first (index 0) level */
    Trans[0].dx = Trans[0].dy = Trans[0].dz = 0;
    Trans[0].xscale = Trans[0].yscale = Trans[0].zscale = 1;
    Trans[0].rotang = 0;
    if (adGetBlockHandle(dwghandle, pspace, AD_PAPERSPACE_HANDLE)) {
	entlist = adEntityList(dwghandle, pspace);
	adStartEntityGet(entlist);
	for (entset = 0; entset < 2; entset++) {
	    do {
		if (!(retval = adGetEntity(entlist, adenhd, aden)))
		    continue;
		wrentity(adenhd, aden, 0, entlist, circle_flag->answer);
	    } while (retval == 1);
	    if (entset == 0) {
		if (adGetBlockHandle(dwghandle, mspace, AD_MODELSPACE_HANDLE)) {
		    entlist = adEntityList(dwghandle, mspace);
		    adStartEntityGet(entlist);
		}
	    }
	}
    }

    db_commit_transaction(driver);
    db_close_database_shutdown_driver(driver);

    adCloseFile(dwghandle);
    adCloseAd2();

    Vect_build(&Map, stderr);
    Vect_close(&Map);
    
    if (n_skipped > 0)
	G_message(_("%d elements skipped (layer name was not in list)"),
		  n_skipped);
    
    G_done_msg(_("%d elements processed"), n_elements);

    exit(EXIT_SUCCESS);
}
示例#23
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    struct _param {
        struct Option *dsn, *out, *layer, *spat, *where,
                   *min_area;
        struct Option *snap, *type, *outloc, *cnames;
    } param;
    struct _flag {
        struct Flag *list, *tlist, *no_clean, *z, *notab,
                   *region;
        struct Flag *over, *extend, *formats, *tolower, *no_import;
    } flag;

    int i, j, layer, arg_s_num, nogeom, ncnames;
    float xmin, ymin, xmax, ymax;
    int ncols = 0, type;
    double min_area, snap;
    char buf[2000], namebuf[2000], tempvect[GNAME_MAX];
    char *separator;

    struct Key_Value *loc_proj_info, *loc_proj_units;
    struct Key_Value *proj_info, *proj_units;
    struct Cell_head cellhd, loc_wind, cur_wind;
    char error_msg[8192];

    /* Vector */
    struct Map_info Map, Tmp, *Out;
    int cat;

    /* Attributes */
    struct field_info *Fi;
    dbDriver *driver;
    dbString sql, strval;
    int dim, with_z;

    /* OGR */
    OGRDataSourceH Ogr_ds;
    OGRLayerH Ogr_layer;
    OGRFieldDefnH Ogr_field;
    char *Ogr_fieldname;
    OGRFieldType Ogr_ftype;
    OGRFeatureH Ogr_feature;
    OGRFeatureDefnH Ogr_featuredefn;
    OGRGeometryH Ogr_geometry, Ogr_oRing, poSpatialFilter;
    OGRSpatialReferenceH Ogr_projection;
    OGREnvelope oExt;
    OGRwkbGeometryType Ogr_geom_type;

    int OFTIntegerListlength;

    char *output;
    char **layer_names;		/* names of layers to be imported */
    int *layers;		/* layer indexes */
    int nlayers;		/* number of layers to import */
    char **available_layer_names;	/* names of layers to be imported */
    int navailable_layers;
    int layer_id;
    unsigned int n_features, feature_count;
    int overwrite;
    double area_size;
    int use_tmp_vect;

    xmin = ymin = xmax = ymax = 0.0;
    loc_proj_info = loc_proj_units = NULL;
    Ogr_ds = Ogr_oRing = poSpatialFilter = NULL;
    OFTIntegerListlength = 40;	/* hack due to limitation in OGR */
    area_size = 0.0;
    use_tmp_vect = FALSE;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("import"));
    module->description = _("Converts vector data into a GRASS vector map using OGR library.");

    param.dsn = G_define_option();
    param.dsn->key = "dsn";
    param.dsn->type = TYPE_STRING;
    param.dsn->required =YES;
    param.dsn->label = _("OGR datasource name");
    param.dsn->description = _("Examples:\n"
                               "\t\tESRI Shapefile: directory containing shapefiles\n"
                               "\t\tMapInfo File: directory containing mapinfo files");

    param.layer = G_define_option();
    param.layer->key = "layer";
    param.layer->type = TYPE_STRING;
    param.layer->required = NO;
    param.layer->multiple = YES;
    param.layer->label =
        _("OGR layer name. If not given, all available layers are imported");
    param.layer->description =
        _("Examples:\n" "\t\tESRI Shapefile: shapefile name\n"
          "\t\tMapInfo File: mapinfo file name");
    param.layer->guisection = _("Selection");

    param.out = G_define_standard_option(G_OPT_V_OUTPUT);
    param.out->required = NO;
    param.out->guisection = _("Output");

    param.spat = G_define_option();
    param.spat->key = "spatial";
    param.spat->type = TYPE_DOUBLE;
    param.spat->multiple = YES;
    param.spat->required = NO;
    param.spat->key_desc = "xmin,ymin,xmax,ymax";
    param.spat->label = _("Import subregion only");
    param.spat->guisection = _("Selection");
    param.spat->description =
        _("Format: xmin,ymin,xmax,ymax - usually W,S,E,N");

    param.where = G_define_standard_option(G_OPT_DB_WHERE);
    param.where->guisection = _("Selection");

    param.min_area = G_define_option();
    param.min_area->key = "min_area";
    param.min_area->type = TYPE_DOUBLE;
    param.min_area->required = NO;
    param.min_area->answer = "0.0001";
    param.min_area->label =
        _("Minimum size of area to be imported (square units)");
    param.min_area->guisection = _("Selection");
    param.min_area->description = _("Smaller areas and "
                                    "islands are ignored. Should be greater than snap^2");

    param.type = G_define_standard_option(G_OPT_V_TYPE);
    param.type->options = "point,line,boundary,centroid";
    param.type->answer = "";
    param.type->description = _("Optionally change default input type");
    param.type->descriptions =
        _("point;import area centroids as points;"
          "line;import area boundaries as lines;"
          "boundary;import lines as area boundaries;"
          "centroid;import points as centroids");
    param.type->guisection = _("Selection");

    param.snap = G_define_option();
    param.snap->key = "snap";
    param.snap->type = TYPE_DOUBLE;
    param.snap->required = NO;
    param.snap->answer = "-1";
    param.snap->label = _("Snapping threshold for boundaries");
    param.snap->description = _("'-1' for no snap");

    param.outloc = G_define_option();
    param.outloc->key = "location";
    param.outloc->type = TYPE_STRING;
    param.outloc->required = NO;
    param.outloc->description = _("Name for new location to create");
    param.outloc->key_desc = "name";

    param.cnames = G_define_option();
    param.cnames->key = "cnames";
    param.cnames->type = TYPE_STRING;
    param.cnames->required = NO;
    param.cnames->multiple = YES;
    param.cnames->description =
        _("List of column names to be used instead of original names, "
          "first is used for category column");
    param.cnames->guisection = _("Attributes");

    flag.list = G_define_flag();
    flag.list->key = 'l';
    flag.list->description = _("List available OGR layers in data source and exit");
    flag.list->suppress_required = YES;
    flag.list->guisection = _("Print");

    flag.tlist = G_define_flag();
    flag.tlist->key = 'a';
    flag.tlist->description = _("List available OGR layers including feature types "
                                "in data source and exit");
    flag.tlist->suppress_required = YES;
    flag.tlist->guisection = _("Print");

    flag.formats = G_define_flag();
    flag.formats->key = 'f';
    flag.formats->description = _("List supported formats and exit");
    flag.formats->suppress_required = YES;
    flag.formats->guisection = _("Print");

    /* if using -c, you lose topological information ! */
    flag.no_clean = G_define_flag();
    flag.no_clean->key = 'c';
    flag.no_clean->description = _("Do not clean polygons (not recommended)");
    flag.no_clean->guisection = _("Output");

    flag.z = G_define_flag();
    flag.z->key = 'z';
    flag.z->description = _("Create 3D output");
    flag.z->guisection = _("Output");

    flag.notab = G_define_flag();
    flag.notab->key = 't';
    flag.notab->description = _("Do not create attribute table");
    flag.notab->guisection = _("Attributes");

    flag.over = G_define_flag();
    flag.over->key = 'o';
    flag.over->description =
        _("Override dataset projection (use location's projection)");

    flag.region = G_define_flag();
    flag.region->key = 'r';
    flag.region->guisection = _("Selection");
    flag.region->description = _("Limit import to the current region");

    flag.extend = G_define_flag();
    flag.extend->key = 'e';
    flag.extend->description =
        _("Extend location extents based on new dataset");

    flag.tolower = G_define_flag();
    flag.tolower->key = 'w';
    flag.tolower->description =
        _("Change column names to lowercase characters");
    flag.tolower->guisection = _("Attributes");

    flag.no_import = G_define_flag();
    flag.no_import->key = 'i';
    flag.no_import->description =
        _("Create the location specified by the \"location\" parameter and exit."
          " Do not import the vector data.");

    /* The parser checks if the map already exists in current mapset, this is
     * wrong if location options is used, so we switch out the check and do it
     * in the module after the parser */
    overwrite = G_check_overwrite(argc, argv);

    if (G_parser(argc, argv))
        exit(EXIT_FAILURE);

    G_begin_polygon_area_calculations();	/* Used in geom() */

    OGRRegisterAll();

    /* list supported formats */
    if (flag.formats->answer) {
        int iDriver;

        G_message(_("Available OGR Drivers:"));

        for (iDriver = 0; iDriver < OGRGetDriverCount(); iDriver++) {
            OGRSFDriverH poDriver = OGRGetDriver(iDriver);
            const char *pszRWFlag;

            if (OGR_Dr_TestCapability(poDriver, ODrCCreateDataSource))
                pszRWFlag = "rw";
            else
                pszRWFlag = "ro";

            fprintf(stdout, " %s (%s): %s\n",
                    OGR_Dr_GetName(poDriver),
                    pszRWFlag, OGR_Dr_GetName(poDriver));
        }
        exit(EXIT_SUCCESS);
    }

    if (param.dsn->answer == NULL) {
        G_fatal_error(_("Required parameter <%s> not set"), param.dsn->key);
    }

    min_area = atof(param.min_area->answer);
    snap = atof(param.snap->answer);
    type = Vect_option_to_types(param.type);

    ncnames = 0;
    if (param.cnames->answers) {
        i = 0;
        while (param.cnames->answers[i++]) {
            ncnames++;
        }
    }

    /* Open OGR DSN */
    Ogr_ds = NULL;
    if (strlen(param.dsn->answer) > 0)
        Ogr_ds = OGROpen(param.dsn->answer, FALSE, NULL);

    if (Ogr_ds == NULL)
        G_fatal_error(_("Unable to open data source <%s>"), param.dsn->answer);

    /* Make a list of available layers */
    navailable_layers = OGR_DS_GetLayerCount(Ogr_ds);
    available_layer_names =
        (char **)G_malloc(navailable_layers * sizeof(char *));

    if (flag.list->answer || flag.tlist->answer)
        G_message(_("Data source <%s> (format '%s') contains %d layers:"),
                  param.dsn->answer,
                  OGR_Dr_GetName(OGR_DS_GetDriver(Ogr_ds)), navailable_layers);
    for (i = 0; i < navailable_layers; i++) {
        Ogr_layer = OGR_DS_GetLayer(Ogr_ds, i);
        Ogr_featuredefn = OGR_L_GetLayerDefn(Ogr_layer);
        Ogr_geom_type = OGR_FD_GetGeomType(Ogr_featuredefn);

        available_layer_names[i] =
            G_store((char *)OGR_FD_GetName(Ogr_featuredefn));

        if (flag.tlist->answer)
            fprintf(stdout, "%s (%s)\n", available_layer_names[i],
                    OGRGeometryTypeToName(Ogr_geom_type));
        else if (flag.list->answer)
            fprintf(stdout, "%s\n", available_layer_names[i]);
    }
    if (flag.list->answer || flag.tlist->answer) {
        fflush(stdout);
        exit(EXIT_SUCCESS);
    }

    /* Make a list of layers to be imported */
    if (param.layer->answer) {	/* From option */
        nlayers = 0;
        while (param.layer->answers[nlayers])
            nlayers++;

        layer_names = (char **)G_malloc(nlayers * sizeof(char *));
        layers = (int *)G_malloc(nlayers * sizeof(int));

        for (i = 0; i < nlayers; i++) {
            layer_names[i] = G_store(param.layer->answers[i]);
            /* Find it in the source */
            layers[i] = -1;
            for (j = 0; j < navailable_layers; j++) {
                if (strcmp(available_layer_names[j], layer_names[i]) == 0) {
                    layers[i] = j;
                    break;
                }
            }
            if (layers[i] == -1)
                G_fatal_error(_("Layer <%s> not available"), layer_names[i]);
        }
    }
    else {			/* use list of all layers */
        nlayers = navailable_layers;
        layer_names = available_layer_names;
        layers = (int *)G_malloc(nlayers * sizeof(int));
        for (i = 0; i < nlayers; i++)
            layers[i] = i;
    }

    if (param.out->answer) {
        output = G_store(param.out->answer);
    }
    else {
        if (nlayers < 1)
            G_fatal_error(_("No OGR layers available"));
        output = G_store(layer_names[0]);
        G_message(_("All available OGR layers will be imported into vector map <%s>"), output);
    }

    if (!param.outloc->answer) {	/* Check if the map exists */
        if (G_find_vector2(output, G_mapset()) && !overwrite)
            G_fatal_error(_("Vector map <%s> already exists"),
                          output);
    }

    /* Get first imported layer to use for extents and projection check */
    Ogr_layer = OGR_DS_GetLayer(Ogr_ds, layers[0]);

    if (flag.region->answer) {
        if (param.spat->answer)
            G_fatal_error(_("Select either the current region flag or the spatial option, not both"));

        G_get_window(&cur_wind);
        xmin = cur_wind.west;
        xmax = cur_wind.east;
        ymin = cur_wind.south;
        ymax = cur_wind.north;
    }
    if (param.spat->answer) {
        /* See as reference: gdal/ogr/ogr_capi_test.c */

        /* cut out a piece of the map */
        /* order: xmin,ymin,xmax,ymax */
        arg_s_num = 0;
        i = 0;
        while (param.spat->answers[i]) {
            if (i == 0)
                xmin = atof(param.spat->answers[i]);
            if (i == 1)
                ymin = atof(param.spat->answers[i]);
            if (i == 2)
                xmax = atof(param.spat->answers[i]);
            if (i == 3)
                ymax = atof(param.spat->answers[i]);
            arg_s_num++;
            i++;
        }
        if (arg_s_num != 4)
            G_fatal_error(_("4 parameters required for 'spatial' parameter"));
    }
    if (param.spat->answer || flag.region->answer) {
        G_debug(2, "cut out with boundaries: xmin:%f ymin:%f xmax:%f ymax:%f",
                xmin, ymin, xmax, ymax);

        /* in theory this could be an irregular polygon */
        poSpatialFilter = OGR_G_CreateGeometry(wkbPolygon);
        Ogr_oRing = OGR_G_CreateGeometry(wkbLinearRing);
        OGR_G_AddPoint(Ogr_oRing, xmin, ymin, 0.0);
        OGR_G_AddPoint(Ogr_oRing, xmin, ymax, 0.0);
        OGR_G_AddPoint(Ogr_oRing, xmax, ymax, 0.0);
        OGR_G_AddPoint(Ogr_oRing, xmax, ymin, 0.0);
        OGR_G_AddPoint(Ogr_oRing, xmin, ymin, 0.0);
        OGR_G_AddGeometryDirectly(poSpatialFilter, Ogr_oRing);

        OGR_L_SetSpatialFilter(Ogr_layer, poSpatialFilter);
    }

    if (param.where->answer) {
        /* select by attribute */
        OGR_L_SetAttributeFilter(Ogr_layer, param.where->answer);
    }

