示例#1
0
void ReqBind(void)
{
      HalLedSet ( HAL_LED_1, HAL_LED_MODE_OFF );
      zAddrType_t dstAddr;
      // Initiate an End Device Bind Request for the mandatory endpoint
      dstAddr.addrMode = Addr16Bit;
      dstAddr.addr.shortAddr = 0x0000; // Coordinator
#ifdef ZDO_COORDINATOR
      ZDP_EndDeviceBindReq( &dstAddr, NLME_GetShortAddr(), 
                            SerialApp_epDesc.endPoint,
                            SERIALAPP_PROFID,
                            SERIALAPP_CENTER_OUT_MAX_CLUSTERS, 
                            (cId_t *)SerialApp_ClusterList,
                            SERIALAPP_CENTER_IN_MAX_CLUSTERS, 
                            (cId_t *)SerialApp_CenterIn_EndOut_ClusterList,
                            FALSE );
#else
      ZDP_EndDeviceBindReq( &dstAddr, NLME_GetShortAddr(), 
                            SerialApp_epDesc.endPoint,
                            SERIALAPP_PROFID,
                            SERIALAPP_CENTER_IN_MAX_CLUSTERS, 
                            (cId_t *)SerialApp_CenterIn_EndOut_ClusterList,
                            SERIALAPP_CENTER_OUT_MAX_CLUSTERS, 
                            (cId_t *)SerialApp_ClusterList,
                            FALSE );
#endif
  
}
/*********************************************************************
 * @fn      zclSampleLight_HandleKeys
 *
 * @brief   Handles all key events for this device.
 *
 * @param   shift - true if in shift/alt.
 * @param   keys - bit field for key events. Valid entries:
 *                 HAL_KEY_SW_4
 *                 HAL_KEY_SW_3
 *                 HAL_KEY_SW_2
 *                 HAL_KEY_SW_1
 *
 * @return  none
 */
static void zclSampleLight_HandleKeys( byte shift, byte keys )
{
  zAddrType_t dstAddr;
  
  (void)shift;  // Intentionally unreferenced parameter

  if ( keys & HAL_KEY_SW_2 )
  {
    // Initiate an End Device Bind Request, this bind request will
    // only use a cluster list that is important to binding.
    dstAddr.addrMode = afAddr16Bit;
    dstAddr.addr.shortAddr = 0;   // Coordinator makes the match
    ZDP_EndDeviceBindReq( &dstAddr, NLME_GetShortAddr(),
                           SAMPLELIGHT_ENDPOINT,
                           ZCL_HA_PROFILE_ID,
                           ZCLSAMPLELIGHT_BINDINGLIST, bindingInClusters,
                           0, NULL,   // No Outgoing clusters to bind
                           TRUE );
  }

  if ( keys & HAL_KEY_SW_3 )
  {
  }

  if ( keys & HAL_KEY_SW_4 )
  {
  }
}
示例#3
0
/*********************************************************************
 * @fn      GenericApp_HandleKeys
 *
 * @brief   Handles all key events for this device.
 *
 * @param   shift - true if in shift/alt.
 * @param   keys - bit field for key events. Valid entries:
 *                 HAL_KEY_SW_4
 *                 HAL_KEY_SW_3
 *                 HAL_KEY_SW_2
 *                 HAL_KEY_SW_1
 *
 * @return  none
 */
void GenericApp_HandleKeys( byte shift, byte keys )
{
  zAddrType_t dstAddr;
  
  // Shift is used to make each button/switch dual purpose.
  if ( shift )
  {
    if ( keys & HAL_KEY_SW_1 )
    {
    }
    if ( keys & HAL_KEY_SW_2 )
    {
    }
    if ( keys & HAL_KEY_SW_3 )
    {
    }
    if ( keys & HAL_KEY_SW_4 )
    {
    }
  }
  else
  {
    if ( keys & HAL_KEY_SW_1 )
    {
    }

    if ( keys & HAL_KEY_SW_2 )
    {
      HalLedSet ( HAL_LED_4, HAL_LED_MODE_OFF );

      // Initiate an End Device Bind Request for the mandatory endpoint
      dstAddr.addrMode = Addr16Bit;
      dstAddr.addr.shortAddr = 0x0000; // Coordinator
      ZDP_EndDeviceBindReq( &dstAddr, NLME_GetShortAddr(), 
                            GenericApp_epDesc.endPoint,
                            GENERICAPP_PROFID,
                            GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
                            GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
                            FALSE );
    }

    if ( keys & HAL_KEY_SW_3 )
    {
    }

    if ( keys & HAL_KEY_SW_4 )
    {
      HalLedSet ( HAL_LED_4, HAL_LED_MODE_OFF );
      // Initiate a Match Description Request (Service Discovery)
      dstAddr.addrMode = AddrBroadcast;
      dstAddr.addr.shortAddr = NWK_BROADCAST_SHORTADDR;
      ZDP_MatchDescReq( &dstAddr, NWK_BROADCAST_SHORTADDR,
                        GENERICAPP_PROFID,
                        GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
                        GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
                        FALSE );
    }
  }
}
/*********************************************************************
 * @fn      zcl_SendBindRequest
 *
 * @brief   Send the appropriate bind request based on DEV_TYPE.
 *
 * @param   none
 *
 * @return  none
 */
static void zcl_SendBindRequest( void ) {  
  dstAddr.addrMode = afAddr16Bit;
  dstAddr.addr.shortAddr = 0;   // Coordinator makes the match
  
