示例#1
0
文件: xiic_l.c 项目: Akaname/Arty
/**
* Receive data as a master on the IIC bus. This function receives the data
* using polled I/O and blocks until the data has been received. It only
* supports 7 bit addressing. The user is responsible for ensuring the bus is
* not busy if multiple masters are present on the bus.
*
* @param	BaseAddress contains the base address of the IIC Device.
* @param	Address contains the 7 bit IIC Device address of the device to
*		send the specified data to.
* @param	BufferPtr points to the data to be sent.
* @param	ByteCount is the number of bytes to be sent. This value can't be
*		greater than 255 and needs to be greater than 0.
*
* @return	The number of bytes received.
*
* @note		Upon entry to this function, the IIC interface needs to be
*		already enabled in the CR register.
*
******************************************************************************/
unsigned XIic_DynRecv(u32 BaseAddress, u8 Address, u8 *BufferPtr, u8 ByteCount)
{
	unsigned RemainingByteCount;
	u32 StatusRegister;

	/*
	 * Clear the latched interrupt status so that it will be updated with
	 * the new state when it changes.
	 */
	XIic_ClearIisr(BaseAddress, XIIC_INTR_TX_EMPTY_MASK |
			XIIC_INTR_TX_ERROR_MASK | XIIC_INTR_ARB_LOST_MASK);

	/*
	 * Send the 7 bit slave address for a read operation and set the state
	 * to indicate the address has been sent. Upon writing the address, a
	 * start condition is initiated. MSMS is automatically set to master
	 * when the address is written to the Fifo. If MSMS was already set,
	 * then a re-start is sent prior to the address.
	 */
	XIic_DynSend7BitAddress(BaseAddress, Address, XIIC_READ_OPERATION);

	/*
	 * Wait for the bus to go busy.
	 */
	StatusRegister = XIic_ReadReg(BaseAddress,  XIIC_SR_REG_OFFSET);

	while (( StatusRegister & XIIC_SR_BUS_BUSY_MASK)
			!= XIIC_SR_BUS_BUSY_MASK) {
		StatusRegister = XIic_ReadReg(BaseAddress,
				XIIC_SR_REG_OFFSET);
	}

	/*
	 * Clear the latched interrupt status for the bus not busy bit which
	 * must be done while the bus is busy.
	 */
	XIic_ClearIisr(BaseAddress, XIIC_INTR_BNB_MASK);

	/*
	 * Write to the Tx Fifo the dynamic stop control bit with the number of
	 * bytes that are to be read over the IIC interface from the presently
	 * addressed device.
	 */
	XIic_DynSendStop(BaseAddress, ByteCount);

	/*
	 * Receive the data from the IIC bus.
	 */
	RemainingByteCount = DynRecvData(BaseAddress, BufferPtr, ByteCount);

	/*
	 * The receive is complete. Return the number of bytes that were
	 * received.
	 */
	return ByteCount - RemainingByteCount;
}
/**
* This function receives data as a master from a slave device on the IIC bus.
* If the bus is busy, it will indicate so and then enable an interrupt such
* that the status handler will be called when the bus is no longer busy. The
* slave address which has been set with the XIic_SetAddress() function is the
* address from which data is received. Receiving data on the bus performs a
* read operation.
*
* @param	InstancePtr is a pointer to the Iic instance to be worked on.
* @param	RxMsgPtr is a pointer to the data to be transmitted.
* @param	ByteCount is the number of message bytes to be sent.
*
* @return	- XST_SUCCESS indicates the message reception processes has been
* 		initiated.
*		- XST_IIC_BUS_BUSY indicates the bus was in use and that the
*		BusNotBusy interrupt is enabled which will update the
*		EventStatus when the bus is no longer busy.
*		- XST_IIC_GENERAL_CALL_ADDRESS indicates the slave address is
*		set to the general call address. This is not allowed for Master
*		receive mode.
*
* @note		The receive FIFO threshold is a zero based count such that 1
*		must be subtracted from the desired count to get the correct
*		value. When receiving data it is also necessary to not receive
*		the last byte with the prior bytes because the acknowledge must
*		be setup before the last byte is received.
*
******************************************************************************/
int XIic_DynMasterRecv(XIic *InstancePtr, u8 *RxMsgPtr, u8 ByteCount)
{
    u32 CntlReg;
    u32 RxFifoOccy;

