示例#1
0
/*
 * __compact_checkpoint --
 *     Perform a checkpoint for compaction.
 */
static int
__compact_checkpoint(WT_SESSION_IMPL *session)
{
	WT_DECL_RET;
	WT_TXN_GLOBAL *txn_global;
	uint64_t txn_gen;

	/*
	 * Force compaction checkpoints: we don't want to skip it because the
	 * work we need to have done is done in the underlying block manager.
	 */
	const char *checkpoint_cfg[] = {
	    WT_CONFIG_BASE(session, WT_SESSION_checkpoint), "force=1", NULL };

	/* Checkpoints take a lot of time, check if we've run out. */
	WT_RET(__wt_session_compact_check_timeout(session));

	if ((ret = __wt_txn_checkpoint(session, checkpoint_cfg, false)) == 0)
		return (0);
	WT_RET_BUSY_OK(ret);

	/*
	 * If there's a checkpoint running, wait for it to complete, checking if
	 * we're out of time. If there's no checkpoint running or the checkpoint
	 * generation number changes, the checkpoint blocking us has completed.
	 */
	txn_global = &S2C(session)->txn_global;
	for (txn_gen = __wt_gen(session, WT_GEN_CHECKPOINT);;) {
		/*
		 * This loop only checks objects that are declared volatile,
		 * therefore no barriers are needed.
		 */
		if (!txn_global->checkpoint_running ||
		    txn_gen != __wt_gen(session, WT_GEN_CHECKPOINT))
			break;

		WT_RET(__wt_session_compact_check_timeout(session));
		__wt_sleep(2, 0);
	}

	return (0);
}
示例#2
0
/*
 * __wt_delete_page --
 *	If deleting a range, try to delete the page without instantiating it.
 */
int
__wt_delete_page(WT_SESSION_IMPL *session, WT_REF *ref, bool *skipp)
{
	WT_DECL_RET;
	WT_PAGE *parent;

	*skipp = false;

	/* If we have a clean page in memory, attempt to evict it. */
	if (ref->state == WT_REF_MEM &&
	    __wt_atomic_casv32(&ref->state, WT_REF_MEM, WT_REF_LOCKED)) {
		if (__wt_page_is_modified(ref->page)) {
			WT_PUBLISH(ref->state, WT_REF_MEM);
			return (0);
		}

		(void)__wt_atomic_addv32(&S2BT(session)->evict_busy, 1);
		ret = __wt_evict_page(session, ref);
		(void)__wt_atomic_subv32(&S2BT(session)->evict_busy, 1);
		WT_RET_BUSY_OK(ret);
	}

	/*
	 * Atomically switch the page's state to lock it.  If the page is not
	 * on-disk, other threads may be using it, no fast delete.
	 *
	 * Possible optimization: if the page is already deleted and the delete
	 * is visible to us (the delete has been committed), we could skip the
	 * page instead of instantiating it and figuring out there are no rows
	 * in the page.  While that's a huge amount of work to no purpose, it's
	 * unclear optimizing for overlapping range deletes is worth the effort.
	 */
	if (ref->state != WT_REF_DISK ||
	    !__wt_atomic_casv32(&ref->state, WT_REF_DISK, WT_REF_LOCKED))
		return (0);

	/*
	 * We cannot fast-delete pages that have overflow key/value items as
	 * the overflow blocks have to be discarded.  The way we figure that
	 * out is to check the on-page cell type for the page, cells for leaf
	 * pages that have no overflow items are special.
	 *
	 * In some cases, the reference address may not reference an on-page
	 * cell (for example, some combination of page splits), in which case
	 * we can't check the original cell value and we fail.
	 *
	 * To look at an on-page cell, we need to look at the parent page, and
	 * that's dangerous, our parent page could change without warning if
	 * the parent page were to split, deepening the tree.  It's safe: the
	 * page's reference will always point to some valid page, and if we find
	 * any problems we simply fail the fast-delete optimization.
	 *
	 * !!!
	 * I doubt it's worth the effort, but we could copy the cell's type into
	 * the reference structure, and then we wouldn't need an on-page cell.
	 */
	parent = ref->home;
	if (__wt_off_page(parent, ref->addr) ||
	    __wt_cell_type_raw(ref->addr) != WT_CELL_ADDR_LEAF_NO)
		goto err;

	/*
	 * This action dirties the parent page: mark it dirty now, there's no
	 * future reconciliation of the child leaf page that will dirty it as
	 * we write the tree.
	 */
	WT_ERR(__wt_page_parent_modify_set(session, ref, false));

	/*
	 * Record the change in the transaction structure and set the change's
	 * transaction ID.
	 */
	WT_ERR(__wt_calloc_one(session, &ref->page_del));
	ref->page_del->txnid = session->txn.id;

	WT_ERR(__wt_txn_modify_ref(session, ref));

	*skipp = true;
	WT_PUBLISH(ref->state, WT_REF_DELETED);
	return (0);

err:	__wt_free(session, ref->page_del);

	/*
	 * Restore the page to on-disk status, we'll have to instantiate it.
	 */
	WT_PUBLISH(ref->state, WT_REF_DISK);
	return (ret);
}
示例#3
0
/*
 * __sweep --
 *	Close unused dhandles on the connection dhandle list.
 */
static int
__sweep(WT_SESSION_IMPL *session)
{
	WT_CONNECTION_IMPL *conn;
	WT_DATA_HANDLE *dhandle, *dhandle_next;
	WT_DECL_RET;
	time_t now;
	int locked;

	conn = S2C(session);

	/* Don't discard handles that have been open recently. */
	WT_RET(__wt_seconds(session, &now));