    /* fetch boundaries */
    if ((OGR_L_GetExtent(Ogr_layer, &oExt, 1)) == OGRERR_NONE) {
        G_get_window(&cellhd);
        cellhd.north = oExt.MaxY;
        cellhd.south = oExt.MinY;
        cellhd.west = oExt.MinX;
        cellhd.east = oExt.MaxX;
        cellhd.rows = 20;	/* TODO - calculate useful values */
        cellhd.cols = 20;
        cellhd.ns_res = (cellhd.north - cellhd.south) / cellhd.rows;
        cellhd.ew_res = (cellhd.east - cellhd.west) / cellhd.cols;
    }
    else {
        cellhd.north = 1.;
        cellhd.south = 0.;
        cellhd.west = 0.;
        cellhd.east = 1.;
        cellhd.top = 1.;
        cellhd.bottom = 1.;
        cellhd.rows = 1;
        cellhd.rows3 = 1;
        cellhd.cols = 1;
        cellhd.cols3 = 1;
        cellhd.depths = 1;
        cellhd.ns_res = 1.;
        cellhd.ns_res3 = 1.;
        cellhd.ew_res = 1.;
        cellhd.ew_res3 = 1.;
        cellhd.tb_res = 1.;
    }

    /* suppress boundary splitting ? */
    if (flag.no_clean->answer) {
        split_distance = -1.;
    }
    else {
        split_distance = 0.;
        area_size =
            sqrt((cellhd.east - cellhd.west) * (cellhd.north - cellhd.south));
    }

    /* Fetch input map projection in GRASS form. */
    proj_info = NULL;
    proj_units = NULL;
    Ogr_projection = OGR_L_GetSpatialRef(Ogr_layer);	/* should not be freed later */

    /* Do we need to create a new location? */
    if (param.outloc->answer != NULL) {
        /* Convert projection information non-interactively as we can't
         * assume the user has a terminal open */
        if (GPJ_osr_to_grass(&cellhd, &proj_info,
                             &proj_units, Ogr_projection, 0) < 0) {
            G_fatal_error(_("Unable to convert input map projection to GRASS "
                            "format; cannot create new location."));
        }
        else {
            G_make_location(param.outloc->answer, &cellhd,
                            proj_info, proj_units, NULL);
            G_message(_("Location <%s> created"), param.outloc->answer);
        }

        /* If the i flag is set, clean up? and exit here */
        if(flag.no_import->answer)
        {
            exit(EXIT_SUCCESS);
        }
    }
    else {
        int err = 0;

        /* Projection only required for checking so convert non-interactively */
        if (GPJ_osr_to_grass(&cellhd, &proj_info,
                             &proj_units, Ogr_projection, 0) < 0)
            G_warning(_("Unable to convert input map projection information to "
                        "GRASS format for checking"));

        /* Does the projection of the current location match the dataset? */
        /* G_get_window seems to be unreliable if the location has been changed */
        G__get_window(&loc_wind, "", "DEFAULT_WIND", "PERMANENT");
        /* fetch LOCATION PROJ info */
        if (loc_wind.proj != PROJECTION_XY) {
            loc_proj_info = G_get_projinfo();
            loc_proj_units = G_get_projunits();
        }

        if (flag.over->answer) {
            cellhd.proj = loc_wind.proj;
            cellhd.zone = loc_wind.zone;
            G_message(_("Over-riding projection check"));
        }
        else if (loc_wind.proj != cellhd.proj
                 || (err =
                         G_compare_projections(loc_proj_info, loc_proj_units,
                                               proj_info, proj_units)) != TRUE) {
            int i_value;

            strcpy(error_msg,
                   _("Projection of dataset does not"
                     " appear to match current location.\n\n"));

            /* TODO: output this info sorted by key: */
            if (loc_wind.proj != cellhd.proj || err != -2) {
                if (loc_proj_info != NULL) {
                    strcat(error_msg, _("GRASS LOCATION PROJ_INFO is:\n"));
                    for (i_value = 0; i_value < loc_proj_info->nitems;
                            i_value++)
                        sprintf(error_msg + strlen(error_msg), "%s: %s\n",
                                loc_proj_info->key[i_value],
                                loc_proj_info->value[i_value]);
                    strcat(error_msg, "\n");
                }

                if (proj_info != NULL) {
                    strcat(error_msg, _("Import dataset PROJ_INFO is:\n"));
                    for (i_value = 0; i_value < proj_info->nitems; i_value++)
                        sprintf(error_msg + strlen(error_msg), "%s: %s\n",
                                proj_info->key[i_value],
                                proj_info->value[i_value]);
                }
                else {
                    strcat(error_msg, _("Import dataset PROJ_INFO is:\n"));
                    if (cellhd.proj == PROJECTION_XY)
                        sprintf(error_msg + strlen(error_msg),
                                "Dataset proj = %d (unreferenced/unknown)\n",
                                cellhd.proj);
                    else if (cellhd.proj == PROJECTION_LL)
                        sprintf(error_msg + strlen(error_msg),
                                "Dataset proj = %d (lat/long)\n",
                                cellhd.proj);
                    else if (cellhd.proj == PROJECTION_UTM)
                        sprintf(error_msg + strlen(error_msg),
                                "Dataset proj = %d (UTM), zone = %d\n",
                                cellhd.proj, cellhd.zone);
                    else if (cellhd.proj == PROJECTION_SP)
                        sprintf(error_msg + strlen(error_msg),
                                "Dataset proj = %d (State Plane), zone = %d\n",
                                cellhd.proj, cellhd.zone);
                    else
                        sprintf(error_msg + strlen(error_msg),
                                "Dataset proj = %d (unknown), zone = %d\n",
                                cellhd.proj, cellhd.zone);
                }
            }
            else {
                if (loc_proj_units != NULL) {
                    strcat(error_msg, "GRASS LOCATION PROJ_UNITS is:\n");
                    for (i_value = 0; i_value < loc_proj_units->nitems;
                            i_value++)
                        sprintf(error_msg + strlen(error_msg), "%s: %s\n",
                                loc_proj_units->key[i_value],
                                loc_proj_units->value[i_value]);
                    strcat(error_msg, "\n");
                }

                if (proj_units != NULL) {
                    strcat(error_msg, "Import dataset PROJ_UNITS is:\n");
                    for (i_value = 0; i_value < proj_units->nitems; i_value++)
                        sprintf(error_msg + strlen(error_msg), "%s: %s\n",
                                proj_units->key[i_value],
                                proj_units->value[i_value]);
                }
            }
            sprintf(error_msg + strlen(error_msg),
                    _("\nYou can use the -o flag to %s to override this projection check.\n"),
                    G_program_name());
            strcat(error_msg,
                   _("Consider generating a new location with 'location' parameter"
                     " from input data set.\n"));
            G_fatal_error(error_msg);
        }
        else {
            G_message(_("Projection of input dataset and current location "
                        "appear to match"));
        }
    }

    db_init_string(&sql);
    db_init_string(&strval);

    /* open output vector */
    /* strip any @mapset from vector output name */
    G_find_vector(output, G_mapset());
    Vect_open_new(&Map, output, flag.z->answer != 0);
    Out = &Map;

    n_polygon_boundaries = 0;
    if (!flag.no_clean->answer) {
        /* check if we need a tmp vector */

        /* estimate distance for boundary splitting --> */
        for (layer = 0; layer < nlayers; layer++) {
            layer_id = layers[layer];

            Ogr_layer = OGR_DS_GetLayer(Ogr_ds, layer_id);
            Ogr_featuredefn = OGR_L_GetLayerDefn(Ogr_layer);

            n_features = feature_count = 0;

            n_features = OGR_L_GetFeatureCount(Ogr_layer, 1);
            OGR_L_ResetReading(Ogr_layer);

            /* count polygons and isles */
            G_message(_("Counting polygons for %d features (OGR layer <%s>)..."),
                      n_features, layer_names[layer]);
            while ((Ogr_feature = OGR_L_GetNextFeature(Ogr_layer)) != NULL) {
                G_percent(feature_count++, n_features, 1);	/* show something happens */
                /* Geometry */
                Ogr_geometry = OGR_F_GetGeometryRef(Ogr_feature);
                if (Ogr_geometry != NULL) {
                    poly_count(Ogr_geometry, (type & GV_BOUNDARY));
                }
                OGR_F_Destroy(Ogr_feature);
            }
        }

        G_debug(1, "n polygon boundaries: %d", n_polygon_boundaries);
        if (n_polygon_boundaries > 50) {
            split_distance =
                area_size / log(n_polygon_boundaries);
            /* divisor is the handle: increase divisor to decrease split_distance */
            split_distance = split_distance / 5.;
            G_debug(1, "root of area size: %f", area_size);
            G_verbose_message(_("Boundary splitting distance in map units: %G"),
                              split_distance);
        }
        /* <-- estimate distance for boundary splitting */

        use_tmp_vect = n_polygon_boundaries > 0;

        if (use_tmp_vect) {
            /* open temporary vector, do the work in the temporary vector
             * at the end copy alive lines to output vector
             * in case of polygons this reduces the coor file size by a factor of 2 to 5
             * only needed when cleaning polygons */
            sprintf(tempvect, "%s_tmp", output);
            G_verbose_message(_("Using temporary vector <%s>"), tempvect);
            Vect_open_new(&Tmp, tempvect, flag.z->answer != 0);
            Out = &Tmp;
        }
    }

    Vect_hist_command(&Map);

    /* Points and lines are written immediately with categories. Boundaries of polygons are
     * written to the vector then cleaned and centroids are calculated for all areas in cleaan vector.
     * Then second pass through finds all centroids in each polygon feature and adds its category
     * to the centroid. The result is that one centroids may have 0, 1 ore more categories
     * of one ore more (more input layers) fields. */
    with_z = 0;
    for (layer = 0; layer < nlayers; layer++) {
        layer_id = layers[layer];

        Ogr_layer = OGR_DS_GetLayer(Ogr_ds, layer_id);
        Ogr_featuredefn = OGR_L_GetLayerDefn(Ogr_layer);

        /* Add DB link */
        if (!flag.notab->answer) {
            char *cat_col_name = GV_KEY_COLUMN;

            if (nlayers == 1) {	/* one layer only */
                Fi = Vect_default_field_info(&Map, layer + 1, NULL,
                                             GV_1TABLE);
            }
            else {
                Fi = Vect_default_field_info(&Map, layer + 1, NULL,
                                             GV_MTABLE);
            }

            if (ncnames > 0) {
                cat_col_name = param.cnames->answers[0];
            }
            Vect_map_add_dblink(&Map, layer + 1, layer_names[layer], Fi->table,
                                cat_col_name, Fi->database, Fi->driver);

            ncols = OGR_FD_GetFieldCount(Ogr_featuredefn);
            G_debug(2, "%d columns", ncols);

            /* Create table */
            sprintf(buf, "create table %s (%s integer", Fi->table,
                    cat_col_name);
            db_set_string(&sql, buf);
            for (i = 0; i < ncols; i++) {

                Ogr_field = OGR_FD_GetFieldDefn(Ogr_featuredefn, i);
                Ogr_ftype = OGR_Fld_GetType(Ogr_field);

                G_debug(3, "Ogr_ftype: %i", Ogr_ftype);	/* look up below */

                if (i < ncnames - 1) {
                    Ogr_fieldname = G_store(param.cnames->answers[i + 1]);
                }
                else {
                    /* Change column names to [A-Za-z][A-Za-z0-9_]* */
                    Ogr_fieldname = G_store(OGR_Fld_GetNameRef(Ogr_field));
                    G_debug(3, "Ogr_fieldname: '%s'", Ogr_fieldname);

                    G_str_to_sql(Ogr_fieldname);

                    G_debug(3, "Ogr_fieldname: '%s'", Ogr_fieldname);

                }

                /* avoid that we get the 'cat' column twice */
                if (strcmp(Ogr_fieldname, GV_KEY_COLUMN) == 0) {
                    sprintf(namebuf, "%s_", Ogr_fieldname);
                    Ogr_fieldname = G_store(namebuf);
                }

                /* captial column names are a pain in SQL */
                if (flag.tolower->answer)
                    G_str_to_lower(Ogr_fieldname);

                if (strcmp(OGR_Fld_GetNameRef(Ogr_field), Ogr_fieldname) != 0) {
                    G_warning(_("Column name changed: '%s' -> '%s'"),
                              OGR_Fld_GetNameRef(Ogr_field), Ogr_fieldname);
                }

                /** Simple 32bit integer                     OFTInteger = 0        **/

                /** List of 32bit integers                   OFTIntegerList = 1    **/

                /** Double Precision floating point          OFTReal = 2           **/

                /** List of doubles                          OFTRealList = 3       **/

                /** String of ASCII chars                    OFTString = 4         **/

                /** Array of strings                         OFTStringList = 5     **/

                /** Double byte string (unsupported)         OFTWideString = 6     **/

                /** List of wide strings (unsupported)       OFTWideStringList = 7 **/

                /** Raw Binary data (unsupported)            OFTBinary = 8         **/

                /**                                          OFTDate = 9           **/

                /**                                          OFTTime = 10          **/

                /**                                          OFTDateTime = 11      **/


                if (Ogr_ftype == OFTInteger) {
                    sprintf(buf, ", %s integer", Ogr_fieldname);
                }
                else if (Ogr_ftype == OFTIntegerList) {
                    /* hack: treat as string */
                    sprintf(buf, ", %s varchar ( %d )", Ogr_fieldname,
                            OFTIntegerListlength);
                    G_warning(_("Writing column <%s> with fixed length %d chars (may be truncated)"),
                              Ogr_fieldname, OFTIntegerListlength);
                }
                else if (Ogr_ftype == OFTReal) {
                    sprintf(buf, ", %s double precision", Ogr_fieldname);
#if GDAL_VERSION_NUM >= 1320
                }
                else if (Ogr_ftype == OFTDate) {
                    sprintf(buf, ", %s date", Ogr_fieldname);
                }
                else if (Ogr_ftype == OFTTime) {
                    sprintf(buf, ", %s time", Ogr_fieldname);
                }
                else if (Ogr_ftype == OFTDateTime) {
                    sprintf(buf, ", %s datetime", Ogr_fieldname);
#endif
                }
                else if (Ogr_ftype == OFTString) {
                    int fwidth;

                    fwidth = OGR_Fld_GetWidth(Ogr_field);
                    /* TODO: read all records first and find the longest string length */
                    if (fwidth == 0) {
                        G_warning(_("Width for column %s set to 255 (was not specified by OGR), "
                                    "some strings may be truncated!"),
                                  Ogr_fieldname);
                        fwidth = 255;
                    }
                    sprintf(buf, ", %s varchar ( %d )", Ogr_fieldname,
                            fwidth);
                }
                else if (Ogr_ftype == OFTStringList) {
                    /* hack: treat as string */
                    sprintf(buf, ", %s varchar ( %d )", Ogr_fieldname,
                            OFTIntegerListlength);
                    G_warning(_("Writing column %s with fixed length %d chars (may be truncated)"),
                              Ogr_fieldname, OFTIntegerListlength);
                }
                else {
                    G_warning(_("Column type not supported (%s)"),
                              Ogr_fieldname);
                    buf[0] = 0;
                }
                db_append_string(&sql, buf);
                G_free(Ogr_fieldname);
            }
            db_append_string(&sql, ")");
            G_debug(3, db_get_string(&sql));

            driver =
                db_start_driver_open_database(Fi->driver,
                                              Vect_subst_var(Fi->database,
                                                      &Map));
            if (driver == NULL) {
                G_fatal_error(_("Unable open database <%s> by driver <%s>"),
                              Vect_subst_var(Fi->database, &Map), Fi->driver);
            }

            if (db_execute_immediate(driver, &sql) != DB_OK) {
                db_close_database(driver);
                db_shutdown_driver(driver);
                G_fatal_error(_("Unable to create table: '%s'"),
                              db_get_string(&sql));
            }

            if (db_create_index2(driver, Fi->table, cat_col_name) != DB_OK)
                G_warning(_("Unable to create index for table <%s>, key <%s>"),
                          Fi->table, cat_col_name);

            if (db_grant_on_table
                    (driver, Fi->table, DB_PRIV_SELECT,
                     DB_GROUP | DB_PUBLIC) != DB_OK)
                G_fatal_error(_("Unable to grant privileges on table <%s>"),
                              Fi->table);

            db_begin_transaction(driver);
        }

        /* Import feature */
        cat = 1;
        nogeom = 0;
        OGR_L_ResetReading(Ogr_layer);
        n_features = feature_count = 0;

        n_features = OGR_L_GetFeatureCount(Ogr_layer, 1);