  ZDP_EndDeviceBindReq( &dstAddr, NLME_GetShortAddr(),
    ENDPOINT,
    ZCL_HA_PROFILE_ID,
    ZCL_BINDINGLIST, bindingClusters,
    ZCL_BINDINGLIST, bindingClusters,
    TRUE );
}
示例#5
0
/*********************************************************************
 * @fn      zclSampleSw_HandleKeys
 *
 * @brief   Handles all key events for this device.
 *
 * @param   shift - true if in shift/alt.
 * @param   keys - bit field for key events. Valid entries:
 *                 HAL_KEY_SW_4
 *                 HAL_KEY_SW_3
 *                 HAL_KEY_SW_2
 *                 HAL_KEY_SW_1
 *
 * @return  none
 */
static void zclSampleSw_HandleKeys( byte shift, byte keys )
{
  zAddrType_t dstAddr;
  (void)shift;  // Intentionally unreferenced parameter

  if ( keys & HAL_KEY_SW_1 )
  {
    // Using this as the "Light Switch"
#ifdef ZCL_ON_OFF
    zclGeneral_SendOnOff_CmdToggle( SAMPLESW_ENDPOINT, &zclSampleSw_DstAddr, false, 0 );
#endif
  }

  if ( keys & HAL_KEY_SW_2 )
  {
    HalLedSet ( HAL_LED_4, HAL_LED_MODE_OFF );

    // Initiate an End Device Bind Request, this bind request will
    // only use a cluster list that is important to binding.
    dstAddr.addrMode = afAddr16Bit;
    dstAddr.addr.shortAddr = 0;   // Coordinator makes the match
    ZDP_EndDeviceBindReq( &dstAddr, NLME_GetShortAddr(),
                           SAMPLESW_ENDPOINT,
                           ZCL_HA_PROFILE_ID,
                           0, NULL,   // No incoming clusters to bind
                           ZCLSAMPLESW_BINDINGLIST, bindingOutClusters,
                           TRUE );
  }

  if ( keys & HAL_KEY_SW_3 )
  {
    #ifdef ZCL_LEVEL_CTRL
      uint16 potiVal =  HalAdcRead ( SAMPLESW_POTI_CHANNEL, HAL_ADC_RESOLUTION_8 );
      zclGeneral_SendLevelControlMoveToLevel( SAMPLESW_ENDPOINT, &zclSampleSw_DstAddr, potiVal, SAMPLESW_STD_TRANSTIME, false, 0 );
    #endif
  }

  if ( keys & HAL_KEY_SW_4 )
  {
    HalLedSet ( HAL_LED_4, HAL_LED_MODE_OFF );

    // Initiate a Match Description Request (Service Discovery)
    dstAddr.addrMode = AddrBroadcast;
    dstAddr.addr.shortAddr = NWK_BROADCAST_SHORTADDR;
    ZDP_MatchDescReq( &dstAddr, NWK_BROADCAST_SHORTADDR,
                       ZCL_HA_PROFILE_ID,
                       ZCLSAMPLESW_BINDINGLIST, bindingOutClusters,
                       0, NULL,   // No incoming clusters to bind
                       FALSE );
  }
}
示例#6
0
/*********************************************************************
 * @fn      GenericApp_HandleKeys
 *
 * @brief   Handles all key events for this device.
 *
 * @param   shift - true if in shift/alt.
 * @param   keys - bit field for key events. Valid entries:
 *                 HAL_KEY_SW_4
 *                 HAL_KEY_SW_3
 *                 HAL_KEY_SW_2
 *                 HAL_KEY_SW_1
 *
 * @return  none
 */
static void GenericApp_HandleKeys( uint8 shift, uint8 keys )
{
  zAddrType_t dstAddr;

  // Shift is used to make each button/switch dual purpose.
  if ( shift )
  {
    if ( keys & HAL_KEY_SW_1 )
    {
    }
    if ( keys & HAL_KEY_SW_2 )
    {
    }
    if ( keys & HAL_KEY_SW_3 )
    {
    }
    if ( keys & HAL_KEY_SW_4 )
    {
    }
  }
  else
  {
    if ( keys & HAL_KEY_SW_1 )
    {
      // Since SW1 isn't used for anything else in this application...
#if defined( SWITCH1_BIND )
      // we can use SW1 to simulate SW2 for devices that only have one switch,
      keys |= HAL_KEY_SW_2;
#elif defined( SWITCH1_MATCH )
      // or use SW1 to simulate SW4 for devices that only have one switch
      keys |= HAL_KEY_SW_4;
#endif
    }

    if ( keys & HAL_KEY_SW_2 )
    {
      HalLedSet ( HAL_LED_4, HAL_LED_MODE_OFF );

