void LUNMedium ( const AbstractDistMatrix<F>& UPre, AbstractDistMatrix<F>& XPre, bool checkIfSingular ) { DEBUG_CSE const Int m = XPre.Height(); const Int bsize = Blocksize(); const Grid& g = UPre.Grid(); DistMatrixReadProxy<F,F,MC,MR> UProx( UPre ); DistMatrixReadWriteProxy<F,F,MC,MR> XProx( XPre ); auto& U = UProx.GetLocked(); auto& X = XProx.Get(); DistMatrix<F,MC, STAR> U01_MC_STAR(g); DistMatrix<F,STAR,STAR> U11_STAR_STAR(g); DistMatrix<F,MR, STAR> X1Trans_MR_STAR(g); const Int kLast = LastOffset( m, bsize ); Int k=kLast, kOld=m; while( true ) { const bool in2x2 = ( k>0 && U.Get(k,k-1) != F(0) ); if( in2x2 ) --k; const Int nb = kOld-k; const Range<Int> ind0( 0, k ), ind1( k, k+nb ); auto U01 = U( ind0, ind1 ); auto U11 = U( ind1, ind1 ); auto X0 = X( ind0, ALL ); auto X1 = X( ind1, ALL ); U11_STAR_STAR = U11; // U11[* ,* ] <- U11[MC,MR] X1Trans_MR_STAR.AlignWith( X0 ); Transpose( X1, X1Trans_MR_STAR ); // X1^T[MR,* ] := X1^T[MR,* ] U11^-T[* ,* ] // = (U11^-1[* ,* ] X1[* ,MR])^T LocalQuasiTrsm ( RIGHT, UPPER, TRANSPOSE, F(1), U11_STAR_STAR, X1Trans_MR_STAR, checkIfSingular ); Transpose( X1Trans_MR_STAR, X1 ); U01_MC_STAR.AlignWith( X0 ); U01_MC_STAR = U01; // U01[MC,* ] <- U01[MC,MR] // X0[MC,MR] -= U01[MC,* ] X1[* ,MR] LocalGemm ( NORMAL, TRANSPOSE, F(-1), U01_MC_STAR, X1Trans_MR_STAR, F(1), X0 ); if( k == 0 ) break; kOld = k; k -= Min(bsize,k); } }
void LLNMedium ( const AbstractDistMatrix<F>& LPre, AbstractDistMatrix<F>& XPre, bool checkIfSingular ) { DEBUG_CSE const Int m = XPre.Height(); const Int bsize = Blocksize(); const Grid& g = LPre.Grid(); DistMatrixReadProxy<F,F,MC,MR> LProx( LPre ); DistMatrixReadWriteProxy<F,F,MC,MR> XProx( XPre ); auto& L = LProx.GetLocked(); auto& X = XProx.Get(); DistMatrix<F,STAR,STAR> L11_STAR_STAR(g); DistMatrix<F,MC, STAR> L21_MC_STAR(g); DistMatrix<F,MR, STAR> X1Trans_MR_STAR(g); for( Int k=0; k<m; k+=bsize ) { const Int nbProp = Min(bsize,m-k); const bool in2x2 = ( k+nbProp<m && L.Get(k+nbProp-1,k+nbProp) != F(0) ); const Int nb = ( in2x2 ? nbProp+1 : nbProp ); const Range<Int> ind1( k, k+nb ), ind2( k+nb, m ); auto L11 = L( ind1, ind1 ); auto L21 = L( ind2, ind1 ); auto X1 = X( ind1, ALL ); auto X2 = X( ind2, ALL ); L11_STAR_STAR = L11; // L11[* ,* ] <- L11[MC,MR] X1Trans_MR_STAR.AlignWith( X2 ); Transpose( X1, X1Trans_MR_STAR ); // X1^T[MR,* ] := X1^T[MR,* ] L11^-T[* ,* ] // = (L11^-1[* ,* ] X1[* ,MR])^T LocalQuasiTrsm ( RIGHT, LOWER, TRANSPOSE, F(1), L11_STAR_STAR, X1Trans_MR_STAR, checkIfSingular ); Transpose( X1Trans_MR_STAR, X1 ); L21_MC_STAR.AlignWith( X2 ); L21_MC_STAR = L21; // L21[MC,* ] <- L21[MC,MR] // X2[MC,MR] -= L21[MC,* ] X1[* ,MR] LocalGemm ( NORMAL, TRANSPOSE, F(-1), L21_MC_STAR, X1Trans_MR_STAR, F(1), X2 ); } }