        G_important_message(_("Importing %d features (OGR layer <%s>)..."),
                            n_features, layer_names[layer]);
        while ((Ogr_feature = OGR_L_GetNextFeature(Ogr_layer)) != NULL) {
            G_percent(feature_count++, n_features, 1);	/* show something happens */
            /* Geometry */
            Ogr_geometry = OGR_F_GetGeometryRef(Ogr_feature);
            if (Ogr_geometry == NULL) {
                nogeom++;
            }
            else {
                dim = OGR_G_GetCoordinateDimension(Ogr_geometry);
                if (dim > 2)
                    with_z = 1;

                geom(Ogr_geometry, Out, layer + 1, cat, min_area, type,
                     flag.no_clean->answer);
            }

            /* Attributes */
            if (!flag.notab->answer) {
                sprintf(buf, "insert into %s values ( %d", Fi->table, cat);
                db_set_string(&sql, buf);
                for (i = 0; i < ncols; i++) {
                    Ogr_field = OGR_FD_GetFieldDefn(Ogr_featuredefn, i);
                    Ogr_ftype = OGR_Fld_GetType(Ogr_field);
                    if (OGR_F_IsFieldSet(Ogr_feature, i)) {
                        if (Ogr_ftype == OFTInteger || Ogr_ftype == OFTReal) {
                            sprintf(buf, ", %s",
                                    OGR_F_GetFieldAsString(Ogr_feature, i));
#if GDAL_VERSION_NUM >= 1320
                            /* should we use OGR_F_GetFieldAsDateTime() here ? */
                        }
                        else if (Ogr_ftype == OFTDate || Ogr_ftype == OFTTime
                                 || Ogr_ftype == OFTDateTime) {
                            char *newbuf;

                            db_set_string(&strval, (char *)
                                          OGR_F_GetFieldAsString(Ogr_feature,
                                                                 i));
                            db_double_quote_string(&strval);
                            sprintf(buf, ", '%s'", db_get_string(&strval));
                            newbuf = G_str_replace(buf, "/", "-");	/* fix 2001/10/21 to 2001-10-21 */
                            sprintf(buf, "%s", newbuf);
#endif
                        }
                        else if (Ogr_ftype == OFTString ||
                                 Ogr_ftype == OFTIntegerList) {
                            db_set_string(&strval, (char *)
                                          OGR_F_GetFieldAsString(Ogr_feature,
                                                                 i));
                            db_double_quote_string(&strval);
                            sprintf(buf, ", '%s'", db_get_string(&strval));
                        }

                    }
                    else {
                        /* G_warning (_("Column value not set" )); */
                        if (Ogr_ftype == OFTInteger || Ogr_ftype == OFTReal) {
                            sprintf(buf, ", NULL");
#if GDAL_VERSION_NUM >= 1320
                        }
                        else if (Ogr_ftype == OFTString ||
                                 Ogr_ftype == OFTIntegerList ||
                                 Ogr_ftype == OFTDate) {
#else
                        }
                        else if (Ogr_ftype == OFTString ||
                                 Ogr_ftype == OFTIntegerList) {
#endif
                            sprintf(buf, ", ''");
                        }
                    }
                    db_append_string(&sql, buf);
                }
                db_append_string(&sql, " )");
                G_debug(3, db_get_string(&sql));

                if (db_execute_immediate(driver, &sql) != DB_OK) {
                    db_close_database(driver);
                    db_shutdown_driver(driver);
                    G_fatal_error(_("Cannot insert new row: %s"),
                                  db_get_string(&sql));
                }
            }

            OGR_F_Destroy(Ogr_feature);
            cat++;
        }
        G_percent(1, 1, 1);	/* finish it */

        if (!flag.notab->answer) {
            db_commit_transaction(driver);
            db_close_database_shutdown_driver(driver);
        }

        if (nogeom > 0)
            G_warning(_("%d %s without geometry"), nogeom,
                      nogeom == 1 ? "feature" : "features");
    }


    separator = "-----------------------------------------------------";
    G_message("%s", separator);

    if (use_tmp_vect) {
        /* TODO: is it necessary to build here? probably not, consumes time */
        /* GV_BUILD_BASE is sufficient to toggle boundary cleaning */
        Vect_build_partial(&Tmp, GV_BUILD_BASE);
    }

    if (use_tmp_vect && !flag.no_clean->answer &&
            Vect_get_num_primitives(Out, GV_BOUNDARY) > 0) {
        int ret, centr, ncentr, otype, n_overlaps, n_nocat;
        CENTR *Centr;
        struct spatial_index si;
        double x, y, total_area, overlap_area, nocat_area;
        struct bound_box box;
        struct line_pnts *Points;
        int nmodif;

        Points = Vect_new_line_struct();

        G_message("%s", separator);

        G_warning(_("Cleaning polygons, result is not guaranteed!"));

        if (snap >= 0) {
            G_message("%s", separator);
            G_message(_("Snapping boundaries (threshold = %.3e)..."), snap);
            Vect_snap_lines(&Tmp, GV_BOUNDARY, snap, NULL);
        }

        /* It is not to clean to snap centroids, but I have seen data with 2 duplicate polygons
         * (as far as decimal places were printed) and centroids were not identical */
        /* Disabled, because overlapping polygons result in many duplicate centroids anyway */
        /*
           fprintf ( stderr, separator );
           fprintf ( stderr, "Snap centroids (threshold 0.000001):\n" );
           Vect_snap_lines ( &Map, GV_CENTROID, 0.000001, NULL, stderr );
         */

        G_message("%s", separator);
        G_message(_("Breaking polygons..."));
        Vect_break_polygons(&Tmp, GV_BOUNDARY, NULL);

        /* It is important to remove also duplicate centroids in case of duplicate input polygons */
        G_message("%s", separator);
        G_message(_("Removing duplicates..."));
        Vect_remove_duplicates(&Tmp, GV_BOUNDARY | GV_CENTROID, NULL);

        /* in non-pathological cases, the bulk of the cleaning is now done */

        /* Vect_clean_small_angles_at_nodes() can change the geometry so that new intersections
         * are created. We must call Vect_break_lines(), Vect_remove_duplicates()
         * and Vect_clean_small_angles_at_nodes() until no more small angles are found */
        do {
            G_message("%s", separator);
            G_message(_("Breaking boundaries..."));
            Vect_break_lines(&Tmp, GV_BOUNDARY, NULL);

            G_message("%s", separator);
            G_message(_("Removing duplicates..."));
            Vect_remove_duplicates(&Tmp, GV_BOUNDARY, NULL);

            G_message("%s", separator);
            G_message(_("Cleaning boundaries at nodes..."));
            nmodif =
                Vect_clean_small_angles_at_nodes(&Tmp, GV_BOUNDARY, NULL);
        } while (nmodif > 0);

        /* merge boundaries */
        G_message("%s", separator);
        G_message(_("Merging boundaries..."));
        Vect_merge_lines(&Tmp, GV_BOUNDARY, NULL, NULL);

        G_message("%s", separator);
        if (type & GV_BOUNDARY) {	/* that means lines were converted to boundaries */
            G_message(_("Changing boundary dangles to lines..."));
            Vect_chtype_dangles(&Tmp, -1.0, NULL);
        }
        else {
            G_message(_("Removing dangles..."));
            Vect_remove_dangles(&Tmp, GV_BOUNDARY, -1.0, NULL);
        }

        G_message("%s", separator);
        if (type & GV_BOUNDARY) {
            G_message(_("Changing boundary bridges to lines..."));
            Vect_chtype_bridges(&Tmp, NULL);
        }
        else {
            G_message(_("Removing bridges..."));
            Vect_remove_bridges(&Tmp, NULL);
        }

        /* Boundaries are hopefully clean, build areas */
        G_message("%s", separator);
        Vect_build_partial(&Tmp, GV_BUILD_ATTACH_ISLES);

        /* Calculate new centroids for all areas, centroids have the same id as area */
        ncentr = Vect_get_num_areas(&Tmp);
        G_debug(3, "%d centroids/areas", ncentr);

        Centr = (CENTR *) G_calloc(ncentr + 1, sizeof(CENTR));
        Vect_spatial_index_init(&si, 0);
        for (centr = 1; centr <= ncentr; centr++) {
            Centr[centr].valid = 0;
            Centr[centr].cats = Vect_new_cats_struct();
            ret = Vect_get_point_in_area(&Tmp, centr, &x, &y);
            if (ret < 0) {
                G_warning(_("Unable to calculate area centroid"));
                continue;
            }

            Centr[centr].x = x;
            Centr[centr].y = y;
            Centr[centr].valid = 1;
            box.N = box.S = y;
            box.E = box.W = x;
            box.T = box.B = 0;
            Vect_spatial_index_add_item(&si, centr, &box);
        }

        /* Go through all layers and find centroids for each polygon */
        for (layer = 0; layer < nlayers; layer++) {
            G_message("%s", separator);
            G_message(_("Finding centroids for OGR layer <%s>..."), layer_names[layer]);
            layer_id = layers[layer];
            Ogr_layer = OGR_DS_GetLayer(Ogr_ds, layer_id);
            n_features = OGR_L_GetFeatureCount(Ogr_layer, 1);
            OGR_L_ResetReading(Ogr_layer);

            cat = 0;		/* field = layer + 1 */
            G_percent(cat, n_features, 2);
            while ((Ogr_feature = OGR_L_GetNextFeature(Ogr_layer)) != NULL) {
                cat++;
                G_percent(cat, n_features, 2);
                /* Geometry */
                Ogr_geometry = OGR_F_GetGeometryRef(Ogr_feature);
                if (Ogr_geometry != NULL) {
                    centroid(Ogr_geometry, Centr, &si, layer + 1, cat,
                             min_area, type);
                }

                OGR_F_Destroy(Ogr_feature);
            }
        }

        /* Write centroids */
        G_message("%s", separator);
        G_message(_("Writing centroids..."));

        n_overlaps = n_nocat = 0;
        total_area = overlap_area = nocat_area = 0.0;
        for (centr = 1; centr <= ncentr; centr++) {
            double area;

            G_percent(centr, ncentr, 2);

            area = Vect_get_area_area(&Tmp, centr);
            total_area += area;

            if (!(Centr[centr].valid)) {
                continue;
            }

            if (Centr[centr].cats->n_cats == 0) {
                nocat_area += area;
                n_nocat++;
                continue;
            }

            if (Centr[centr].cats->n_cats > 1) {
                Vect_cat_set(Centr[centr].cats, nlayers + 1,
                             Centr[centr].cats->n_cats);
                overlap_area += area;
                n_overlaps++;
            }

            Vect_reset_line(Points);
            Vect_append_point(Points, Centr[centr].x, Centr[centr].y, 0.0);
            if (type & GV_POINT)
                otype = GV_POINT;
            else
                otype = GV_CENTROID;
            Vect_write_line(&Tmp, otype, Points, Centr[centr].cats);
        }
        if (Centr)
            G_free(Centr);

        Vect_spatial_index_destroy(&si);

        if (n_overlaps > 0) {
            G_warning(_("%d areas represent more (overlapping) features, because polygons overlap "
                        "in input layer(s). Such areas are linked to more than 1 row in attribute table. "
                        "The number of features for those areas is stored as category in layer %d"),
                      n_overlaps, nlayers + 1);
        }

        G_message("%s", separator);

        Vect_hist_write(&Map, separator);
        Vect_hist_write(&Map, "\n");
        sprintf(buf, _("%d input polygons\n"), n_polygons);
        G_message(_("%d input polygons"), n_polygons);
        Vect_hist_write(&Map, buf);

        sprintf(buf, _("Total area: %G (%d areas)\n"), total_area, ncentr);
        G_message(_("Total area: %G (%d areas)"), total_area, ncentr);
        Vect_hist_write(&Map, buf);

        sprintf(buf, _("Overlapping area: %G (%d areas)\n"), overlap_area,
                n_overlaps);
        G_message(_("Overlapping area: %G (%d areas)"), overlap_area,
                  n_overlaps);
        Vect_hist_write(&Map, buf);

        sprintf(buf, _("Area without category: %G (%d areas)\n"), nocat_area,
                n_nocat);
        G_message(_("Area without category: %G (%d areas)"), nocat_area,
                  n_nocat);
        Vect_hist_write(&Map, buf);
        G_message("%s", separator);
    }

    /* needed?
     * OGR_DS_Destroy( Ogr_ds );
     */

    if (use_tmp_vect) {
        /* Copy temporary vector to output vector */
        Vect_copy_map_lines(&Tmp, &Map);
        /* release memory occupied by topo, we may need that memory for main output */
        Vect_set_release_support(&Tmp);
        Vect_close(&Tmp);
        Vect_delete(tempvect);
    }

    Vect_build(&Map);
    Vect_close(&Map);

    /* -------------------------------------------------------------------- */
    /*      Extend current window based on dataset.                         */
    /* -------------------------------------------------------------------- */
    if (flag.extend->answer) {
        G_get_default_window(&loc_wind);

        loc_wind.north = MAX(loc_wind.north, cellhd.north);
        loc_wind.south = MIN(loc_wind.south, cellhd.south);
        loc_wind.west = MIN(loc_wind.west, cellhd.west);
        loc_wind.east = MAX(loc_wind.east, cellhd.east);

        loc_wind.rows = (int)ceil((loc_wind.north - loc_wind.south)
                                  / loc_wind.ns_res);
        loc_wind.south = loc_wind.north - loc_wind.rows * loc_wind.ns_res;

        loc_wind.cols = (int)ceil((loc_wind.east - loc_wind.west)
                                  / loc_wind.ew_res);
        loc_wind.east = loc_wind.west + loc_wind.cols * loc_wind.ew_res;

        G__put_window(&loc_wind, "../PERMANENT", "DEFAULT_WIND");
    }

    if (with_z && !flag.z->answer)
        G_warning(_("Input data contains 3D features. Created vector is 2D only, "
                    "use -z flag to import 3D vector."));

    exit(EXIT_SUCCESS);
}
示例#24
0
int main(int argc, char *argv[])
{
    struct Map_info In, Out, Buf;
    struct line_pnts *Points;
    struct line_cats *Cats, *BCats;
    char bufname[GNAME_MAX];
    struct GModule *module;
    struct Option *in_opt, *out_opt, *type_opt, *dista_opt, *distb_opt,
	*angle_opt;
    struct Flag *straight_flag, *nocaps_flag;
    struct Option *tol_opt, *bufcol_opt, *scale_opt, *field_opt;

    int verbose;
    double da, db, dalpha, tolerance, unit_tolerance;
    int type;
    int i, ret, nareas, area, nlines, line;
    char *Areas, *Lines;
    int field;
    struct buf_contours *arr_bc;
    struct buf_contours_pts arr_bc_pts;
    int buffers_count = 0, line_id;
    struct spatial_index si;
    struct bound_box bbox;

    /* Attributes if sizecol is used */
    int nrec, ctype;
    struct field_info *Fi;
    dbDriver *Driver;
    dbCatValArray cvarr;
    double size_val, scale;


    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("geometry"));
    G_add_keyword(_("buffer"));
    module->description =
	_("Creates a buffer around vector features of given type.");

    in_opt = G_define_standard_option(G_OPT_V_INPUT);

    field_opt = G_define_standard_option(G_OPT_V_FIELD_ALL);
    field_opt->guisection = _("Selection");

    type_opt = G_define_standard_option(G_OPT_V_TYPE);
    type_opt->options = "point,line,boundary,centroid,area";
    type_opt->answer = "point,line,area";
    type_opt->guisection = _("Selection");