      // Initiate an End Device Bind Request for the mandatory endpoint
      dstAddr.addrMode = Addr16Bit;
      dstAddr.addr.shortAddr = 0x0000; // Coordinator
      ZDP_EndDeviceBindReq( &dstAddr, NLME_GetShortAddr(),
                            GenericApp_epDesc.endPoint,
                            GENERICAPP_PROFID,
                            GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
                            GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
                            FALSE );
    }

    if ( keys & HAL_KEY_SW_3 )
    {
    }

    if ( keys & HAL_KEY_SW_4 )
    {
      HalLedSet ( HAL_LED_4, HAL_LED_MODE_OFF );
      // Initiate a Match Description Request (Service Discovery)
      dstAddr.addrMode = AddrBroadcast;
      dstAddr.addr.shortAddr = NWK_BROADCAST_SHORTADDR;
      ZDP_MatchDescReq( &dstAddr, NWK_BROADCAST_SHORTADDR,
                        GENERICAPP_PROFID,
                        GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
                        GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
                        FALSE );
    }
  }
}
/*********************************************************************
 * @fn      zclSampleTemperatureSensor_HandleKeys
 *
 * @brief   Handles all key events for this device.
 *
 * @param   shift - true if in shift/alt.
 * @param   keys - bit field for key events. Valid entries:
 *                 HAL_KEY_SW_5
 *                 HAL_KEY_SW_4
 *                 HAL_KEY_SW_3
 *                 HAL_KEY_SW_2
 *                 HAL_KEY_SW_1
 *
 * @return  none
 */
static void zclSampleTemperatureSensor_HandleKeys( byte shift, byte keys )
{
  if ( keys & HAL_KEY_SW_1 )
  {
    // increase temperature
    giTemperatureSensorScreenMode = TEMPSENSE_MAINMODE;

    if ( zclSampleTemperatureSensor_MeasuredValue < zclSampleTemperatureSensor_MaxMeasuredValue )
    {
      zclSampleTemperatureSensor_MeasuredValue = zclSampleTemperatureSensor_MeasuredValue + 100;  // considering using whole number value
    }
    else if ( zclSampleTemperatureSensor_MeasuredValue >= zclSampleTemperatureSensor_MaxMeasuredValue )
    {
      zclSampleTemperatureSensor_MeasuredValue = zclSampleTemperatureSensor_MaxMeasuredValue;
    }

    // Send temperature information
    zclSampleTemperatureSensor_SendTemp();
  }

  if ( keys & HAL_KEY_SW_2 )
  {
    if ( ( giTemperatureSensorScreenMode == TEMPSENSE_MAINMODE ) ||
        ( giTemperatureSensorScreenMode == TEMPSENSE_HELPMODE ) )
    {
      giTemperatureSensorScreenMode = TEMPSENSE_MAINMODE;

#ifdef ZCL_EZMODE
      zclEZMode_InvokeData_t ezModeData;
      static uint16 clusterIDs[] = { ZCL_CLUSTER_ID_MS_TEMPERATURE_MEASUREMENT };   // only bind on the Temperature Measurement cluster

      // Invoke EZ-Mode
      ezModeData.endpoint = SAMPLETEMPERATURESENSOR_ENDPOINT; // endpoint on which to invoke EZ-Mode
      if ( ( zclSampleTemperatureSensor_NwkState == DEV_ZB_COORD ) ||
           ( zclSampleTemperatureSensor_NwkState == DEV_ROUTER )   ||
           ( zclSampleTemperatureSensor_NwkState == DEV_END_DEVICE ) )
      {
        ezModeData.onNetwork = TRUE;      // node is already on the network
      }
      else
      {
        ezModeData.onNetwork = FALSE;     // node is not yet on the network
      }
      ezModeData.initiator = TRUE;        // Temperature Sensor is an initiator
      ezModeData.numActiveInClusters = 1;
      ezModeData.pActiveInClusterIDs = clusterIDs;
      ezModeData.numActiveOutClusters = 0;   // active output cluster
      ezModeData.pActiveOutClusterIDs = NULL;
      zcl_InvokeEZMode( &ezModeData );

#ifdef LCD_SUPPORTED
      HalLcdWriteString( "EZMode", HAL_LCD_LINE_2 );
#endif

      // NOT ZCL_EZMODE, Use EndDeviceBind
#else
      {
        zAddrType_t dstAddr;
        dstAddr.addrMode = Addr16Bit;
        dstAddr.addr.shortAddr = 0;   // Coordinator makes the EDB match

        // Initiate an End Device Bind Request, this bind request will
        // only use a cluster list that is important to binding.
        HalLedSet ( HAL_LED_4, HAL_LED_MODE_OFF );
        ZDP_EndDeviceBindReq( &dstAddr, NLME_GetShortAddr(),
                              SAMPLETEMPERATURESENSOR_ENDPOINT,
                              ZCL_HA_PROFILE_ID,
                              0, NULL,
                              ZCLSAMPLETEMPERATURESENSOR_BINDINGLIST, bindingOutClusters,
                              FALSE );
      }
#endif // ZCL_EZMODE
    }
  }

  if ( keys & HAL_KEY_SW_3 )
  {
    giTemperatureSensorScreenMode = TEMPSENSE_MAINMODE;