    /*
     * If the slave address is zero (general call) the master can't perform
     * receive operations, indicate an error.
     */
    if (InstancePtr->AddrOfSlave == 0) {
        return XST_IIC_GENERAL_CALL_ADDRESS;
    }

    /*
     * Disable the Interrupts.
     */
    XIic_IntrGlobalDisable(InstancePtr->BaseAddress);

    /*
     * Ensure that the master processing has been included such that events
     * will be properly handled.
     */
    XIIC_DYN_MASTER_INCLUDE;
    InstancePtr->IsDynamic = TRUE;

    /*
     * If the busy is busy, then exit the critical region and wait for the
     * bus to not be busy, the function enables the bus not busy interrupt.
     */
    if (IsBusBusy(InstancePtr)) {
        XIic_IntrGlobalEnable(InstancePtr->BaseAddress);

        return XST_IIC_BUS_BUSY;
    }

    /*
     * Save message state for event driven processing.
     */
    InstancePtr->RecvByteCount = ByteCount;
    InstancePtr->RecvBufferPtr = RxMsgPtr;

    /*
     * Clear and enable Rx full interrupt.
     */
    XIic_ClearEnableIntr(InstancePtr->BaseAddress, XIIC_INTR_RX_FULL_MASK);

    /*
     * If already a master on the bus, the direction was set by Rx Interrupt
     * routine to Tx which is throttling bus because during Rxing, Tx reg is
     * empty = throttle. CR needs setting before putting data or the address
     * written will go out as Tx instead of receive. Start Master Rx by
     * setting CR Bits MSMS to Master and msg direction.
     */
    CntlReg = XIic_ReadReg(InstancePtr->BaseAddress, XIIC_CR_REG_OFFSET);
    if (CntlReg & XIIC_CR_MSMS_MASK) {
        /*
         * Set the Repeated Start bit in CR.
         */
        CntlReg |= XIIC_CR_REPEATED_START_MASK;
        XIic_SetControlRegister(InstancePtr, CntlReg, ByteCount);

        /*
         * Increment stats counts.
         */
        InstancePtr->Stats.RepeatedStarts++;
        XIic_WriteReg(InstancePtr->BaseAddress, XIIC_CR_REG_OFFSET,
                      CntlReg);
    }

    /*
     * Set receive FIFO occupancy depth which must be done prior to writing
     * the address in the FIFO because the transmitter will immediately
     * start when in repeated start mode followed by the receiver such
     * that the number of bytes to receive should be set 1st.
     */
    if (ByteCount == 1) {
        RxFifoOccy = 0;
    }
    else {
        if (ByteCount <= IIC_RX_FIFO_DEPTH) {
            RxFifoOccy = ByteCount - 2;
        } else {
            RxFifoOccy = IIC_RX_FIFO_DEPTH - 1;
        }
    }

    XIic_WriteReg(InstancePtr->BaseAddress, XIIC_RFD_REG_OFFSET,
                  RxFifoOccy);

    /*
     * Send the Seven Bit address. Only 7 bit addressing is supported in
     * Dynamic mode and mark that the address has been sent.
     */
    XIic_DynSend7BitAddress(InstancePtr->BaseAddress,
                            InstancePtr->AddrOfSlave, XIIC_READ_OPERATION);
    InstancePtr->TxAddrMode = XIIC_TX_ADDR_SENT;

    /*
     * Send the bytecount to be received and set the stop bit.
     */
    XIic_DynSendStop(InstancePtr->BaseAddress, ByteCount);