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    
    dista_opt = G_define_option();
    dista_opt->key = "distance";
    dista_opt->type = TYPE_DOUBLE;
    dista_opt->required = NO;
    dista_opt->description =
	_("Buffer distance along major axis in map units");
    dista_opt->guisection = _("Distance");

    distb_opt = G_define_option();
    distb_opt->key = "minordistance";
    distb_opt->type = TYPE_DOUBLE;
    distb_opt->required = NO;
    distb_opt->description =
	_("Buffer distance along minor axis in map units");
    distb_opt->guisection = _("Distance");

    angle_opt = G_define_option();
    angle_opt->key = "angle";
    angle_opt->type = TYPE_DOUBLE;
    angle_opt->required = NO;
    angle_opt->answer = "0";
    angle_opt->description = _("Angle of major axis in degrees");
    angle_opt->guisection = _("Distance");

    bufcol_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    bufcol_opt->key = "bufcolumn";
    bufcol_opt->description =
	_("Name of column to use for buffer distances");
    bufcol_opt->guisection = _("Distance");

    scale_opt = G_define_option();
    scale_opt->key = "scale";
    scale_opt->type = TYPE_DOUBLE;
    scale_opt->required = NO;
    scale_opt->answer = "1.0";
    scale_opt->description = _("Scaling factor for attribute column values");
    scale_opt->guisection = _("Distance");

    tol_opt = G_define_option();
    tol_opt->key = "tolerance";
    tol_opt->type = TYPE_DOUBLE;
    tol_opt->required = NO;
    tol_opt->answer = "0.01";
    tol_opt->description =
	_("Maximum distance between theoretical arc and polygon segments as multiple of buffer");
    tol_opt->guisection = _("Distance");

    straight_flag = G_define_flag();
    straight_flag->key = 's';
    straight_flag->description = _("Make outside corners straight");

    nocaps_flag = G_define_flag();
    nocaps_flag->key = 'c';
    nocaps_flag->description = _("Don't make caps at the ends of polylines");

    G_gisinit(argv[0]);
    
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    type = Vect_option_to_types(type_opt);

    if ((dista_opt->answer && bufcol_opt->answer) ||
	(!(dista_opt->answer || bufcol_opt->answer)))
	G_fatal_error(_("Select a buffer distance/minordistance/angle "
			"or column, but not both."));

    if (bufcol_opt->answer)
	G_warning(_("The bufcol option may contain bugs during the cleaning "
		    "step. If you encounter problems, use the debug "
		    "option or clean manually with v.clean tool=break; "
		    "v.category step=0; v.extract -d type=area"));

    if (field_opt->answer)
	field = Vect_get_field_number(&In, field_opt->answer);
    else
	field = -1;
	
    if (bufcol_opt->answer && field == -1)
	G_fatal_error(_("The bufcol option requires a valid layer."));

    tolerance = atof(tol_opt->answer);
    if (tolerance <= 0)
	G_fatal_error(_("The tolerance must be > 0."));

    if (adjust_tolerance(&tolerance))
	G_warning(_("The tolerance was reset to %g"), tolerance);

    scale = atof(scale_opt->answer);
    if (scale <= 0.0)
	G_fatal_error("Illegal scale value");

    da = db = dalpha = 0;
    if (dista_opt->answer) {
	da = atof(dista_opt->answer);

	if (distb_opt->answer)
	    db = atof(distb_opt->answer);
	else
	    db = da;

	if (angle_opt->answer)
	    dalpha = atof(angle_opt->answer);
	else
	    dalpha = 0;

	unit_tolerance = tolerance * MIN(da, db);
	G_verbose_message(_("The tolerance in map units = %g"), unit_tolerance);
    }

    Vect_check_input_output_name(in_opt->answer, out_opt->answer,
				 GV_FATAL_EXIT);

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();
    BCats = Vect_new_cats_struct();

    Vect_set_open_level(2); /* topology required */

    if (1 > Vect_open_old2(&In, in_opt->answer, "", field_opt->answer))
	G_fatal_error(_("Unable to open vector map <%s>"), in_opt->answer);

    if (0 > Vect_open_new(&Out, out_opt->answer, WITHOUT_Z)) {
	Vect_close(&In);
	G_fatal_error(_("Unable to create vector map <%s>"), out_opt->answer);
    }

    /* open tmp vector for buffers, needed for cleaning */
    sprintf(bufname, "%s_tmp_%d", out_opt->answer, getpid());
    if (0 > Vect_open_new(&Buf, bufname, 0)) {
	Vect_close(&In);
	Vect_close(&Out);
	Vect_delete(out_opt->answer);
	exit(EXIT_FAILURE);
    }
    Vect_build_partial(&Buf, GV_BUILD_BASE);

    /* check and load attribute column data */
    if (bufcol_opt->answer) {
	db_CatValArray_init(&cvarr);

	Fi = Vect_get_field(&In, field);
	if (Fi == NULL)
	    G_fatal_error(_("Database connection not defined for layer %d"),
			  field);

	Driver = db_start_driver_open_database(Fi->driver, Fi->database);
	if (Driver == NULL)
	    G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
			  Fi->database, Fi->driver);

	/* Note do not check if the column exists in the table because it may be expression */

	/* TODO: only select values we need instead of all in column */
	nrec =
	    db_select_CatValArray(Driver, Fi->table, Fi->key,
				  bufcol_opt->answer, NULL, &cvarr);
	if (nrec < 0)
	    G_fatal_error(_("Unable to select data from table <%s>"),
			  Fi->table);
	G_debug(2, "%d records selected from table", nrec);

	ctype = cvarr.ctype;
	if (ctype != DB_C_TYPE_INT && ctype != DB_C_TYPE_DOUBLE)
	    G_fatal_error(_("Column type not supported"));

	db_close_database_shutdown_driver(Driver);

	/* Output cats/values list */
	for (i = 0; i < cvarr.n_values; i++) {
	    if (ctype == DB_C_TYPE_INT) {
		G_debug(4, "cat = %d val = %d", cvarr.value[i].cat,
			cvarr.value[i].val.i);
	    }
	    else if (ctype == DB_C_TYPE_DOUBLE) {
		G_debug(4, "cat = %d val = %f", cvarr.value[i].cat,
			cvarr.value[i].val.d);
	    }
	}
    }

    Vect_copy_head_data(&In, &Out);
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);


    /* Create buffers' boundaries */
    nlines = nareas = 0;
    if ((type & GV_POINTS) || (type & GV_LINES))
	nlines += Vect_get_num_primitives(&In, type);
    if (type & GV_AREA)
	nareas = Vect_get_num_areas(&In);
    
    if (nlines + nareas == 0) {
	G_warning(_("No features available for buffering. "
	            "Check type option and features available in the input vector."));
	exit(EXIT_SUCCESS);
    }

    buffers_count = 1;
    arr_bc = G_malloc((nlines + nareas + 1) * sizeof(struct buf_contours));

    Vect_spatial_index_init(&si, 0);

    /* Lines (and Points) */
    if ((type & GV_POINTS) || (type & GV_LINES)) {
	int ltype;

	if (nlines > 0)
	    G_message(_("Buffering lines..."));
	for (line = 1; line <= nlines; line++) {
	    int cat;

	    G_debug(2, "line = %d", line);
	    G_percent(line, nlines, 2);
	    
	    if (!Vect_line_alive(&In, line))
		continue;

	    ltype = Vect_read_line(&In, Points, Cats, line);
	    if (!(ltype & type))
		continue;

	    if (field > 0 && !Vect_cat_get(Cats, field, &cat))
		continue;

	    if (bufcol_opt->answer) {
		ret = db_CatValArray_get_value_di(&cvarr, cat, &size_val);
		if (ret != DB_OK) {
		    G_warning(_("No record for category %d in table <%s>"),
			      cat, Fi->table);
		    continue;
		}

		if (size_val < 0.0) {
		    G_warning(_("Attribute is of invalid size (%.3f) for category %d"),
			      size_val, cat);
		    continue;
		}

		if (size_val == 0.0)
		    continue;

		da = size_val * scale;
		db = da;
		dalpha = 0;
		unit_tolerance = tolerance * MIN(da, db);

		G_debug(2, "    dynamic buffer size = %.2f", da);
		G_debug(2, _("The tolerance in map units: %g"),
			unit_tolerance);
	    }
	    
	    Vect_line_prune(Points);
	    if (ltype & GV_POINTS || Points->n_points == 1) {
		Vect_point_buffer2(Points->x[0], Points->y[0], da, db, dalpha,
				   !(straight_flag->answer), unit_tolerance,
				   &(arr_bc_pts.oPoints));

		Vect_write_line(&Out, GV_BOUNDARY, arr_bc_pts.oPoints, BCats);
		line_id = Vect_write_line(&Buf, GV_BOUNDARY, arr_bc_pts.oPoints, Cats);
		Vect_destroy_line_struct(arr_bc_pts.oPoints);
		/* add buffer to spatial index */
		Vect_get_line_box(&Buf, line_id, &bbox);
		Vect_spatial_index_add_item(&si, buffers_count, &bbox);
		arr_bc[buffers_count].outer = line_id;
		arr_bc[buffers_count].inner_count = 0;
		arr_bc[buffers_count].inner = NULL;
		buffers_count++;

	    }
	    else {
		Vect_line_buffer2(Points, da, db, dalpha,
				  !(straight_flag->answer),
				  !(nocaps_flag->answer), unit_tolerance,
				  &(arr_bc_pts.oPoints),
				  &(arr_bc_pts.iPoints),
				  &(arr_bc_pts.inner_count));

		Vect_write_line(&Out, GV_BOUNDARY, arr_bc_pts.oPoints, BCats);
		line_id = Vect_write_line(&Buf, GV_BOUNDARY, arr_bc_pts.oPoints, Cats);
		Vect_destroy_line_struct(arr_bc_pts.oPoints);
		/* add buffer to spatial index */
		Vect_get_line_box(&Buf, line_id, &bbox);
		Vect_spatial_index_add_item(&si, buffers_count, &bbox);
		arr_bc[buffers_count].outer = line_id;

		arr_bc[buffers_count].inner_count = arr_bc_pts.inner_count;
		if (arr_bc_pts.inner_count > 0) {
		    arr_bc[buffers_count].inner = G_malloc(arr_bc_pts.inner_count * sizeof(int));
		    for (i = 0; i < arr_bc_pts.inner_count; i++) {
			Vect_write_line(&Out, GV_BOUNDARY, arr_bc_pts.iPoints[i], BCats);
			line_id = Vect_write_line(&Buf, GV_BOUNDARY, arr_bc_pts.iPoints[i], Cats);
			Vect_destroy_line_struct(arr_bc_pts.iPoints[i]);
			/* add buffer to spatial index */
			Vect_get_line_box(&Buf, line_id, &bbox);
			Vect_spatial_index_add_item(&si, buffers_count, &bbox);
			arr_bc[buffers_count].inner[i] = line_id;
		    }
		    G_free(arr_bc_pts.iPoints);
		}
		buffers_count++;
	    }
	}
    }

    /* Areas */
    if (type & GV_AREA) {
	int centroid;

	if (nareas > 0) 
	    G_message(_("Buffering areas..."));
	for (area = 1; area <= nareas; area++) {
	    int cat;

	    G_percent(area, nareas, 2);
	    
	    if (!Vect_area_alive(&In, area))
		continue;
	    
	    centroid = Vect_get_area_centroid(&In, area);
	    if (centroid == 0)
		continue;

	    Vect_read_line(&In, NULL, Cats, centroid);
	    if (field > 0 && !Vect_cat_get(Cats, field, &cat))
		continue;

	    if (bufcol_opt->answer) {
		ret = db_CatValArray_get_value_di(&cvarr, cat, &size_val);
		if (ret != DB_OK) {
		    G_warning(_("No record for category %d in table <%s>"),
			      cat, Fi->table);
		    continue;
		}

		if (size_val < 0.0) {
		    G_warning(_("Attribute is of invalid size (%.3f) for category %d"),
			      size_val, cat);
		    continue;
		}

		if (size_val == 0.0)
		    continue;

		da = size_val * scale;
		db = da;
		dalpha = 0;
		unit_tolerance = tolerance * MIN(da, db);

		G_debug(2, "    dynamic buffer size = %.2f", da);
		G_debug(2, _("The tolerance in map units: %g"),
			unit_tolerance);
	    }

	    Vect_area_buffer2(&In, area, da, db, dalpha,
			      !(straight_flag->answer),
			      !(nocaps_flag->answer), unit_tolerance,
			      &(arr_bc_pts.oPoints),
			      &(arr_bc_pts.iPoints),
			      &(arr_bc_pts.inner_count));

	    Vect_write_line(&Out, GV_BOUNDARY, arr_bc_pts.oPoints, BCats);
	    line_id = Vect_write_line(&Buf, GV_BOUNDARY, arr_bc_pts.oPoints, Cats);
	    Vect_destroy_line_struct(arr_bc_pts.oPoints);
	    /* add buffer to spatial index */
	    Vect_get_line_box(&Buf, line_id, &bbox);
	    Vect_spatial_index_add_item(&si, buffers_count, &bbox);
	    arr_bc[buffers_count].outer = line_id;

	    arr_bc[buffers_count].inner_count = arr_bc_pts.inner_count;
	    if (arr_bc_pts.inner_count > 0) {
		arr_bc[buffers_count].inner = G_malloc(arr_bc_pts.inner_count * sizeof(int));
		for (i = 0; i < arr_bc_pts.inner_count; i++) {
		    Vect_write_line(&Out, GV_BOUNDARY, arr_bc_pts.iPoints[i], BCats);
		    line_id = Vect_write_line(&Buf, GV_BOUNDARY, arr_bc_pts.iPoints[i], Cats);
		    Vect_destroy_line_struct(arr_bc_pts.iPoints[i]);
		    /* add buffer to spatial index */
		    Vect_get_line_box(&Buf, line_id, &bbox);
		    Vect_spatial_index_add_item(&si, buffers_count, &bbox);
		    arr_bc[buffers_count].inner[i] = line_id;
		}
		G_free(arr_bc_pts.iPoints);
	    }
	    buffers_count++;
	}
    }

    verbose = G_verbose();

    G_message(_("Cleaning buffers..."));
    
    /* Break lines */
    G_message(_("Building parts of topology..."));
    Vect_build_partial(&Out, GV_BUILD_BASE);

    G_message(_("Snapping boundaries..."));
    Vect_snap_lines(&Out, GV_BOUNDARY, 1e-7, NULL);

    G_message(_("Breaking polygons..."));
    Vect_break_polygons(&Out, GV_BOUNDARY, NULL);

    G_message(_("Removing duplicates..."));
    Vect_remove_duplicates(&Out, GV_BOUNDARY, NULL);

    do {
	G_message(_("Breaking boundaries..."));
	Vect_break_lines(&Out, GV_BOUNDARY, NULL);

	G_message(_("Removing duplicates..."));
	Vect_remove_duplicates(&Out, GV_BOUNDARY, NULL);

	G_message(_("Cleaning boundaries at nodes"));

    } while (Vect_clean_small_angles_at_nodes(&Out, GV_BOUNDARY, NULL) > 0);

    /* Dangles and bridges don't seem to be necessary if snapping is small enough. */
    /* Still needed for larger buffer distances ? */

    /*
    G_message(_("Removing dangles..."));
    Vect_remove_dangles(&Out, GV_BOUNDARY, -1, NULL);

    G_message (_("Removing bridges..."));
    Vect_remove_bridges(&Out, NULL);
    */

    G_message(_("Attaching islands..."));
    Vect_build_partial(&Out, GV_BUILD_ATTACH_ISLES);

    /* Calculate new centroids for all areas */
    nareas = Vect_get_num_areas(&Out);
    Areas = (char *)G_calloc(nareas + 1, sizeof(char));
    G_message(_("Calculating centroids for areas..."));
    G_percent(0, nareas, 2);
    for (area = 1; area <= nareas; area++) {
	double x, y;

	G_percent(area, nareas, 2);

	G_debug(3, "area = %d", area);

	if (!Vect_area_alive(&Out, area))
	    continue;

	ret = Vect_get_point_in_area(&Out, area, &x, &y);
	if (ret < 0) {
	    G_warning(_("Cannot calculate area centroid"));
	    continue;
	}

	ret = point_in_buffer(arr_bc, &si, &Buf, x, y);

	if (ret) {
	    G_debug(3, "  -> in buffer");
	    Areas[area] = 1;
	}
    }

    /* Make a list of boundaries to be deleted (both sides inside) */
    nlines = Vect_get_num_lines(&Out);
    G_debug(3, "nlines = %d", nlines);
    Lines = (char *)G_calloc(nlines + 1, sizeof(char));

    G_message(_("Generating list of boundaries to be deleted..."));
    for (line = 1; line <= nlines; line++) {
	int j, side[2], areas[2];