    // decrease the temperature
    if ( zclSampleTemperatureSensor_MeasuredValue > zclSampleTemperatureSensor_MinMeasuredValue )
    {
      zclSampleTemperatureSensor_MeasuredValue = zclSampleTemperatureSensor_MeasuredValue - 100;  // considering using whole number value
    }
    else if ( zclSampleTemperatureSensor_MeasuredValue >= zclSampleTemperatureSensor_MinMeasuredValue )
    {
      zclSampleTemperatureSensor_MeasuredValue = zclSampleTemperatureSensor_MinMeasuredValue;
    }

    // Send temperature information
    zclSampleTemperatureSensor_SendTemp();
  }

  if ( keys & HAL_KEY_SW_4 )
  {
    giTemperatureSensorScreenMode = TEMPSENSE_MAINMODE;

    if ( ( zclSampleTemperatureSensor_NwkState == DEV_ZB_COORD ) ||
         ( zclSampleTemperatureSensor_NwkState == DEV_ROUTER ) )
    {
      // toggle permit join
      gPermitDuration = gPermitDuration ? 0 : 0xff;
      NLME_PermitJoiningRequest( gPermitDuration );
    }
  }

  if ( shift && ( keys & HAL_KEY_SW_5 ) )
  {
    zclSampleTemperatureSensor_BasicResetCB();
  }
  else if ( keys & HAL_KEY_SW_5 )
  {
    if ( giTemperatureSensorScreenMode == TEMPSENSE_MAINMODE )
    {
      giTemperatureSensorScreenMode = TEMPSENSE_HELPMODE;
    }
    else if ( giTemperatureSensorScreenMode == TEMPSENSE_HELPMODE )
    {
#ifdef LCD_SUPPORTED
      HalLcdWriteString( (char *)sClearLine, HAL_LCD_LINE_2 );
#endif
      giTemperatureSensorScreenMode = TEMPSENSE_MAINMODE;
    }
  }

  // update display
  zclSampleTemperatureSensor_LcdDisplayUpdate();
}
示例#8
0
文件: GenericApp.c 项目: cuu/weiyi
void Serial_callBack(uint8 port, uint8 event)
{
  char theMessageData[] = "Hello";
  zAddrType_t dstAddr;
  zAddrType_t ZAddr;
  
  afAddrType_t myaddr; // use for p2p
  
  char pbuf[3];
  char pbuf1[3];
  uint16 cmd;
  
  uint8 buff[128];
  uint8 readBytes = 0;
  
  uint16 short_ddr;
  uint16 panid;
  uint8 *ieeeAddr;
  
  uint16 *p1;
  
  byte cnt = 0;
  uint8 yy1;
  uint8 yy2;
  
  uint8 i;
  byte nr;
  uint16 devlist[ NWK_MAX_DEVICES + 1];
  associated_devices_t *adp; // delete devices
  
  //short_ddr = GenericApp_DstAddr.addr.shortAddr;
  uint8 startOptions;    
  uint8 logicalType;
  
  logicalType = (uint8)ZDO_Config_Node_Descriptor.LogicalType;
  
            
  readBytes = HalUARTRead(SER_PORT, buff, 127);
  if (readBytes > 0)
  {
    //HalUARTWrite( SER_PORT, "DataRead: ",10);
    // HalUARTWrite( SER_PORT, buff, readBytes);
    if(readBytes == 4)
    {
      if(buff[0] == 'p' && buff[1] == 'i' && buff[2]=='n' && buff[3] == 'g')
      {
          UART_Send_String( "pong", 4 );
      }
    }
    
    if( readBytes == 1)
    {
        yy1 = 1;
        if(buff[0]== 's')
        {
          /// short address
          short_ddr = _NIB.nwkDevAddress;
          
          UART_Send_String( (uint8*)&short_ddr, 2);
          
        }
        if(buff[0] == 'p')
        {
          /// pan id
          panid = _NIB.nwkPanId;
          UART_Send_String( (uint8*)&panid, 2);          
        }
        if(buff[0] == 'c')/// channel
        {
            yy2 = _NIB.nwkLogicalChannel;
            UART_Send_String( (uint8*)&yy2, 1);
            
        }
        if(buff[0] =='m') // mac address
        {
            ieeeAddr = NLME_GetExtAddr();
            UART_Send_String( ieeeAddr, 8);
            