void LUNMedium ( UnitOrNonUnit diag, const AbstractDistMatrix<F>& UPre, AbstractDistMatrix<F>& XPre, bool checkIfSingular ) { EL_DEBUG_CSE const Int m = XPre.Height(); const Int bsize = Blocksize(); const Grid& g = UPre.Grid(); DistMatrixReadProxy<F,F,MC,MR> UProx( UPre ); DistMatrixReadWriteProxy<F,F,MC,MR> XProx( XPre ); auto& U = UProx.GetLocked(); auto& X = XProx.Get(); DistMatrix<F,MC, STAR> U01_MC_STAR(g); DistMatrix<F,STAR,STAR> U11_STAR_STAR(g); DistMatrix<F,MR, STAR> X1Trans_MR_STAR(g); const Int kLast = LastOffset( m, bsize ); for( Int k=kLast; k>=0; k-=bsize ) { const Int nb = Min(bsize,m-k); const Range<Int> ind0( 0, k ), ind1( k, k+nb ); auto U01 = U( ind0, ind1 ); auto U11 = U( ind1, ind1 ); auto X0 = X( ind0, ALL ); auto X1 = X( ind1, ALL ); U11_STAR_STAR = U11; // U11[* ,* ] <- U11[MC,MR] X1Trans_MR_STAR.AlignWith( X0 ); Transpose( X1, X1Trans_MR_STAR ); // X1^T[MR,* ] := X1^T[MR,* ] U11^-T[* ,* ] // = (U11^-1[* ,* ] X1[* ,MR])^T LocalTrsm ( RIGHT, UPPER, TRANSPOSE, diag, F(1), U11_STAR_STAR, X1Trans_MR_STAR, checkIfSingular ); Transpose( X1Trans_MR_STAR, X1 ); U01_MC_STAR.AlignWith( X0 ); U01_MC_STAR = U01; // U01[MC,* ] <- U01[MC,MR] // X0[MC,MR] -= U01[MC,* ] X1[* ,MR] LocalGemm ( NORMAL, TRANSPOSE, F(-1), U01_MC_STAR, X1Trans_MR_STAR, F(1), X0 ); } }
inline void TrmmLLTC ( Orientation orientation, UnitOrNonUnit diag, T alpha, const DistMatrix<T>& L, DistMatrix<T>& X ) { #ifndef RELEASE PushCallStack("internal::TrmmLLTC"); if( L.Grid() != X.Grid() ) throw std::logic_error ("L and X must be distributed over the same grid"); if( orientation == NORMAL ) throw std::logic_error("TrmmLLT expects a (Conjugate)Transpose option"); if( L.Height() != L.Width() || L.Height() != X.Height() ) { std::ostringstream msg; msg << "Nonconformal TrmmLLTC: \n" << " L ~ " << L.Height() << " x " << L.Width() << "\n" << " X ~ " << X.Height() << " x " << X.Width() << "\n"; throw std::logic_error( msg.str().c_str() ); } #endif const Grid& g = L.Grid(); // Matrix views DistMatrix<T> LTL(g), LTR(g), L00(g), L01(g), L02(g), LBL(g), LBR(g), L10(g), L11(g), L12(g), L20(g), L21(g), L22(g); DistMatrix<T> XT(g), X0(g), XB(g), X1(g), X2(g); // Temporary distributions DistMatrix<T,STAR,STAR> L11_STAR_STAR(g); DistMatrix<T,STAR,MC > L10_STAR_MC(g); DistMatrix<T,STAR,VR > X1_STAR_VR(g); DistMatrix<T,MR, STAR> X1Trans_MR_STAR(g); // Start the algorithm Scale( alpha, X ); LockedPartitionDownDiagonal ( L, LTL, LTR, LBL, LBR, 0 ); PartitionDown ( X, XT, XB, 0 ); while( XB.Height() > 0 ) { LockedRepartitionDownDiagonal ( LTL, /**/ LTR, L00, /**/ L01, L02, /*************/ /******************/ /**/ L10, /**/ L11, L12, LBL, /**/ LBR, L20, /**/ L21, L22 ); RepartitionDown ( XT, X0, /**/ /**/ X1, XB, X2 ); L10_STAR_MC.AlignWith( X0 ); X1Trans_MR_STAR.AlignWith( X0 ); X1_STAR_VR.AlignWith( X1 ); //--------------------------------------------------------------------// L10_STAR_MC = L10; X1Trans_MR_STAR.TransposeFrom( X1 ); LocalGemm ( orientation, TRANSPOSE, T(1), L10_STAR_MC, X1Trans_MR_STAR, T(1), X0 ); L11_STAR_STAR = L11; X1_STAR_VR.TransposeFrom( X1Trans_MR_STAR ); LocalTrmm ( LEFT, LOWER, orientation, diag, T(1), L11_STAR_STAR, X1_STAR_VR ); X1 = X1_STAR_VR; //--------------------------------------------------------------------// L10_STAR_MC.FreeAlignments(); X1Trans_MR_STAR.FreeAlignments(); X1_STAR_VR.FreeAlignments(); SlideLockedPartitionDownDiagonal ( LTL, /**/ LTR, L00, L01, /**/ L02, /**/ L10, L11, /**/ L12, /*************/ /******************/ LBL, /**/ LBR, L20, L21, /**/ L22 ); SlidePartitionDown ( XT, X0, X1, /**/ /**/ XB, X2 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void TrsmLUNMedium ( UnitOrNonUnit diag, F alpha, const DistMatrix<F>& U, DistMatrix<F>& X, bool checkIfSingular ) { #ifndef RELEASE PushCallStack("internal::TrsmLUNMedium"); #endif const Grid& g = U.Grid(); // Matrix views DistMatrix<F> UTL(g), UTR(g), U00(g), U01(g), U02(g), UBL(g), UBR(g), U10(g), U11(g), U12(g), U20(g), U21(g), U22(g); DistMatrix<F> XT(g), X0(g), XB(g), X1(g), X2(g); // Temporary distributions DistMatrix<F,MC, STAR> U01_MC_STAR(g); DistMatrix<F,STAR,STAR> U11_STAR_STAR(g); DistMatrix<F,MR, STAR> X1Trans_MR_STAR(g); // Start the algorithm Scale( alpha, X ); LockedPartitionUpDiagonal ( U, UTL, UTR, UBL, UBR, 0 ); PartitionUp ( X, XT, XB, 0 ); while( XT.Height() > 0 ) { LockedRepartitionUpDiagonal ( UTL, /**/ UTR, U00, U01, /**/ U02, /**/ U10, U11, /**/ U12, /*************/ /******************/ UBL, /**/ UBR, U20, U21, /**/ U22 ); RepartitionUp ( XT, X0, X1, /**/ /**/ XB, X2 ); U01_MC_STAR.AlignWith( X0 ); X1Trans_MR_STAR.AlignWith( X0 ); //--------------------------------------------------------------------// U11_STAR_STAR = U11; // U11[* ,* ] <- U11[MC,MR] X1Trans_MR_STAR.TransposeFrom( X1 ); // X1[* ,MR] <- X1[MC,MR] // X1[* ,MR] := U11^-1[* ,* ] X1[* ,MR] // // X1^T[MR,* ] := X1^T[MR,* ] U11^-T[* ,* ] LocalTrsm ( RIGHT, UPPER, TRANSPOSE, diag, F(1), U11_STAR_STAR, X1Trans_MR_STAR, checkIfSingular ); X1.TransposeFrom( X1Trans_MR_STAR ); U01_MC_STAR = U01; // U01[MC,* ] <- U01[MC,MR] // X0[MC,MR] -= U01[MC,* ] X1[* ,MR] LocalGemm ( NORMAL, TRANSPOSE, F(-1), U01_MC_STAR, X1Trans_MR_STAR, F(1), X0 ); //--------------------------------------------------------------------// U01_MC_STAR.FreeAlignments(); X1Trans_MR_STAR.FreeAlignments(); SlideLockedPartitionUpDiagonal ( UTL, /**/ UTR, U00, /**/ U01, U02, /*************/ /******************/ /**/ U10, /**/ U11, U12, UBL, /**/ UBR, U20, /**/ U21, U22 ); SlidePartitionUp ( XT, X0, /**/ /**/ X1, XB, X2 ); } #ifndef RELEASE PopCallStack(); #endif }