	G_percent(line, nlines, 2);

	G_debug(3, "line = %d", line);

	if (!Vect_line_alive(&Out, line))
	    continue;

	Vect_get_line_areas(&Out, line, &side[0], &side[1]);

	for (j = 0; j < 2; j++) {
	    if (side[j] == 0) {	/* area/isle not build */
		areas[j] = 0;
	    }
	    else if (side[j] > 0) {	/* area */
		areas[j] = side[j];
	    }
	    else {		/* < 0 -> island */
		areas[j] = Vect_get_isle_area(&Out, abs(side[j]));
	    }
	}

	G_debug(3, " areas = %d , %d -> Areas = %d, %d", areas[0], areas[1],
		Areas[areas[0]], Areas[areas[1]]);
	if (Areas[areas[0]] && Areas[areas[1]])
	    Lines[line] = 1;
    }
    G_free(Areas);

    /* Delete boundaries */
    G_message(_("Deleting boundaries..."));
    for (line = 1; line <= nlines; line++) {
	G_percent(line, nlines, 2);
	
	if (!Vect_line_alive(&Out, line))
	    continue;

	if (Lines[line]) {
	    G_debug(3, " delete line %d", line);
	    Vect_delete_line(&Out, line);
	}
	else {
	    /* delete incorrect boundaries */
	    int side[2];

	    Vect_get_line_areas(&Out, line, &side[0], &side[1]);
	    
	    if (!side[0] && !side[1])
		Vect_delete_line(&Out, line);
	}
    }

    G_free(Lines);

    /* Create new centroids */
    Vect_reset_cats(Cats);
    Vect_cat_set(Cats, 1, 1);
    nareas = Vect_get_num_areas(&Out);

    G_message(_("Calculating centroids for areas..."));    
    for (area = 1; area <= nareas; area++) {
	double x, y;

	G_percent(area, nareas, 2);

	G_debug(3, "area = %d", area);

	if (!Vect_area_alive(&Out, area))
	    continue;

	ret = Vect_get_point_in_area(&Out, area, &x, &y);
	if (ret < 0) {
	    G_warning(_("Cannot calculate area centroid"));
	    continue;
	}

	ret = point_in_buffer(arr_bc, &si, &Buf, x, y);

	if (ret) {
	    Vect_reset_line(Points);
	    Vect_append_point(Points, x, y, 0.);
	    Vect_write_line(&Out, GV_CENTROID, Points, Cats);
	}
    }

    /* free arr_bc[] */
    /* will only slow down the module
       for (i = 0; i < buffers_count; i++) {
       Vect_destroy_line_struct(arr_bc[i].oPoints);
       for (j = 0; j < arr_bc[i].inner_count; j++)
       Vect_destroy_line_struct(arr_bc[i].iPoints[j]);
       G_free(arr_bc[i].iPoints);
       } */

    Vect_spatial_index_destroy(&si);
    Vect_close(&Buf);
    Vect_delete(bufname);

    G_set_verbose(verbose);

    Vect_close(&In);

    Vect_build_partial(&Out, GV_BUILD_NONE);
    Vect_build(&Out);
    Vect_close(&Out);

    exit(EXIT_SUCCESS);
}
示例#25
0
int main(int argc, char *argv[])
{
    int i, j, nlines, type, field, cat;
    int fd;

    /* struct Categories RCats; *//* TODO */
    struct Cell_head window;
    RASTER_MAP_TYPE out_type;
    CELL *cell;
    DCELL *dcell;
    double drow, dcol;
    char buf[2000];
    struct Option *vect_opt, *rast_opt, *field_opt, *col_opt, *where_opt;
    int Cache_size;
    struct order *cache;
    int cur_row;
    struct GModule *module;

    struct Map_info Map;
    struct line_pnts *Points;
    struct line_cats *Cats;
    int point;
    int point_cnt;		/* number of points in cache */
    int outside_cnt;		/* points outside region */
    int nocat_cnt;		/* points inside region but without category */
    int dupl_cnt;		/* duplicate categories */
    struct bound_box box;

    int *catexst, *cex;
    struct field_info *Fi;
    dbString stmt;
    dbDriver *driver;
    int select, norec_cnt, update_cnt, upderr_cnt, col_type;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("raster"));
    G_add_keyword(_("position"));
    G_add_keyword(_("querying"));
    G_add_keyword(_("attribute table"));
    module->description =
	_("Uploads raster values at positions of vector points to the table.");

    vect_opt = G_define_standard_option(G_OPT_V_INPUT);
    vect_opt->key = "vector";
    vect_opt->description =
	_("Name of input vector points map for which to edit attribute table");

    rast_opt = G_define_standard_option(G_OPT_R_INPUT);
    rast_opt->key = "raster";
    rast_opt->description = _("Name of existing raster map to be queried");

    field_opt = G_define_standard_option(G_OPT_V_FIELD);

    col_opt = G_define_option();
    col_opt->key = "column";
    col_opt->type = TYPE_STRING;
    col_opt->required = YES;
    col_opt->description =
	_("Column name (will be updated by raster values)");

    where_opt = G_define_standard_option(G_OPT_DB_WHERE);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);


    field = atoi(field_opt->answer);

    db_init_string(&stmt);
    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    G_get_window(&window);
    Vect_region_box(&window, &box);	/* T and B set to +/- PORT_DOUBLE_MAX */

    /* Open vector */
    Vect_set_open_level(2);
    Vect_open_old(&Map, vect_opt->answer, "");

    Fi = Vect_get_field(&Map, field);
    if (Fi == NULL)
	G_fatal_error(_("Database connection not defined for layer %d"),
		      field);

    /* Open driver */
    driver = db_start_driver_open_database(Fi->driver, Fi->database);
    if (driver == NULL) {
	G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
		      Fi->database, Fi->driver);
    }

    /* Open raster */
    fd = Rast_open_old(rast_opt->answer, "");

    out_type = Rast_get_map_type(fd);

    /* TODO: Later possibly category labels */
    /* 
       if ( Rast_read_cats (name, "", &RCats) < 0 )
       G_fatal_error ( "Cannot read category file");
     */

    /* Check column type */
    col_type = db_column_Ctype(driver, Fi->table, col_opt->answer);

    if (col_type == -1)
	G_fatal_error(_("Column <%s> not found"), col_opt->answer);

    if (col_type != DB_C_TYPE_INT && col_type != DB_C_TYPE_DOUBLE)
	G_fatal_error(_("Column type not supported"));

    if (out_type == CELL_TYPE && col_type == DB_C_TYPE_DOUBLE)
	G_warning(_("Raster type is integer and column type is float"));

    if (out_type != CELL_TYPE && col_type == DB_C_TYPE_INT)
	G_warning(_("Raster type is float and column type is integer, some data lost!!"));

    /* Read vector points to cache */
    Cache_size = Vect_get_num_primitives(&Map, GV_POINT);
    /* Note: Some space may be wasted (outside region or no category) */

    cache = (struct order *)G_calloc(Cache_size, sizeof(struct order));

    point_cnt = outside_cnt = nocat_cnt = 0;

    nlines = Vect_get_num_lines(&Map);

    G_debug(1, "Reading %d vector features fom map", nlines);

    for (i = 1; i <= nlines; i++) {
	type = Vect_read_line(&Map, Points, Cats, i);
	G_debug(4, "line = %d type = %d", i, type);

	/* check type */
	if (!(type & GV_POINT))
	    continue;		/* Points only */

	/* check region */
	if (!Vect_point_in_box(Points->x[0], Points->y[0], 0.0, &box)) {
	    outside_cnt++;
	    continue;
	}

	Vect_cat_get(Cats, field, &cat);
	if (cat < 0) {		/* no category of given field */
	    nocat_cnt++;
	    continue;
	}

	G_debug(4, "    cat = %d", cat);

	/* Add point to cache */
	drow = Rast_northing_to_row(Points->y[0], &window);
	dcol = Rast_easting_to_col(Points->x[0], &window);

	/* a special case.
	 *   if north falls at southern edge, or east falls on eastern edge,
	 *   the point will appear outside the window.
	 *   So, for these edges, bring the point inside the window
	 */
	if (drow == window.rows)
	    drow--;
	if (dcol == window.cols)
	    dcol--;

	cache[point_cnt].row = (int)drow;
	cache[point_cnt].col = (int)dcol;
	cache[point_cnt].cat = cat;
	cache[point_cnt].count = 1;
	point_cnt++;
    }

    Vect_set_db_updated(&Map);
    Vect_hist_command(&Map);
    Vect_close(&Map);

    G_debug(1, "Read %d vector points", point_cnt);
    /* Cache may contain duplicate categories, sort by cat, find and remove duplicates 
     * and recalc count and decrease point_cnt  */
    qsort(cache, point_cnt, sizeof(struct order), by_cat);

    G_debug(1, "Points are sorted, starting duplicate removal loop");

    for (i = 0, j = 1; j < point_cnt; j++)
	if (cache[i].cat != cache[j].cat)
	    cache[++i] = cache[j];
	else
	    cache[i].count++;
    point_cnt = i + 1;

    G_debug(1, "%d vector points left after removal of duplicates",
	    point_cnt);

    /* Report number of points not used */
    if (outside_cnt)
	G_warning(_("%d points outside current region were skipped"),
		  outside_cnt);

    if (nocat_cnt)
	G_warning(_("%d points without category were skipped"), nocat_cnt);

    /* Sort cache by current region row */
    qsort(cache, point_cnt, sizeof(struct order), by_row);

    /* Allocate space for raster row */
    if (out_type == CELL_TYPE)
	cell = Rast_allocate_c_buf();
    else
	dcell = Rast_allocate_d_buf();

    /* Extract raster values from file and store in cache */
    G_debug(1, "Extracting raster values");

    cur_row = -1;

    for (point = 0; point < point_cnt; point++) {
	if (cache[point].count > 1)
	    continue;		/* duplicate cats */

	if (cur_row != cache[point].row) {
	    if (out_type == CELL_TYPE)
		Rast_get_c_row(fd, cell, cache[point].row);
	    else
		Rast_get_d_row(fd, dcell, cache[point].row);
	}
	cur_row = cache[point].row;

	if (out_type == CELL_TYPE) {
	    cache[point].value = cell[cache[point].col];
	}
	else {
	    cache[point].dvalue = dcell[cache[point].col];
	}
    }				/* point loop */

    /* Update table from cache */
    G_debug(1, "Updating db table");

    /* select existing categories to array (array is sorted) */
    select = db_select_int(driver, Fi->table, Fi->key, NULL, &catexst);

    db_begin_transaction(driver);

    norec_cnt = update_cnt = upderr_cnt = dupl_cnt = 0;

    for (point = 0; point < point_cnt; point++) {
	if (cache[point].count > 1) {
	    G_warning(_("More points (%d) of category %d, value set to 'NULL'"),
		      cache[point].count, cache[point].cat);
	    dupl_cnt++;
	}

	/* category exist in DB ? */
	cex =
	    (int *)bsearch((void *)&(cache[point].cat), catexst, select,
			   sizeof(int), srch_cat);
	if (cex == NULL) {	/* cat does not exist in DB */
	    norec_cnt++;
	    G_warning(_("No record for category %d in table <%s>"),
		      cache[point].cat, Fi->table);
	    continue;
	}

	sprintf(buf, "update %s set %s = ", Fi->table, col_opt->answer);

	db_set_string(&stmt, buf);

	if (out_type == CELL_TYPE) {
	    if (cache[point].count > 1 ||
		Rast_is_c_null_value(&cache[point].value)) {
		sprintf(buf, "NULL");
	    }
	    else {
		sprintf(buf, "%d ", cache[point].value);
	    }
	}
	else {			/* FCELL or DCELL */
	    if (cache[point].count > 1 ||
		Rast_is_d_null_value(&cache[point].dvalue)) {
		sprintf(buf, "NULL");
	    }
	    else {
		sprintf(buf, "%.10f", cache[point].dvalue);
	    }
	}
	db_append_string(&stmt, buf);

	sprintf(buf, " where %s = %d", Fi->key, cache[point].cat);
	db_append_string(&stmt, buf);
	/* user provides where condition: */
	if (where_opt->answer) {
	    sprintf(buf, " AND %s", where_opt->answer);
	    db_append_string(&stmt, buf);
	}
	G_debug(3, db_get_string(&stmt));

	/* Update table */
	if (db_execute_immediate(driver, &stmt) == DB_OK) {
	    update_cnt++;
	}
	else {
	    upderr_cnt++;
	}
    }

    G_debug(1, "Committing DB transaction");
    db_commit_transaction(driver);
    G_free(catexst);
    db_close_database_shutdown_driver(driver);
    db_free_string(&stmt);

    /* Report */
    G_message(_("%d categories loaded from table"), select);
    G_message(_("%d categories loaded from vector"), point_cnt);
    G_message(_("%d categories from vector missing in table"), norec_cnt);
    G_message(_("%d duplicate categories in vector"), dupl_cnt);
    if (!where_opt->answer)
	G_message(_("%d records updated"), update_cnt);
    G_message(_("%d update errors"), upderr_cnt);

    exit(EXIT_SUCCESS);
}
示例#26
0
文件: main.c 项目: rkrug/grass-ci
int main(int argc, char *argv[])
{
    struct Map_info In, Out;
    static struct line_pnts *Points;
    struct line_cats *Cats;
    struct GModule *module;	/* GRASS module for parsing arguments */
    struct Option *map_in, *map_out;
    struct Option *method_opt, *afield_opt, *nfield_opt, *abcol,
                  *afcol, *ncol;
    struct Flag *add_f;
    int with_z;
    int afield, nfield, mask_type;
    dglGraph_s *graph;
    int *component, nnodes, type, i, nlines, components, max_cat;
    char buf[2000], *covered;
    char *desc;

    /* Attribute table */
    dbString sql;
    dbDriver *driver;
    struct field_info *Fi;

    /* initialize GIS environment */
    G_gisinit(argv[0]);		/* reads grass env, stores program name to G_program_name() */

    /* initialize module */
    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("network"));
    G_add_keyword(_("components"));
    module->description =
	_("Computes strongly and weakly connected components in the network.");

    /* Define the different options as defined in gis.h */
    map_in = G_define_standard_option(G_OPT_V_INPUT);

    afield_opt = G_define_standard_option(G_OPT_V_FIELD);
    afield_opt->key = "arc_layer";
    afield_opt->answer = "1";
    afield_opt->label = _("Arc layer");
    afield_opt->guisection = _("Cost");

    nfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    nfield_opt->key = "node_layer";
    nfield_opt->answer = "2";
    nfield_opt->label = _("Node layer");
    nfield_opt->guisection = _("Cost");

    afcol = G_define_standard_option(G_OPT_DB_COLUMN);
    afcol->key = "arc_column";
    afcol->required = NO;
    afcol->description =
	_("Arc forward/both direction(s) cost column (number)");
    afcol->guisection = _("Cost");

    abcol = G_define_standard_option(G_OPT_DB_COLUMN);
    abcol->key = "arc_backward_column";
    abcol->required = NO;
    abcol->description = _("Arc backward direction cost column (number)");
    abcol->guisection = _("Cost");

    ncol = G_define_option();
    ncol->key = "node_column";
    ncol->type = TYPE_STRING;
    ncol->required = NO;
    ncol->description = _("Node cost column (number)");
    ncol->guisection = _("Cost");

    map_out = G_define_standard_option(G_OPT_V_OUTPUT);

    method_opt = G_define_option();
    method_opt->key = "method";
    method_opt->type = TYPE_STRING;
    method_opt->required = YES;
    method_opt->multiple = NO;
    method_opt->options = "weak,strong";
    desc = NULL;
    G_asprintf(&desc,
	       "weak;%s;strong;%s",
	       _("Weakly connected components"),
	       _("Strongly connected components"));
    method_opt->descriptions = desc;
    method_opt->description = _("Type of components");

    add_f = G_define_flag();
    add_f->key = 'a';
    add_f->description = _("Add points on nodes");

    /* options and flags parser */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);
    /* TODO: make an option for this */
    mask_type = GV_LINE | GV_BOUNDARY;

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    Vect_check_input_output_name(map_in->answer, map_out->answer,
				 G_FATAL_EXIT);