        }

        if( buff[0] ==0xc0) // coordinator 
        {

          set_coordi();       
          return;
        }

        if( buff[0] ==0xe0) // router
        {
          set_router();
          
          return;
        }
        
        if(buff[0] == 0xCA)
        {
          // 使命的招唤
          // read self AssociatedDevList
          for(i=0;i< NWK_MAX_DEVICES; i++)
          {
             nr = AssociatedDevList[ i ].nodeRelation;
             if(nr > 0 && nr < 5) //CHILD_RFD CHILD_RFD_RX_IDLE CHILD_FFD CHILD_FFD_RX_IDLE
             //if( nr != 0XFF)
             {
               //   myaddr.addrMode = (afAddrMode_t)Addr16Bit;
               //   myaddr.endPoint = GENERICAPP_ENDPOINT;
             //  if( AssociatedDevList[ i ].shortAddr != 0x0000)
             //  {
                  //if( AssocIsChild( AssociatedDevList[ i ].shortAddr ) != 1 || AssociatedDevList[ i ].age > NWK_ROUTE_AGE_LIMIT)
                  //if( AssocIsChild( AssociatedDevList[ i ].shortAddr ) == 1 && AssociatedDevList[ i ].age > NWK_ROUTE_AGE_LIMIT )
                 // {
                    //  myaddr.addr.shortAddr = AssociatedDevList[ i ].shortAddr;
                      /*
                      if ( AF_DataRequest( &myaddr, &GenericApp_epDesc, GENERICAPP_CLUSTERID,(byte)osal_strlen( theMessageData ) + 1,
                              (byte *)&theMessageData,
                              &GenericApp_TransID,
                              AF_ACK_REQUEST, AF_DEFAULT_RADIUS ) != afStatus_SUCCESS )
                        {
                          uprint("delete asso");
                        */
                   //       delete_asso( AssociatedDevList[ i ]. addrIdx);
                          
                  // }
                    //    else
                     //   {
                          devlist[yy1] = AssociatedDevList[ i ].shortAddr;
                          yy1++;
                     //   }
                  
                  // }
             }//else {break;}
          }
          devlist[0] = BUILD_UINT16(0xce,  AssocCount(1, 4) );
          UART_Send_String( (uint8*)&devlist[0], yy1*2);
            //p1 = AssocMakeList( &cnt );
            //UART_Send_String( (uint8*)p1,  AssocCount(1, 4)*2);
            //osal_mem_free(p1);
          return;
        }
    }
    
#if defined( ZDO_COORDINATOR )
    // only coordinator can have this function
    if(readBytes == 3)
    {
      
      if( buff[0] == 0xCA || buff[0] == 0x6d)
      {
        // CA xx xx ,send CA to a node ,with it's short address
        ///uprint("it's CA ");
        short_ddr = BUILD_UINT16( buff[1], buff[2] );
        myaddr.addrMode = (afAddrMode_t)Addr16Bit;
        myaddr.endPoint = GENERICAPP_ENDPOINT;
        myaddr.addr.shortAddr = short_ddr;
        
        if ( AF_DataRequest( &myaddr, &GenericApp_epDesc, GENERICAPP_CLUSTERID, 1,
                          (byte *)&buff,
                          &GenericApp_TransID,
                          AF_DISCV_ROUTE, AF_DEFAULT_RADIUS ) != afStatus_SUCCESS )
        {
             AF_DataRequest( &myaddr, &GenericApp_epDesc, GENERICAPP_CLUSTERID, 1,
                          (byte *)&buff,
                          &GenericApp_TransID,
                          AF_DISCV_ROUTE, AF_DEFAULT_RADIUS );
             // send twice only, if it is still not ok, f**k it
          
        }
       return;
      }
    }
          
#endif 
          
    if( readBytes >= 2)
    {
     
      if( buff[0] == 'e' && buff[1] == '#')
      {
          uprint("EndDevice match");
          HalLedSet ( HAL_LED_1, HAL_LED_MODE_OFF );

          dstAddr.addrMode = Addr16Bit;
          dstAddr.addr.shortAddr = 0x0000; // Coordinator
          ZDP_EndDeviceBindReq( &dstAddr, NLME_GetShortAddr(), GenericApp_epDesc.endPoint,
                            GENERICAPP_PROFID,
                            GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
                            GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
                            FALSE );
      
      }
 
      if( buff[0] == 'r' && buff[1] == '#')
      {
          uprint("Router Device match");
          
        HalLedSet ( HAL_LED_1, HAL_LED_MODE_FLASH );

      dstAddr.addrMode = AddrBroadcast;
      dstAddr.addr.shortAddr = NWK_BROADCAST_SHORTADDR;
      ZDP_MatchDescReq( &dstAddr, NWK_BROADCAST_SHORTADDR,
                        GENERICAPP_PROFID,
                        GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
                        GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
                        FALSE );
      
      }
      if(readBytes == 6)
      {
        if(buff[0] == 'p' && buff[1]==':') // pan id
        {
            strncpy(pbuf, &buff[2],2); pbuf[2] = '\0';
            strncpy(pbuf1, &buff[4],2); pbuf1[2] = '\0';
            
            set_panid( BUILD_UINT16( strtol(pbuf1,NULL,16),strtol(pbuf,NULL,16) ));
            if(_NIB.nwkPanId == 0xffff)
            {
              zgWriteStartupOptions (ZG_STARTUP_SET, ZCD_STARTOPT_DEFAULT_NETWORK_STATE);           
              SystemReset();
            }            
            //SystemResetSoft();
        }
        
        if(buff[0] == 's' && buff[1]==':') // short address
        {
            /*
            strncpy(pbuf, &buff[2],2); pbuf[2] = '\0';
            strncpy(pbuf1, &buff[4],2); pbuf1[2] = '\0';
            _NIB.nwkDevAddress = BUILD_UINT16( strtol(pbuf1,NULL,16),strtol(pbuf,NULL,16));
            */
            