    /*
     * Tx error is enabled incase the address has no device to answer
     * with Ack. When only one byte of data, must set NO ACK before address
     * goes out therefore Tx error must not be enabled as it will go off
     * immediately and the Rx full interrupt will be checked. If full, then
     * the one byte was received and the Tx error will be disabled without
     * sending an error callback msg.
     */
    XIic_ClearEnableIntr(InstancePtr->BaseAddress,
                         XIIC_INTR_TX_ERROR_MASK);

    /*
     * Enable the Interrupts.
     */
    XIic_IntrGlobalEnable(InstancePtr->BaseAddress);

    return XST_SUCCESS;
}
/******************************************************************************
*
* When the IIC Tx FIFO/register goes empty, this routine is called by the
* interrupt service routine to fill the transmit FIFO with data to be sent.
*
* This function also is called by the Tx ½ empty interrupt as the data handling
* is identical when you don't assume the FIFO is empty but use the Tx_FIFO_OCY
* register to indicate the available free FIFO bytes.
*
* @param	InstancePtr is a pointer to the XIic instance to be worked on.
*
* @return	None.
*
* @note		None.
*
******************************************************************************/
static void DynSendMasterData(XIic *InstancePtr)
{
    u32 CntlReg;

    /*
     * In between 1st and last byte of message, fill the FIFO with more data
     * to send, disable the 1/2 empty interrupt based upon data left to
     * send.
     */
    if (InstancePtr->SendByteCount > 1) {
        XIic_TransmitFifoFill(InstancePtr, XIIC_MASTER_ROLE);

        if (InstancePtr->SendByteCount < 2) {
            XIic_DisableIntr(InstancePtr->BaseAddress,
                             XIIC_INTR_TX_HALF_MASK);
        }
    }

    /*
     * If there is only one byte left to send, processing differs between
     * repeated start and normal messages.
     */
    else if (InstancePtr->SendByteCount == 1) {
        /*
         * When using repeated start, another interrupt is expected
         * after the last byte has been sent, so the message is not
         * done yet.
         */
        if (InstancePtr->Options & XII_REPEATED_START_OPTION) {
            XIic_WriteSendByte(InstancePtr);
        } else {
            XIic_DynSendStop(InstancePtr->BaseAddress,
                             *InstancePtr->SendBufferPtr);

            /*
             * Wait for bus to not be busy before declaring message
             * has been sent for the no repeated start operation.
             * The callback will be called from the BusNotBusy part
             * of the Interrupt handler to ensure that the message
             * is completely sent. Disable the Tx interrupts and
             * enable the BNB interrupt.
             */
            InstancePtr->BNBOnly = FALSE;
            XIic_DisableIntr(InstancePtr->BaseAddress,
                             XIIC_TX_INTERRUPTS);
            XIic_EnableIntr(InstancePtr->BaseAddress,
                            XIIC_INTR_BNB_MASK);
        }
    } else {
        if (InstancePtr->Options & XII_REPEATED_START_OPTION) {
            /*
             * The message being sent has completed. When using
             * repeated start with no more bytes to send repeated
             * start needs to be set in the control register so
             * that the bus will still be held by this master.
             */
            CntlReg = XIic_ReadReg(InstancePtr->BaseAddress,
                                   XIIC_CR_REG_OFFSET);
            CntlReg |= XIIC_CR_REPEATED_START_MASK;
            XIic_WriteReg(InstancePtr->BaseAddress,
                          XIIC_CR_REG_OFFSET, CntlReg);

            /*
             * If the message that was being sent has finished,
             * disable all transmit interrupts and call the callback
             * that was setup to indicate the message was sent,
             * with 0 bytes remaining.
             */
            XIic_DisableIntr(InstancePtr->BaseAddress,
                             XIIC_TX_INTERRUPTS);
            InstancePtr->SendHandler(InstancePtr->SendCallBackRef,
                                     0);
        }
    }

    return;
}