    Vect_set_open_level(2);

    if (1 > Vect_open_old(&In, map_in->answer, ""))
	G_fatal_error(_("Unable to open vector map <%s>"), map_in->answer);

    with_z = Vect_is_3d(&In);

    if (0 > Vect_open_new(&Out, map_out->answer, with_z)) {
	Vect_close(&In);
	G_fatal_error(_("Unable to create vector map <%s>"), map_out->answer);
    }

    /* parse filter option and select appropriate lines */
    afield = Vect_get_field_number(&In, afield_opt->answer);
    nfield = Vect_get_field_number(&In, nfield_opt->answer);

    if (0 != Vect_net_build_graph(&In, mask_type, afield, nfield, afcol->answer,
                                  abcol->answer, ncol->answer, 0, 2))
        G_fatal_error(_("Unable to build graph for vector map <%s>"), Vect_get_full_name(&In));

    graph = Vect_net_get_graph(&In);
    nnodes = Vect_get_num_nodes(&In);
    component = (int *)G_calloc(nnodes + 1, sizeof(int));
    covered = (char *)G_calloc(nnodes + 1, sizeof(char));
    if (!component || !covered) {
	G_fatal_error(_("Out of memory"));
	exit(EXIT_FAILURE);
    }
    /* Create table */
    Fi = Vect_default_field_info(&Out, 1, NULL, GV_1TABLE);
    Vect_map_add_dblink(&Out, 1, NULL, Fi->table, GV_KEY_COLUMN, Fi->database,
			Fi->driver);
    db_init_string(&sql);
    driver = db_start_driver_open_database(Fi->driver, Fi->database);
    if (driver == NULL)
	G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
		      Fi->database, Fi->driver);

    sprintf(buf, "create table %s ( cat integer, comp integer)", Fi->table);

    db_set_string(&sql, buf);
    G_debug(2, "%s", db_get_string(&sql));

    if (db_execute_immediate(driver, &sql) != DB_OK) {
	db_close_database_shutdown_driver(driver);
	G_fatal_error(_("Unable to create table: '%s'"), db_get_string(&sql));
    }

    if (db_create_index2(driver, Fi->table, GV_KEY_COLUMN) != DB_OK)
	G_warning(_("Cannot create index"));

    if (db_grant_on_table
	(driver, Fi->table, DB_PRIV_SELECT, DB_GROUP | DB_PUBLIC) != DB_OK)
	G_fatal_error(_("Cannot grant privileges on table <%s>"), Fi->table);

    db_begin_transaction(driver);

    if (method_opt->answer[0] == 'w') {
	G_message(_("Computing weakly connected components..."));
	components = NetA_weakly_connected_components(graph, component);
    }
    else {
	G_message(_("Computing strongly connected components..."));
	components = NetA_strongly_connected_components(graph, component);
    }

    G_debug(3, "Components: %d", components);

    G_message(_("Writing output..."));

    Vect_copy_head_data(&In, &Out);
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);

    nlines = Vect_get_num_lines(&In);
    max_cat = 1;
    G_percent(0, nlines, 4);
    for (i = 1; i <= nlines; i++) {
	int comp, cat;

	G_percent(i, nlines, 4);
	type = Vect_read_line(&In, Points, Cats, i);
	if (!Vect_cat_get(Cats, afield, &cat))
	    continue;
	if (type == GV_LINE || type == GV_BOUNDARY) {
	    int node1, node2;

	    Vect_get_line_nodes(&In, i, &node1, &node2);
	    if (component[node1] == component[node2]) {
		comp = component[node1];
	    }
	    else {
		continue;
	    }
	}
	else if (type == GV_POINT) {
	    int node;

	    /* Vect_get_line_nodes(&In, i, &node, NULL); */
	    node = Vect_find_node(&In, Points->x[0], Points->y[0], Points->z[0], 0, 0);
	    if (!node)
		continue;
	    comp = component[node];
	    covered[node] = 1;
	}
	else
	    continue;
	
	cat = max_cat++;
	Vect_reset_cats(Cats);
	Vect_cat_set(Cats, 1, cat);
	Vect_write_line(&Out, type, Points, Cats);
	insert_new_record(driver, Fi, &sql, cat, comp);
    }

    /*add points on nodes not covered by any point in the network */
    if (add_f->answer) {
	for (i = 1; i <= nnodes; i++)
	    if (!covered[i]) {
		Vect_reset_cats(Cats);
		Vect_cat_set(Cats, 1, max_cat);
		NetA_add_point_on_node(&In, &Out, i, Cats);
		insert_new_record(driver, Fi, &sql, max_cat++, component[i]);
	    }
    }

    db_commit_transaction(driver);
    db_close_database_shutdown_driver(driver);

    Vect_close(&In);

    Vect_build(&Out);
    Vect_close(&Out);

    G_done_msg(_("Found %d components."), components);

    exit(EXIT_SUCCESS);
}
示例#27
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    struct Option *in_opt, *layer_opt, *out_opt, *length_opt, *units_opt, *vertices_opt;
    
    struct Map_info In, Out;
    struct line_pnts *Points, *Points2;
    struct line_cats *Cats;

    int line, nlines, layer;
    double length = -1;
    int vertices = 0;
    double (*line_length) ();
    int latlon = 0;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("geometry"));
    module->description = _("Splits vector lines to shorter segments.");
    
    in_opt = G_define_standard_option(G_OPT_V_INPUT);

    layer_opt = G_define_standard_option(G_OPT_V_FIELD_ALL);

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    
    length_opt = G_define_option();
    length_opt->key = "length";
    length_opt->type = TYPE_DOUBLE;
    length_opt->required = NO;
    length_opt->multiple = NO;
    length_opt->description = _("Maximum segment length");

    units_opt = G_define_option();
    units_opt->key = "units";
    units_opt->type = TYPE_STRING;
    units_opt->required = NO;
    units_opt->multiple = NO;
    units_opt->options = "meters,kilometers,feet,miles,nautmiles";
    units_opt->answer = "meters";
    units_opt->description = _("Length units");
    
    vertices_opt = G_define_option();
    vertices_opt->key = "vertices";
    vertices_opt->type = TYPE_INTEGER;
    vertices_opt->required = NO;
    vertices_opt->multiple = NO;
    vertices_opt->description = _("Maximum number of vertices in segment");
    
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);
    
    if ((length_opt->answer && vertices_opt->answer) ||
	!(length_opt->answer || vertices_opt->answer))
	G_fatal_error(_("Use either length or vertices"));

    line_length = NULL;

    if (length_opt->answer) {
	length = atof(length_opt->answer);
	if (length <= 0)
	    G_fatal_error(_("Length must be positive but is %g"), length);

	/* convert length to meters */
	if (strcmp(units_opt->answer, "meters") == 0)
	    /* do nothing */ ;
	else if (strcmp(units_opt->answer, "kilometers") == 0)
	    length *= FROM_KILOMETERS;
	else if (strcmp(units_opt->answer, "feet") == 0)
	    length *= FROM_FEET;
	else if (strcmp(units_opt->answer, "miles") == 0)
	    length *= FROM_MILES;
	else if (strcmp(units_opt->answer, "nautmiles") == 0)
	    length *= FROM_NAUTMILES;
	else
	    G_fatal_error(_("Unknown unit %s"), units_opt->answer); 

	/* set line length function */
	if ((latlon = (G_projection() == PROJECTION_LL)) == 1)
	    line_length = Vect_line_geodesic_length;
	else {
	    double factor;
	    
	    line_length = Vect_line_length;
	    
	    /* convert length to map units */
	    if ((factor = G_database_units_to_meters_factor()) == 0)
		G_fatal_error(_("Can not get projection units"));
	    else {
		/* meters to units */
		length = length / factor;
	    }
	}
	G_verbose_message(_("length in %s: %g"), (latlon ? "meters" : "map units"), length);
    }

    if (vertices_opt->answer) {
	vertices = atoi(vertices_opt->answer);
	if (vertices < 2)
	    G_fatal_error(_("Number of vertices must be at least 2"));
    }
    
    Vect_set_open_level(2);
    Vect_open_old2(&In, in_opt->answer, "", layer_opt->answer);
    layer = Vect_get_field_number(&In, layer_opt->answer);
    
    Vect_open_new(&Out, out_opt->answer, Vect_is_3d(&In));
    
    Vect_copy_head_data(&In, &Out);
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);
    Vect_copy_tables(&In, &Out, layer);
    
    Points = Vect_new_line_struct();
    Points2 = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    nlines = Vect_get_num_lines(&In);

    for (line = 1; line <= nlines; line++) {
	int ltype;

	G_percent(line, nlines, 1);

	if (!Vect_line_alive(&In, line))
	    continue;

	ltype = Vect_read_line(&In, Points, Cats, line);

	if (layer != -1 && !Vect_cat_get(Cats, layer, NULL))
	  continue;

	if (ltype & GV_LINES) {
	    if (length > 0) {
		double l, from, to, step;

		l = line_length(Points);

		if (l <= length) {
		    Vect_write_line(&Out, ltype, Points, Cats);
		}
		else {
		    int n, i;

		    n = ceil(l / length);
		    if (latlon)
			l = Vect_line_length(Points);

		    step = l / n;
		    from = 0.;

		    for (i = 0; i < n; i++) {
			int ret;
			double x, y, z;

			if (i == n - 1) {
			    to = l;	/* to be sure that it goes to end */
			}
			else {
			    to = from + step;
			}

			ret = Vect_line_segment(Points, from, to, Points2);
			if (ret == 0) {
			    G_warning(_("Unable to make line segment: %f - %f (line length = %f)"),
				      from, to, l);
			    continue;
			}

			/* To be sure that the coordinates are identical */
			if (i > 0) {
			    Points2->x[0] = x;
			    Points2->y[0] = y;
			    Points2->z[0] = z;
			}
			if (i == n - 1) {
			    Points2->x[Points2->n_points - 1] =
				Points->x[Points->n_points - 1];
			    Points2->y[Points2->n_points - 1] =
				Points->y[Points->n_points - 1];
			    Points2->z[Points2->n_points - 1] =
				Points->z[Points->n_points - 1];
			}

			Vect_write_line(&Out, ltype, Points2, Cats);

			/* last point */
			x = Points2->x[Points2->n_points - 1];
			y = Points2->y[Points2->n_points - 1];
			z = Points2->z[Points2->n_points - 1];

			from += step;
		    }
		}
	    }
	    else {
		int start = 0;	/* number of coordinates written */

		while (start < Points->n_points - 1) {
		    int i, v;

		    Vect_reset_line(Points2);
		    for (i = 0; i < vertices; i++) {
			v = start + i;
			if (v == Points->n_points)
			    break;

			Vect_append_point(Points2, Points->x[v], Points->y[v],
					  Points->z[v]);
		    }

		    Vect_write_line(&Out, ltype, Points2, Cats);

		    start = v;
		}
	    }
	}
	else {
	    Vect_write_line(&Out, ltype, Points, Cats);
	}
    }

    Vect_close(&In);
    Vect_build(&Out);
    Vect_close(&Out);
    
    exit(EXIT_SUCCESS);
}
示例#28
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    struct Option *in_opt, *out_opt, *feature_opt, *column_name;
    struct Flag *smooth_flg, *value_flg, *z_flg, *no_topol;
    int feature;


    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("conversion"));
    G_add_keyword(_("geometry"));
    G_add_keyword(_("vectorization"));
    module->description = _("Converts a raster map into a vector map.");

    in_opt = G_define_standard_option(G_OPT_R_INPUT);

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    
    feature_opt = G_define_standard_option(G_OPT_V_TYPE);
    feature_opt->required = YES;
    feature_opt->multiple = NO;
    feature_opt->options = "point,line,area";
    feature_opt->answer = NULL;

    column_name = G_define_standard_option(G_OPT_DB_COLUMN);
    column_name->label = _("Name of attribute column to store value");
    column_name->description = _("Name must be SQL compliant");
    column_name->answer = "value";

    smooth_flg = G_define_flag();
    smooth_flg->key = 's';
    smooth_flg->description = _("Smooth corners of area features");

    value_flg = G_define_flag();
    value_flg->key = 'v';
    value_flg->description =
	_("Use raster values as categories instead of unique sequence (CELL only)");
    value_flg->guisection = _("Attributes");

    z_flg = G_define_flag();
    z_flg->key = 'z';
    z_flg->label = _("Write raster values as z coordinate");
    z_flg->description = _("Table is not created. "
			   "Currently supported only for points.");
    z_flg->guisection = _("Attributes");

    no_topol = G_define_flag();
    no_topol->key = 'b';
    no_topol->label = _("Do not build vector topology");
    no_topol->description = _("Recommended for massive point conversion");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    feature = Vect_option_to_types(feature_opt);
    smooth_flag = (smooth_flg->answer) ? SMOOTH : NO_SMOOTH;
    value_flag = value_flg->answer;

    if (z_flg->answer && (feature != GV_POINT))
	G_fatal_error(_("z flag is supported only for points"));

    /* Open files */
    input_fd = Rast_open_old(in_opt->answer, "");

    data_type = Rast_get_map_type(input_fd);
    data_size = Rast_cell_size(data_type);
    G_get_window(&cell_head);

    if (value_flag && data_type != CELL_TYPE) {
	G_warning(_("Raster is not CELL, '-v' flag ignored, raster values will be written to the table."));
	value_flag = 0;
    }

    if (z_flg->answer)
	Vect_open_new(&Map, out_opt->answer, 1);
    else
	Vect_open_new(&Map, out_opt->answer, 0);

    Vect_hist_command(&Map);

    Cats = Vect_new_cats_struct();

    /* Open category labels */
    if (data_type == CELL_TYPE) {
	if (0 == Rast_read_cats(in_opt->answer, "", &RastCats))
	    has_cats = 1;
    }
    else
	has_cats = 0;

    db_init_string(&sql);
    db_init_string(&label);

    /* Create table */
    if ((feature & (GV_AREA | GV_POINT | GV_LINE)) &&
	(!value_flag || (value_flag && has_cats)) && !(z_flg->answer)) {
	char buf[1000];

	Fi = Vect_default_field_info(&Map, 1, NULL, GV_1TABLE);
	Vect_map_add_dblink(&Map, 1, NULL, Fi->table, GV_KEY_COLUMN, Fi->database,
			    Fi->driver);

	driver =
	    db_start_driver_open_database(Fi->driver,
					  Vect_subst_var(Fi->database, &Map));
	if (driver == NULL)
	    G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
			  Fi->database, Fi->driver);

	/* Create new table */
	db_zero_string(&sql);
	sprintf(buf, "create table %s ( cat integer", Fi->table);
	db_append_string(&sql, buf);

	if (!value_flag) {	/* add value to the table */
	    if (data_type == CELL_TYPE) {
		db_append_string(&sql, ", ");
		db_append_string(&sql, column_name->answer);
		db_append_string(&sql, " integer");
	    } else {
		db_append_string(&sql, ",");
		db_append_string(&sql, column_name->answer);
		db_append_string(&sql, " double precision");
	    }
	}

	if (has_cats) {
	    int i, len;
	    int clen = 0;

	    /* Get maximum column length */
	    for (i = 0; i < RastCats.ncats; i++) {
		len = strlen(RastCats.labels[i]);
		if (len > clen)
		    clen = len;
	    }
	    clen += 10;

	    sprintf(buf, ", label varchar(%d)", clen);
	    db_append_string(&sql, buf);
	}

	db_append_string(&sql, ")");

	G_debug(3, db_get_string(&sql));

	if (db_execute_immediate(driver, &sql) != DB_OK)
	    G_fatal_error(_("Unable to create table: %s"),
			  db_get_string(&sql));

	if (db_create_index2(driver, Fi->table, GV_KEY_COLUMN) != DB_OK)
	    G_warning(_("Unable to create index"));

	if (db_grant_on_table
	    (driver, Fi->table, DB_PRIV_SELECT,
	     DB_GROUP | DB_PUBLIC) != DB_OK)
	    G_fatal_error(_("Unable to grant privileges on table <%s>"),
			  Fi->table);

	db_begin_transaction(driver);