        }
      }
      
      
      cmd = BUILD_UINT16(buff[ 1 + 1], buff[1]);
      if( ( buff[ 0 ] == CPT_SOP) && (cmd == SYS_PING_REQUEST) ) 
      {
        sysPingReqRcvd();
        return;
      }

      if( readBytes == 2)
      {        
        if( buff[0] == 0xcc )
        {
          if( buff[1] > 0x0a && buff[1] < 0x1b )
          {

            _NIB.nwkLogicalChannel = buff[1];
            NLME_UpdateNV(0x01);
            ZMacSetReq( ZMacChannel, &buff[1]);
            
            osal_nv_item_init( ZCD_NV_CHANLIST, sizeof(zgDefaultChannelList), &zgDefaultChannelList);
            
            if( buff[1] == 0x0b)
            {
              zgDefaultChannelList = 0x00000800;
              
            } 
            if (buff[1] == 0x0c )
            {
              zgDefaultChannelList = 0x00001000;
            }            
            if (buff[1] == 0x0d )
            {
              zgDefaultChannelList = 0x00002000;
            }
            if (buff[1] == 0x0e )
            {
              zgDefaultChannelList = 0x00004000;
            }
            if (buff[1] == 0x0f )
            {
              zgDefaultChannelList = 0x00008000;
            }
            if (buff[1] == 0x10 )
            {
              zgDefaultChannelList = 0x00010000;
            }
            if (buff[1] == 0x11 )
            {
              zgDefaultChannelList = 0x00020000;
            }
            if (buff[1] == 0x12 )
            {
              zgDefaultChannelList = 0x00040000;
            }            
            if (buff[1] == 0x13 )
            {
              zgDefaultChannelList = 0x00080000;
            }
            if (buff[1] == 0x14 )
            {
              zgDefaultChannelList = 0x00100000;
            }
            if (buff[1] == 0x15 )
            {
              zgDefaultChannelList = 0x00200000;
            }            
            if (buff[1] == 0x16 )
            {
              zgDefaultChannelList = 0x00400000;
            }
            if (buff[1] == 0x17 )
            {
              zgDefaultChannelList = 0x00800000;
            }
            if (buff[1] == 0x18 )
            {
              zgDefaultChannelList = 0x01000000;
            }

            if (buff[1] == 0x19 )
            {
              zgDefaultChannelList = 0x02000000;
            }
            if (buff[1] == 0x1a )
            {
              zgDefaultChannelList = 0x04000000;
            }
            
            osal_nv_write(  ZCD_NV_CHANLIST, 0 ,sizeof(zgDefaultChannelList), &zgDefaultChannelList);
            
            UART_Send_String( (uint8*)&zgDefaultChannelList, sizeof(zgDefaultChannelList) );

            /*
            _NIB.nwkLogicalChannel = buff[1];
            NLME_UpdateNV(0x01);
            if( osal_nv_write(ZCD_NV_CHANLIST, 0, osal_nv_item_len( ZCD_NV_CHANLIST ), &tmp32) !=  ZSUCCESS)
            {
              uprint("change channel to nv failed");
            }
            */
            /*
            _NIB.nwkLogicalChannel = buff[1];
            ZMacSetReq( ZMacChannel, &buff[1]);
            ZDApp_NwkStateUpdateCB();
            _NIB.nwkTotalTransmissions = 0;
            nwkTransmissionFailures( TRUE );
            */
          }
        }
        
      }// readBytes==2


      ser_process( buff,readBytes );// 中讯威易的协议最小也是2 字节
    }//if( readBytes >= 2)


    AF_DataRequest( &GenericApp_DstAddr, &GenericApp_epDesc,
                       GENERICAPP_CLUSTERID,
                       readBytes,
                       (byte *)&buff,
                       &GenericApp_TransID,
                       AF_DISCV_ROUTE, AF_DEFAULT_RADIUS );
    
      
  } //if (readBytes > 0) 
}
示例#9
0
/*********************************************************************
 * @fn      zclSampleSw_HandleKeys
 *
 * @brief   Handles all key events for this device.
 *
 * @param   shift - true if in shift/alt.
 * @param   keys - bit field for key events. Valid entries:
 *                 HAL_KEY_SW_5
 *                 HAL_KEY_SW_4
 *                 HAL_KEY_SW_2
 *                 HAL_KEY_SW_1
 *
 * @return  none
 */
static void zclSampleSw_HandleKeys( byte shift, byte keys )
{
  // toggle remote light
  if ( keys & HAL_KEY_SW_1 )
  {
    giSwScreenMode = SW_MAINMODE;   // remove help screen if there

    // Using this as the "Light Switch"
#ifdef ZCL_ON_OFF
    zclGeneral_SendOnOff_CmdToggle( SAMPLESW_ENDPOINT, &zclSampleSw_DstAddr, FALSE, 0 );
#endif
#ifdef LCD_SUPPORTED
    HalLcdWriteString( (char *)sCmdSent, HAL_LCD_LINE_2 );