	WT_STAT_FAST_CONN_INCR(session, dh_conn_sweeps);
	dhandle = SLIST_FIRST(&conn->dhlh);
	for (; dhandle != NULL; dhandle = dhandle_next) {
		dhandle_next = SLIST_NEXT(dhandle, l);
		if (WT_IS_METADATA(dhandle))
			continue;
		if (dhandle->session_inuse != 0 ||
		    now <= dhandle->timeofdeath + WT_DHANDLE_SWEEP_WAIT)
			continue;
		if (dhandle->timeofdeath == 0) {
			dhandle->timeofdeath = now;
			WT_STAT_FAST_CONN_INCR(session, dh_conn_tod);
			continue;
		}

		/*
		 * We have a candidate for closing; if it's open, acquire an
		 * exclusive lock on the handle and close it. We might be
		 * blocking opens for a long time (over disk I/O), but the
		 * handle was quiescent for awhile.
		 *
		 * The close can fail if an update cannot be written (updates
		 * in a no-longer-referenced file might not yet be globally
		 * visible if sessions have disjoint sets of files open).  If
		 * the handle is busy, skip it, we'll retry the close the next
		 * time, after the transaction state has progressed.
		 *
		 * We don't set WT_DHANDLE_EXCLUSIVE deliberately, we want
		 * opens to block on us rather than returning an EBUSY error to
		 * the application.
		 */
		if ((ret =
		    __wt_try_writelock(session, dhandle->rwlock)) == EBUSY)
			continue;
		WT_RET(ret);
		locked = 1;

		/* If the handle is open, try to close it. */
		if (F_ISSET(dhandle, WT_DHANDLE_OPEN)) {
			WT_WITH_DHANDLE(session, dhandle,
			    ret = __wt_conn_btree_sync_and_close(session, 0));
			if (ret != 0)
				goto unlock;

			/* We closed the btree handle, bump the statistic. */
			WT_STAT_FAST_CONN_INCR(session, dh_conn_handles);
		}

		/*
		 * If there are no longer any references to the handle in any
		 * sessions, attempt to discard it.  The called function
		 * re-checks that the handle is not in use, which is why we
		 * don't do any special handling of EBUSY returns above.
		 */
		if (dhandle->session_inuse == 0 && dhandle->session_ref == 0) {
			WT_WITH_DHANDLE(session, dhandle,
			    ret = __wt_conn_dhandle_discard_single(session, 0));
			if (ret != 0)
				goto unlock;

			/* If the handle was discarded, it isn't locked. */
			locked = 0;
		} else
			WT_STAT_FAST_CONN_INCR(session, dh_conn_ref);

unlock:		if (locked)
			WT_TRET(__wt_writeunlock(session, dhandle->rwlock));

		WT_RET_BUSY_OK(ret);
	}
	return (0);
}
示例#4
0
/*
 * __wt_delete_page --
 *	If deleting a range, try to delete the page without instantiating it.
 */
int
__wt_delete_page(WT_SESSION_IMPL *session, WT_REF *ref, bool *skipp)
{
	WT_DECL_RET;
	WT_PAGE *parent;

	*skipp = false;

	/* If we have a clean page in memory, attempt to evict it. */
	if (ref->state == WT_REF_MEM &&
	    __wt_atomic_casv32(&ref->state, WT_REF_MEM, WT_REF_LOCKED)) {
		if (__wt_page_is_modified(ref->page)) {
			WT_PUBLISH(ref->state, WT_REF_MEM);
			return (0);
		}

		(void)__wt_atomic_addv32(&S2BT(session)->evict_busy, 1);
		ret = __wt_evict(session, ref, false);
		(void)__wt_atomic_subv32(&S2BT(session)->evict_busy, 1);
		WT_RET_BUSY_OK(ret);
	}

	/*
	 * Atomically switch the page's state to lock it.  If the page is not
	 * on-disk, other threads may be using it, no fast delete.
	 */
	if (ref->state != WT_REF_DISK ||
	    !__wt_atomic_casv32(&ref->state, WT_REF_DISK, WT_REF_LOCKED))
		return (0);

	/*
	 * We cannot fast-delete pages that have overflow key/value items as
	 * the overflow blocks have to be discarded.  The way we figure that
	 * out is to check the page's cell type, cells for leaf pages without
	 * overflow items are special.
	 *
	 * To look at an on-page cell, we need to look at the parent page, and
	 * that's dangerous, our parent page could change without warning if
	 * the parent page were to split, deepening the tree.  It's safe: the
	 * page's reference will always point to some valid page, and if we find
	 * any problems we simply fail the fast-delete optimization.
	 */
	parent = ref->home;
	if (__wt_off_page(parent, ref->addr) ?
	    ((WT_ADDR *)ref->addr)->type != WT_ADDR_LEAF_NO :
	    __wt_cell_type_raw(ref->addr) != WT_CELL_ADDR_LEAF_NO)
		goto err;

	/*
	 * This action dirties the parent page: mark it dirty now, there's no
	 * future reconciliation of the child leaf page that will dirty it as
	 * we write the tree.
	 */
	WT_ERR(__wt_page_parent_modify_set(session, ref, false));

	/*
	 * Record the change in the transaction structure and set the change's
	 * transaction ID.
	 */
	WT_ERR(__wt_calloc_one(session, &ref->page_del));
	ref->page_del->txnid = session->txn.id;

	WT_ERR(__wt_txn_modify_ref(session, ref));

	*skipp = true;
	WT_STAT_CONN_INCR(session, rec_page_delete_fast);
	WT_STAT_DATA_INCR(session, rec_page_delete_fast);
	WT_PUBLISH(ref->state, WT_REF_DELETED);
	return (0);

err:	__wt_free(session, ref->page_del);

	/*
	 * Restore the page to on-disk status, we'll have to instantiate it.
	 */
	WT_PUBLISH(ref->state, WT_REF_DISK);
	return (ret);
}