    }
    else {
	driver = NULL;
    }

    /* init variables for lines and areas */
    first_read = 1;
    last_read = 0;
    direction = FORWARD;
    row_length = cell_head.cols;
    n_rows = cell_head.rows;
    row_count = 0;

    if (feature == GV_LINE) {
	alloc_lines_bufs(row_length + 2);
	extract_lines();
    }
    else if (feature == GV_AREA) {
	alloc_areas_bufs(row_length + 2);
	extract_areas();
    }
    else {			/* GV_POINT */

	extract_points(z_flg->answer);
    }

    Rast_close(input_fd);

    if (!no_topol->answer)
	Vect_build(&Map);


    /* insert cats and optionally labels if raster cats were used */
    if (driver && value_flag) {
	char buf[1000];
	int c, i, cat, fidx, ncats, lastcat, tp, id;

	fidx = Vect_cidx_get_field_index(&Map, 1);
	if (fidx >= 0) {
	    ncats = Vect_cidx_get_num_cats_by_index(&Map, fidx);
	    lastcat = -1;

	    for (c = 0; c < ncats; c++) {
		Vect_cidx_get_cat_by_index(&Map, fidx, c, &cat, &tp, &id);

		if (lastcat == cat)
		    continue;

		/* find label, slow -> TODO faster */
		db_set_string(&label, "");
		for (i = 0; i < RastCats.ncats; i++) {
		    if (cat == (int)RastCats.q.table[i].dLow) {	/* cats are in dLow/High not in cLow/High !!! */
			db_set_string(&label, RastCats.labels[i]);
			db_double_quote_string(&label);
			break;
		    }
		}
		G_debug(3, "cat = %d label = %s", cat, db_get_string(&label));

		sprintf(buf, "insert into %s values ( %d, '%s')", Fi->table,
			cat, db_get_string(&label));
		db_set_string(&sql, buf);
		G_debug(3, db_get_string(&sql));

		if (db_execute_immediate(driver, &sql) != DB_OK)
		    G_fatal_error(_("Unable to insert into table: %s"),
				  db_get_string(&sql));

		lastcat = cat;
	    }
	}
    }

    if (has_cats)
	Rast_free_cats(&RastCats);

    if (driver != NULL) {
	db_commit_transaction(driver);
	db_close_database_shutdown_driver(driver);
    }

    Vect_close(&Map);
    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}
示例#29
0
文件: main.c 项目: caomw/grass
int main(int argc, char *argv[])
{
    int i, cat, with_z, more, ctype, nrows;
    char buf[DB_SQL_MAX];
    int count;
    double coor[3];
    int ncoor;
    struct Option *driver_opt, *database_opt, *table_opt;
    struct Option *xcol_opt, *ycol_opt, *zcol_opt, *keycol_opt, *where_opt,
	*outvect;
    struct Flag *same_table_flag;
    struct GModule *module;
    struct Map_info Map;
    struct line_pnts *Points;
    struct line_cats *Cats;
    dbString sql;
    dbDriver *driver;
    dbCursor cursor;
    dbTable *table;
    dbColumn *column;
    dbValue *value;
    struct field_info *fi;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("import"));
    G_add_keyword(_("database"));
    G_add_keyword(_("points"));
    module->description =
	_("Creates new vector (points) map from database table containing coordinates.");

    table_opt = G_define_standard_option(G_OPT_DB_TABLE);
    table_opt->required = YES;
    table_opt->description = _("Input table name");

    driver_opt = G_define_standard_option(G_OPT_DB_DRIVER);
    driver_opt->options = db_list_drivers();
    driver_opt->answer = (char *)db_get_default_driver_name();
    driver_opt->guisection = _("Input DB");

    database_opt = G_define_standard_option(G_OPT_DB_DATABASE);
    database_opt->answer = (char *)db_get_default_database_name();
    database_opt->guisection = _("Input DB");

    xcol_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    xcol_opt->key = "x";
    xcol_opt->required = YES;
    xcol_opt->description = _("Name of column containing x coordinate");

    ycol_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    ycol_opt->key = "y";
    ycol_opt->required = YES;
    ycol_opt->description = _("Name of column containing y coordinate");

    zcol_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    zcol_opt->key = "z";
    zcol_opt->description = _("Name of column containing z coordinate");
    zcol_opt->guisection = _("3D output");

    keycol_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    keycol_opt->key = "key";
    keycol_opt->required = NO;
    keycol_opt->label = _("Name of column containing category number");
    keycol_opt->description = _("Must refer to an integer column");

    where_opt = G_define_standard_option(G_OPT_DB_WHERE);
    where_opt->guisection = _("Selection");

    outvect = G_define_standard_option(G_OPT_V_OUTPUT);

    same_table_flag = G_define_flag();
    same_table_flag->key = 't';
    same_table_flag->description =
	_("Use imported table as attribute table for new map");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    if (zcol_opt->answer) {
	with_z = WITH_Z;
	ncoor = 3;
    }
    else {
	with_z = WITHOUT_Z;
	ncoor = 2;
    }

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();
    db_init_string(&sql);

    if (G_get_overwrite()) {
	/* We don't want to delete the input table when overwriting the output
	 * vector. */
	char name[GNAME_MAX], mapset[GMAPSET_MAX];

	if (!G_name_is_fully_qualified(outvect->answer, name, mapset)) {
	    strcpy(name, outvect->answer);
	    strcpy(mapset, G_mapset());
	}

	Vect_set_open_level(1); /* no topo needed */

	if (strcmp(mapset, G_mapset()) == 0 && G_find_vector2(name, mapset) &&
	    Vect_open_old(&Map, name, mapset) >= 0) {
	    int num_dblinks;

	    num_dblinks = Vect_get_num_dblinks(&Map);
	    for (i = 0; i < num_dblinks; i++) {
		if ((fi = Vect_get_dblink(&Map, i)) != NULL &&
		    strcmp(fi->driver, driver_opt->answer) == 0 &&
		    strcmp(fi->database, database_opt->answer) == 0 &&
		    strcmp(fi->table, table_opt->answer) == 0)
		    G_fatal_error(_("Vector map <%s> cannot be overwritten "
				    "because input table <%s> is linked to "
				    "this map."),
				    outvect->answer, table_opt->answer);
	    }
	    Vect_close(&Map);
	}
    }

    if (Vect_open_new(&Map, outvect->answer, with_z) < 0)
	G_fatal_error(_("Unable to create vector map <%s>"),
			outvect->answer);

    Vect_set_error_handler_io(NULL, &Map);
    
    Vect_hist_command(&Map);

    fi = Vect_default_field_info(&Map, 1, NULL, GV_1TABLE);

    /* Open driver */
    driver = db_start_driver_open_database(driver_opt->answer,
					   database_opt->answer);
    if (driver == NULL) {
	G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
		      fi->database, fi->driver);
    }
    db_set_error_handler_driver(driver);
    
    /* check if target table already exists */
    G_debug(3, "Output vector table <%s>, driver: <%s>, database: <%s>",
	    outvect->answer, db_get_default_driver_name(),
	    db_get_default_database_name());

    if (!same_table_flag->answer &&
	db_table_exists(db_get_default_driver_name(),
			db_get_default_database_name(), outvect->answer) == 1)
	G_fatal_error(_("Output vector map, table <%s> (driver: <%s>, database: <%s>) "
		       "already exists"), outvect->answer,
		      db_get_default_driver_name(),
		      db_get_default_database_name());

    if (keycol_opt->answer) {
        int coltype;
        coltype = db_column_Ctype(driver, table_opt->answer, keycol_opt->answer);

        if (coltype == -1)
            G_fatal_error(_("Column <%s> not found in table <%s>"),
                          keycol_opt->answer, table_opt->answer);
        if (coltype != DB_C_TYPE_INT)
            G_fatal_error(_("Data type of key column must be integer"));
    }
    else {
        if (same_table_flag->answer) {
            G_fatal_error(_("Option <%s> must be specified when -%c flag is given"),
                          keycol_opt->key, same_table_flag->key);
        }

        if (strcmp(db_get_default_driver_name(), "sqlite") != 0)
            G_fatal_error(_("Unable to define key column. This operation is not supported "
                            "by <%s> driver. You need to define <%s> option."),
                          fi->driver, keycol_opt->key);
    }

    /* Open select cursor */
    sprintf(buf, "SELECT %s, %s", xcol_opt->answer, ycol_opt->answer);
    db_set_string(&sql, buf);
    if (with_z) {
	sprintf(buf, ", %s", zcol_opt->answer);
	db_append_string(&sql, buf);
    }
    if (keycol_opt->answer) {
	sprintf(buf, ", %s", keycol_opt->answer);
	db_append_string(&sql, buf);
    }
    sprintf(buf, " FROM %s", table_opt->answer);
    db_append_string(&sql, buf);
    
    if (where_opt->answer) {
	sprintf(buf, " WHERE %s", where_opt->answer);
	db_append_string(&sql, buf);
    }
    G_debug(2, "SQL: %s", db_get_string(&sql));

    if (db_open_select_cursor(driver, &sql, &cursor, DB_SEQUENTIAL) != DB_OK) {
	G_fatal_error(_("Unable to open select cursor: '%s'"),
		      db_get_string(&sql));
    }

    table = db_get_cursor_table(&cursor);
    nrows = db_get_num_rows(&cursor);

    G_debug(2, "%d points selected", nrows);

    count = cat = 0;
    G_message(_("Writing features..."));
    while (db_fetch(&cursor, DB_NEXT, &more) == DB_OK && more) {
	G_percent(count, nrows, 2);
	/* key column */
        if (keycol_opt->answer) {
            column = db_get_table_column(table, with_z ? 3 : 2);
            ctype = db_sqltype_to_Ctype(db_get_column_sqltype(column));
            if (ctype != DB_C_TYPE_INT)
                G_fatal_error(_("Key column must be integer"));
            value = db_get_column_value(column);
            cat = db_get_value_int(value);
        }
        else {
            cat++;
        }

        /* coordinates */
	for (i = 0; i < ncoor; i++) {
	    column = db_get_table_column(table, i);
	    ctype = db_sqltype_to_Ctype(db_get_column_sqltype(column));
	    if (ctype != DB_C_TYPE_INT && ctype != DB_C_TYPE_DOUBLE)
		G_fatal_error(_("x/y/z column must be integer or double"));
	    value = db_get_column_value(column);
	    if (ctype == DB_C_TYPE_INT)
		coor[i] = (double)db_get_value_int(value);
	    else
		coor[i] = db_get_value_double(value);
	}

	Vect_reset_line(Points);
	Vect_reset_cats(Cats);

	Vect_append_point(Points, coor[0], coor[1], coor[2]);

	Vect_cat_set(Cats, 1, cat);

	Vect_write_line(&Map, GV_POINT, Points, Cats);

	count++;
    }
    G_percent(1, 1, 1);

    /* close connection to input DB before copying attributes */
    db_close_database_shutdown_driver(driver);

    /* Copy table */
    if (!same_table_flag->answer) {
        G_message(_("Copying attributes..."));
        
        if (DB_FAILED == db_copy_table_where(driver_opt->answer, database_opt->answer,
                                             table_opt->answer,
                                             fi->driver, fi->database, fi->table,
                                             where_opt->answer)) { /* where can be NULL */
            G_warning(_("Unable to copy table"));
	}
	else {
	    Vect_map_add_dblink(&Map, 1, NULL, fi->table,
                                keycol_opt->answer ? keycol_opt->answer : GV_KEY_COLUMN,
				fi->database, fi->driver);
	}

        if (!keycol_opt->answer) {
            /* TODO: implement for all DB drivers in generic way if
             * possible */
            
            driver = db_start_driver_open_database(fi->driver, fi->database);
            if (driver == NULL) {
                G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
                              fi->database, fi->driver);
            }
            db_set_error_handler_driver(driver);

            /* add key column */
            sprintf(buf, "ALTER TABLE %s ADD COLUMN %s INTEGER",
                    fi->table, GV_KEY_COLUMN);
            db_set_string(&sql, buf);
            
            if (db_execute_immediate(driver, &sql) != DB_OK) {
                G_fatal_error(_("Unable to add key column <%s>: "
                                "SERIAL type is not supported by <%s>"), 
                              GV_KEY_COLUMN, fi->driver);
            }

            /* update key column */
            sprintf(buf, "UPDATE %s SET %s = _ROWID_",
                    fi->table, GV_KEY_COLUMN);
            db_set_string(&sql, buf);
            
            if (db_execute_immediate(driver, &sql) != DB_OK) {
                G_fatal_error(_("Failed to update key column <%s>"),
                              GV_KEY_COLUMN);
            }

        }
    }
    else {
        /* do not copy attributes, link original table */
	Vect_map_add_dblink(&Map, 1, NULL, table_opt->answer,
                            keycol_opt->answer ? keycol_opt->answer : GV_KEY_COLUMN,
                            database_opt->answer, driver_opt->answer);
    }

    Vect_build(&Map);
    Vect_close(&Map);

    G_done_msg(_n("%d point written to vector map.",
                  "%d points written to vector map.",
                  count), count);

    return (EXIT_SUCCESS);
}
示例#30
0
int main(int argc, char *argv[])
{
    struct Map_info In, Out, Error;
    struct line_pnts *Points;
    struct line_cats *Cats;
    int i, type, iter;
    struct GModule *module;	/* GRASS module for parsing arguments */
    struct Option *map_in, *map_out, *error_out, *thresh_opt, *method_opt,
	*look_ahead_opt;
    struct Option *iterations_opt, *cat_opt, *alpha_opt, *beta_opt, *type_opt;
    struct Option *field_opt, *where_opt, *reduction_opt, *slide_opt;
    struct Option *angle_thresh_opt, *degree_thresh_opt,
	*closeness_thresh_opt;
    struct Option *betweeness_thresh_opt;
    struct Flag *notab_flag, *loop_support_flag;
    int with_z;
    int total_input, total_output;	/* Number of points in the input/output map respectively */
    double thresh, alpha, beta, reduction, slide, angle_thresh;
    double degree_thresh, closeness_thresh, betweeness_thresh;
    int method;
    int look_ahead, iterations;
    int loop_support;
    int layer;
    int n_lines;
    int simplification, mask_type;
    struct cat_list *cat_list = NULL;
    char *s, *descriptions;

    /* initialize GIS environment */
    G_gisinit(argv[0]);		/* reads grass env, stores program name to G_program_name() */

    /* initialize module */
    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("generalization"));
    G_add_keyword(_("simplification"));
    G_add_keyword(_("smoothing"));
    G_add_keyword(_("displacement"));
    G_add_keyword(_("network generalization"));
    module->description = _("Performs vector based generalization.");