    // clear message on screen after 3 seconds
    osal_start_timerEx( zclSampleSw_TaskID, SAMPLESW_MAIN_SCREEN_EVT, 3000 );
#endif
  }

  // invoke EZ-Mode
  if ( keys & HAL_KEY_SW_2 )
  {
    giSwScreenMode = SW_MAINMODE;   // remove help screen if there

#ifdef ZCL_EZMODE
    {
      zclEZMode_InvokeData_t ezModeData;
      static uint16 clusterIDs[] = { ZCL_CLUSTER_ID_GEN_ON_OFF };   // only bind on the on/off cluster

      // Invoke EZ-Mode
      ezModeData.endpoint = SAMPLESW_ENDPOINT; // endpoint on which to invoke EZ-Mode
      if ( (zclSampleSw_NwkState == DEV_ZB_COORD) ||
               (zclSampleSw_NwkState == DEV_ROUTER)   ||
               (zclSampleSw_NwkState == DEV_END_DEVICE) )
      {
        ezModeData.onNetwork = TRUE;      // node is already on the network
      }
      else
      {
        ezModeData.onNetwork = FALSE;     // node is not yet on the network
      }
      ezModeData.initiator = TRUE;        // OnOffSwitch is an initiator
      ezModeData.numActiveOutClusters = 1;   // active output cluster
      ezModeData.pActiveOutClusterIDs = clusterIDs;
      ezModeData.numActiveInClusters = 0;  // no active input clusters
      ezModeData.pActiveInClusterIDs = NULL;
      zcl_InvokeEZMode( &ezModeData );

 #ifdef LCD_SUPPORTED
      HalLcdWriteString( "EZMode", HAL_LCD_LINE_2 );
 #endif
    }

#else // NOT ZCL_EZMODE
    // bind to remote light
    zAddrType_t dstAddr;
    HalLedSet ( HAL_LED_4, HAL_LED_MODE_OFF );

    // Initiate an End Device Bind Request, this bind request will
    // only use a cluster list that is important to binding.
    dstAddr.addrMode = afAddr16Bit;
    dstAddr.addr.shortAddr = 0;   // Coordinator makes the match
    ZDP_EndDeviceBindReq( &dstAddr, NLME_GetShortAddr(),
                           SAMPLESW_ENDPOINT,
                           ZCL_HA_PROFILE_ID,
                           0, NULL,   // No incoming clusters to bind
                           ZCLSAMPLESW_BINDINGLIST, bindingOutClusters,
                           TRUE );
#endif // ZCL_EZMODE
  }

  // toggle permit join
  if ( keys & HAL_KEY_SW_4 )
  {
    giSwScreenMode = SW_MAINMODE;   // remove help screen if there

    if ( ( zclSampleSw_NwkState == DEV_ZB_COORD ) ||
         ( zclSampleSw_NwkState == DEV_ROUTER ) )
    {
      zAddrType_t tmpAddr;

      tmpAddr.addrMode = Addr16Bit;
      tmpAddr.addr.shortAddr = NLME_GetShortAddr();

      // toggle permit join
      gPermitDuration = gPermitDuration ? 0 : 0xff;

      // Trust Center significance is always true
      ZDP_MgmtPermitJoinReq( &tmpAddr, gPermitDuration, TRUE, FALSE );
    }
  }

  if ( shift && ( keys & HAL_KEY_SW_5 ) )
  {
    zclSampleSw_BasicResetCB();
  }
  else if ( keys & HAL_KEY_SW_5 )
  {
    giSwScreenMode = giSwScreenMode ? SW_MAINMODE : SW_HELPMODE;
#ifdef LCD_SUPPORTED
    HalLcdWriteString( (char *)sClearLine, HAL_LCD_LINE_2 );
#endif
  }

  // update the display
  zclSampleSw_LcdDisplayUpdate();
}
示例#10
0
/*********************************************************************
 * @fn      MT_ZdoCommandProcessing
 *
 * @brief
 *
 *   Process all the ZDO commands that are issued by test tool
 *
 * @param   cmd_id - Command ID
 * @param   len    - Length of received SPI data message
 * @param   pData  - pointer to received SPI data message
 *
 * @return  void
 */
void MT_ZdoCommandProcessing( uint16 cmd_id , byte len , byte *pData )
{
  byte i;
  byte x;
  byte ret;
  byte attr;
  byte attr1;
  uint16 cID;
  uint16 shortAddr;
  uint16 uAttr;
  byte *ptr;
  byte *ptr1;
  zAddrType_t devAddr;
  zAddrType_t dstAddr;
  byte respLen;
#if defined ( ZDO_MGMT_NWKDISC_REQUEST )
  uint32 scanChans;
#endif
#if defined ( ZDO_USERDESCSET_REQUEST )
  UserDescriptorFormat_t userDesc;
#endif

  ret = UNSUPPORTED_COMMAND;
  len = SPI_0DATA_MSG_LEN + SPI_RESP_LEN_ZDO_DEFAULT;
  respLen = SPI_RESP_LEN_ZDO_DEFAULT;

  switch (cmd_id)
  {
    case SPI_CMD_ZDO_AUTO_ENDDEVICEBIND_REQ:
      i = *pData;    // Get the endpoint/interface
      ZDApp_SendEndDeviceBindReq( i );