    /* Define the different options as defined in gis.h */
    map_in = G_define_standard_option(G_OPT_V_INPUT);

    field_opt = G_define_standard_option(G_OPT_V_FIELD_ALL);

    type_opt = G_define_standard_option(G_OPT_V_TYPE);
    type_opt->options = "line,boundary,area";
    type_opt->answer = "line,boundary,area";
    type_opt->guisection = _("Selection");
    
    map_out = G_define_standard_option(G_OPT_V_OUTPUT);

    error_out = G_define_standard_option(G_OPT_V_OUTPUT);
    error_out->key = "error";
    error_out->required = NO;
    error_out->description =
	_("Error map of all lines and boundaries not being generalized due to topology issues or over-simplification");

    method_opt = G_define_option();
    method_opt->key = "method";
    method_opt->type = TYPE_STRING;
    method_opt->required = YES;
    method_opt->multiple = NO;
    method_opt->options =
	"douglas,douglas_reduction,lang,reduction,reumann,boyle,sliding_averaging,distance_weighting,chaiken,hermite,snakes,network,displacement";
    descriptions = NULL;
    G_asprintf(&descriptions,
               "douglas;%s;"
               "douglas_reduction;%s;"
               "lang;%s;"
               "reduction;%s;"
               "reumann;%s;"
               "boyle;%s;"
               "sliding_averaging;%s;"
               "distance_weighting;%s;"
               "chaiken;%s;"
               "hermite;%s;"
               "snakes;%s;"
               "network;%s;"
               "displacement;%s;",
               _("Douglas-Peucker Algorithm"),
               _("Douglas-Peucker Algorithm with reduction parameter"),
               _("Lang Simplification Algorithm"),
               _("Vertex Reduction Algorithm eliminates points close to each other"),
               _("Reumann-Witkam Algorithm"),
               _("Boyle's Forward-Looking Algorithm"),
               _("McMaster's Sliding Averaging Algorithm"),
               _("McMaster's Distance-Weighting Algorithm"),
               _("Chaiken's Algorithm"),
               _("Interpolation by Cubic Hermite Splines"),
               _("Snakes method for line smoothing"),
               _("Network generalization"),
               _("Displacement of lines close to each other"));
    method_opt->descriptions = G_store(descriptions);
    
    method_opt->description = _("Generalization algorithm");

    thresh_opt = G_define_option();
    thresh_opt->key = "threshold";
    thresh_opt->type = TYPE_DOUBLE;
    thresh_opt->required = YES;
    thresh_opt->options = "0-1000000000";
    thresh_opt->description = _("Maximal tolerance value");

    look_ahead_opt = G_define_option();
    look_ahead_opt->key = "look_ahead";
    look_ahead_opt->type = TYPE_INTEGER;
    look_ahead_opt->required = NO;
    look_ahead_opt->answer = "7";
    look_ahead_opt->description = _("Look-ahead parameter");

    reduction_opt = G_define_option();
    reduction_opt->key = "reduction";
    reduction_opt->type = TYPE_DOUBLE;
    reduction_opt->required = NO;
    reduction_opt->answer = "50";
    reduction_opt->options = "0-100";
    reduction_opt->description =
	_("Percentage of the points in the output of 'douglas_reduction' algorithm");
    
    slide_opt = G_define_option();
    slide_opt->key = "slide";
    slide_opt->type = TYPE_DOUBLE;
    slide_opt->required = NO;
    slide_opt->answer = "0.5";
    slide_opt->options = "0-1";
    slide_opt->description =
	_("Slide of computed point toward the original point");

    angle_thresh_opt = G_define_option();
    angle_thresh_opt->key = "angle_thresh";
    angle_thresh_opt->type = TYPE_DOUBLE;
    angle_thresh_opt->required = NO;
    angle_thresh_opt->answer = "3";
    angle_thresh_opt->options = "0-180";
    angle_thresh_opt->description =
	_("Minimum angle between two consecutive segments in Hermite method");

    degree_thresh_opt = G_define_option();
    degree_thresh_opt->key = "degree_thresh";
    degree_thresh_opt->type = TYPE_INTEGER;
    degree_thresh_opt->required = NO;
    degree_thresh_opt->answer = "0";
    degree_thresh_opt->description =
	_("Degree threshold in network generalization");

    closeness_thresh_opt = G_define_option();
    closeness_thresh_opt->key = "closeness_thresh";
    closeness_thresh_opt->type = TYPE_DOUBLE;
    closeness_thresh_opt->required = NO;
    closeness_thresh_opt->answer = "0";
    closeness_thresh_opt->options = "0-1";
    closeness_thresh_opt->description =
	_("Closeness threshold in network generalization");

    betweeness_thresh_opt = G_define_option();
    betweeness_thresh_opt->key = "betweeness_thresh";
    betweeness_thresh_opt->type = TYPE_DOUBLE;
    betweeness_thresh_opt->required = NO;
    betweeness_thresh_opt->answer = "0";
    betweeness_thresh_opt->description =
	_("Betweeness threshold in network generalization");

    alpha_opt = G_define_option();
    alpha_opt->key = "alpha";
    alpha_opt->type = TYPE_DOUBLE;
    alpha_opt->required = NO;
    alpha_opt->answer = "1.0";
    alpha_opt->description = _("Snakes alpha parameter");

    beta_opt = G_define_option();
    beta_opt->key = "beta";
    beta_opt->type = TYPE_DOUBLE;
    beta_opt->required = NO;
    beta_opt->answer = "1.0";
    beta_opt->description = _("Snakes beta parameter");

    iterations_opt = G_define_option();
    iterations_opt->key = "iterations";
    iterations_opt->type = TYPE_INTEGER;
    iterations_opt->required = NO;
    iterations_opt->answer = "1";
    iterations_opt->description = _("Number of iterations");

    cat_opt = G_define_standard_option(G_OPT_V_CATS);
    cat_opt->guisection = _("Selection");
    
    where_opt = G_define_standard_option(G_OPT_DB_WHERE);
    where_opt->guisection = _("Selection");

    loop_support_flag = G_define_flag();
    loop_support_flag->key = 'l';
    loop_support_flag->label = _("Disable loop support");
    loop_support_flag->description = _("Do not modify end points of lines forming a closed loop");

    notab_flag = G_define_standard_flag(G_FLG_V_TABLE);
    notab_flag->description = _("Do not copy attributes");
    notab_flag->guisection = _("Attributes");
    
    /* options and flags parser */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    thresh = atof(thresh_opt->answer);
    look_ahead = atoi(look_ahead_opt->answer);
    alpha = atof(alpha_opt->answer);
    beta = atof(beta_opt->answer);
    reduction = atof(reduction_opt->answer);
    iterations = atoi(iterations_opt->answer);
    slide = atof(slide_opt->answer);
    angle_thresh = atof(angle_thresh_opt->answer);
    degree_thresh = atof(degree_thresh_opt->answer);
    closeness_thresh = atof(closeness_thresh_opt->answer);
    betweeness_thresh = atof(betweeness_thresh_opt->answer);

    mask_type = type_mask(type_opt);
    G_debug(3, "Method: %s", method_opt->answer);

    s = method_opt->answer;

    if (strcmp(s, "douglas") == 0)
	method = DOUGLAS;
    else if (strcmp(s, "lang") == 0)
	method = LANG;
    else if (strcmp(s, "reduction") == 0)
	method = VERTEX_REDUCTION;
    else if (strcmp(s, "reumann") == 0)
	method = REUMANN;
    else if (strcmp(s, "boyle") == 0)
	method = BOYLE;
    else if (strcmp(s, "distance_weighting") == 0)
	method = DISTANCE_WEIGHTING;
    else if (strcmp(s, "chaiken") == 0)
	method = CHAIKEN;
    else if (strcmp(s, "hermite") == 0)
	method = HERMITE;
    else if (strcmp(s, "snakes") == 0)
	method = SNAKES;
    else if (strcmp(s, "douglas_reduction") == 0)
	method = DOUGLAS_REDUCTION;
    else if (strcmp(s, "sliding_averaging") == 0)
	method = SLIDING_AVERAGING;
    else if (strcmp(s, "network") == 0)
	method = NETWORK;
    else if (strcmp(s, "displacement") == 0) {
	method = DISPLACEMENT;
	/* we can displace only the lines */
	mask_type = GV_LINE;
    }
    else {
	G_fatal_error(_("Unknown method"));
	exit(EXIT_FAILURE);
    }


    /* simplification or smoothing? */
    switch (method) {
    case DOUGLAS:
    case DOUGLAS_REDUCTION:
    case LANG:
    case VERTEX_REDUCTION:
    case REUMANN:
	simplification = 1;
	break;
    default:
	simplification = 0;
	break;
    }


    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    Vect_check_input_output_name(map_in->answer, map_out->answer,
				 G_FATAL_EXIT);

    Vect_set_open_level(2);

    if (Vect_open_old2(&In, map_in->answer, "", field_opt->answer) < 1)
	G_fatal_error(_("Unable to open vector map <%s>"), map_in->answer);

    if (Vect_get_num_primitives(&In, mask_type) == 0) {
	G_warning(_("No lines found in input map <%s>"), map_in->answer);
	Vect_close(&In);
	exit(EXIT_SUCCESS);
    }
    with_z = Vect_is_3d(&In);

    if (0 > Vect_open_new(&Out, map_out->answer, with_z)) {
	Vect_close(&In);
	G_fatal_error(_("Unable to create vector map <%s>"), map_out->answer);
    }

    if (error_out->answer) {
        if (0 > Vect_open_new(&Error, error_out->answer, with_z)) {
	    Vect_close(&In);
	    G_fatal_error(_("Unable to create error vector map <%s>"), error_out->answer);
        }
    }


    Vect_copy_head_data(&In, &Out);
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);

    total_input = total_output = 0;

    layer = Vect_get_field_number(&In, field_opt->answer);
    /* parse filter options */
    if (layer > 0)
	cat_list = Vect_cats_set_constraint(&In, layer, 
			      where_opt->answer, cat_opt->answer);

    if (method == DISPLACEMENT) {
	/* modifies only lines, all other features including boundaries are preserved */
	/* options where, cats, and layer are respected */
	G_message(_("Displacement..."));
	snakes_displacement(&In, &Out, thresh, alpha, beta, 1.0, 10.0,
			    iterations, cat_list, layer);
    }

    /* TODO: rearrange code below. It's really messy */
    if (method == NETWORK) {
	/* extracts lines of selected type, all other features are discarded */
	/* options where, cats, and layer are ignored */
	G_message(_("Network generalization..."));
	total_output =
	    graph_generalization(&In, &Out, mask_type, degree_thresh, 
	                         closeness_thresh, betweeness_thresh);
    }

    /* copy tables here because method == NETWORK is complete and 
     * tables for Out may be needed for parse_filter_options() below */
    if (!notab_flag->answer) {
	if (method == NETWORK)
	    copy_tables_by_cats(&In, &Out);
	else
	    Vect_copy_tables(&In, &Out, -1);
    }
    else if (where_opt->answer && method < NETWORK) {
	G_warning(_("Attributes are needed for 'where' option, copying table"));
	Vect_copy_tables(&In, &Out, -1);
    }

    /* smoothing/simplification */
    if (method < NETWORK) {
	/* modifies only lines of selected type, all other features are preserved */
	int not_modified_boundaries = 0, n_oversimplified = 0;
	struct line_pnts *APoints;  /* original Points */

	set_topo_debug();

	Vect_copy_map_lines(&In, &Out);
	Vect_build_partial(&Out, GV_BUILD_CENTROIDS);

	G_message("-----------------------------------------------------");
	G_message(_("Generalization (%s)..."), method_opt->answer);
	G_message(_("Using threshold: %g %s"), thresh, G_database_unit_name(1));
	G_percent_reset();

	APoints = Vect_new_line_struct();

	n_lines = Vect_get_num_lines(&Out);
	for (i = 1; i <= n_lines; i++) {
	    int after = 0;

	    G_percent(i, n_lines, 1);

	    type = Vect_read_line(&Out, APoints, Cats, i);

	    if (!(type & GV_LINES) || !(mask_type & type))
		continue;

	    if (layer > 0) {
		if ((type & GV_LINE) &&
		    !Vect_cats_in_constraint(Cats, layer, cat_list))
		    continue;
		else if ((type & GV_BOUNDARY)) {
		    int do_line = 0;
		    int left, right;
		    
		    do_line = Vect_cats_in_constraint(Cats, layer, cat_list);

		    if (!do_line) {
			
			/* check if any of the centroids is selected */
			Vect_get_line_areas(&Out, i, &left, &right);
			if (left < 0)
			    left = Vect_get_isle_area(&Out, abs(left));
			if (right < 0)
			    right = Vect_get_isle_area(&Out, abs(right));

			if (left > 0) {
			    Vect_get_area_cats(&Out, left, Cats);
			    do_line = Vect_cats_in_constraint(Cats, layer, cat_list);
			}
			
			if (!do_line && right > 0) {
			    Vect_get_area_cats(&Out, right, Cats);
			    do_line = Vect_cats_in_constraint(Cats, layer, cat_list);
			}
		    }
		    if (!do_line)
			continue;
		}
	    }

	    Vect_line_prune(APoints);

	    if (APoints->n_points < 2)
		/* Line of length zero, delete if boundary ? */
		continue;

	    total_input += APoints->n_points;

	    /* copy points */
	    Vect_reset_line(Points);
	    Vect_append_points(Points, APoints, GV_FORWARD);
	    
	    loop_support = 0;
	    if (!loop_support_flag->answer) {
		int n1, n2;

		Vect_get_line_nodes(&Out, i, &n1, &n2);
		if (n1 == n2) {
		    if (Vect_get_node_n_lines(&Out, n1) == 2) {
			if (abs(Vect_get_node_line(&Out, n1, 0)) == i &&
			    abs(Vect_get_node_line(&Out, n1, 1)) == i)
			    loop_support = 1;
		    }
		}
	    }
		
	    for (iter = 0; iter < iterations; iter++) {
		switch (method) {
		case DOUGLAS:
		    douglas_peucker(Points, thresh, with_z);
		    break;
		case DOUGLAS_REDUCTION:
		    douglas_peucker_reduction(Points, thresh, reduction,
					      with_z);
		    break;
		case LANG:
		    lang(Points, thresh, look_ahead, with_z);
		    break;
		case VERTEX_REDUCTION:
		    vertex_reduction(Points, thresh, with_z);
		    break;
		case REUMANN:
		    reumann_witkam(Points, thresh, with_z);
		    break;
		case BOYLE:
		    boyle(Points, look_ahead, loop_support, with_z);
		    break;
		case SLIDING_AVERAGING:
		    sliding_averaging(Points, slide, look_ahead, loop_support, with_z);
		    break;
		case DISTANCE_WEIGHTING:
		    distance_weighting(Points, slide, look_ahead, loop_support, with_z);
		    break;
		case CHAIKEN:
		    chaiken(Points, thresh, loop_support, with_z);
		    break;
		case HERMITE:
		    hermite(Points, thresh, angle_thresh, loop_support, with_z);
		    break;
		case SNAKES:
		    snakes(Points, alpha, beta, loop_support, with_z);
		    break;
		}
	    }

	    if (loop_support == 0) { 
		/* safety check, BUG in method if not passed */
		if (APoints->x[0] != Points->x[0] || 
		    APoints->y[0] != Points->y[0] ||
		    APoints->z[0] != Points->z[0])
		    G_fatal_error(_("Method '%s' did not preserve first point"), method_opt->answer);
		    
		if (APoints->x[APoints->n_points - 1] != Points->x[Points->n_points - 1] || 
		    APoints->y[APoints->n_points - 1] != Points->y[Points->n_points - 1] ||
		    APoints->z[APoints->n_points - 1] != Points->z[Points->n_points - 1])
		    G_fatal_error(_("Method '%s' did not preserve last point"), method_opt->answer);
	    }
	    else {
		/* safety check, BUG in method if not passed */
		if (Points->x[0] != Points->x[Points->n_points - 1] || 
		    Points->y[0] != Points->y[Points->n_points - 1] ||
		    Points->z[0] != Points->z[Points->n_points - 1])
		    G_fatal_error(_("Method '%s' did not preserve loop"), method_opt->answer);
	    }

	    Vect_line_prune(Points);

	    /* oversimplified line */
	    if (Points->n_points < 2) {
		after = APoints->n_points;
		n_oversimplified++;
                if (error_out->answer)
		    Vect_write_line(&Error, type, APoints, Cats);
	    }
	    /* check for topology corruption */
	    else if (type == GV_BOUNDARY) {
		if (!check_topo(&Out, i, APoints, Points, Cats)) {
		    after = APoints->n_points;
		    not_modified_boundaries++;
                    if (error_out->answer)
		        Vect_write_line(&Error, type, APoints, Cats);
		}
		else
		    after = Points->n_points;
	    }
	    else {
		/* type == GV_LINE */
		Vect_rewrite_line(&Out, i, type, Points, Cats);
		after = Points->n_points;
	    }

	    total_output += after;
	}
	if (not_modified_boundaries > 0)
	    G_warning(_("%d boundaries were not modified because modification would damage topology"),
		      not_modified_boundaries);
	if (n_oversimplified > 0)
	    G_warning(_("%d lines/boundaries were not modified due to over-simplification"),
		      n_oversimplified);
	G_message("-----------------------------------------------------");

	/* make sure that clean topo is built at the end */
	Vect_build_partial(&Out, GV_BUILD_NONE);
        if (error_out->answer)
	    Vect_build_partial(&Error, GV_BUILD_NONE);
    }

    Vect_build(&Out);
    if (error_out->answer)
        Vect_build(&Error);

    Vect_close(&In);
    Vect_close(&Out);
    if (error_out->answer)
        Vect_close(&Error);

    G_message("-----------------------------------------------------");
    if (total_input != 0 && total_input != total_output)
	G_done_msg(_("Number of vertices for selected features %s from %d to %d (%d%% remaining)"),
                   simplification ? _("reduced") : _("changed"), 
                   total_input, total_output,
                   (total_output * 100) / total_input);
    else
        G_done_msg(" ");

    exit(EXIT_SUCCESS);
}