      //Since function type is void, report a succesful operation to the test tool
      ret = ZSUCCESS;
      break;

    case SPI_CMD_ZDO_AUTO_FIND_DESTINATION_REQ:
      i = *pData;    // Get the endpoint/interface
      ZDApp_AutoFindDestination( i );
      //Since function type is void, report a succesful operation to the test tool
      ret = ZSUCCESS;
      break;

#if defined ( ZDO_NWKADDR_REQUEST )
    case SPI_CMD_ZDO_NWK_ADDR_REQ:
      // Copy and flip incoming 64-bit address
      pData = zdo_MT_MakeExtAddr( &devAddr, pData );

      ptr = (byte*)&devAddr.addr.extAddr;

      attr = *pData++;   // RequestType
      attr1 = *pData++;  // StartIndex
      x = *pData;
      ret = (byte)ZDP_NwkAddrReq( ptr, attr, attr1, x );
      break;
#endif

#if defined ( ZDO_IEEEADDR_REQUEST )
    case SPI_CMD_ZDO_IEEE_ADDR_REQ:
      shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += sizeof( shortAddr );
      attr = *pData++;   // RequestType
      attr1 = *pData++;  // StartIndex
      x = *pData;        // SecuritySuite
      ret = (byte)ZDP_IEEEAddrReq( shortAddr, attr, attr1, x );
      break;
#endif

#if defined ( ZDO_NODEDESC_REQUEST )
    case SPI_CMD_ZDO_NODE_DESC_REQ:
      // destination address
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      // Network address of interest
      shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      attr = *pData;
      ret = (byte)ZDP_NodeDescReq( &devAddr, shortAddr, attr );
      break;
#endif

#if defined ( ZDO_POWERDESC_REQUEST )
    case SPI_CMD_ZDO_POWER_DESC_REQ:
      // destination address
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      // Network address of interest
      shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      attr = *pData;
      ret = (byte)ZDP_PowerDescReq( &devAddr, shortAddr, attr );
      break;
#endif

#if defined ( ZDO_SIMPLEDESC_REQUEST )
    case SPI_CMD_ZDO_SIMPLE_DESC_REQ:
      // destination address
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      // Network address of interest
      shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      attr = *pData++;  // endpoint/interface
      attr1 = *pData;   // SecuritySuite
      ret = (byte)ZDP_SimpleDescReq( &devAddr, shortAddr, attr, attr1 );
      break;
#endif

#if defined ( ZDO_ACTIVEEP_REQUEST )
    case SPI_CMD_ZDO_ACTIVE_EPINT_REQ:
      // destination address
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      // Network address of interest
      shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      attr = *pData;  // SecuritySuite
      ret = (byte)ZDP_ActiveEPReq( &devAddr, shortAddr, attr );
      break;
#endif

#if defined ( ZDO_MATCH_REQUEST )
    case SPI_CMD_ZDO_MATCH_DESC_REQ:
      {
        uint16 inC[16], outC[16];

        // destination address
        devAddr.addrMode = Addr16Bit;
        devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
        pData += 2;

        // Network address of interest
        shortAddr = BUILD_UINT16( pData[1], pData[0] );
        pData += 2;

        uAttr = BUILD_UINT16( pData[1], pData[0] );   // Profile ID
        pData += 2;

        attr = *pData++;   // NumInClusters
        for (i=0; i<16; ++i)  {
          inC[i] = BUILD_UINT16(pData[1], pData[0]);
          pData += 2;
        }

        attr1 = *pData++;  // NumOutClusters
        for (i=0; i<16; ++i)  {
          outC[i] = BUILD_UINT16(pData[1], pData[0]);
          pData += 2;
        }

        i = *pData;        // SecuritySuite

        ret = (byte)ZDP_MatchDescReq( &devAddr, shortAddr, uAttr,
                                  attr, inC, attr1, outC, i );
      }
      break;
#endif

#if defined ( ZDO_COMPLEXDESC_REQUEST )
    case SPI_CMD_ZDO_COMPLEX_DESC_REQ:
      // destination address
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      // Network address of interest
      shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      attr = *pData;  // SecuritySuite
      ret = (byte)ZDP_ComplexDescReq( &devAddr, shortAddr, attr );
      break;
#endif

#if defined ( ZDO_USERDESC_REQUEST )
    case SPI_CMD_ZDO_USER_DESC_REQ:
      // destination address
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      // Network address of interest
      shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      attr = *pData;  // SecuritySuite
      ret = (byte)ZDP_UserDescReq( &devAddr, shortAddr, attr );
      break;
#endif

#if defined ( ZDO_ENDDEVICEBIND_REQUEST )
    case SPI_CMD_ZDO_END_DEV_BIND_REQ:
      //TODO: When ZTool supports 16 bits the code below will need to take it into account
      {
        uint16 inC[16], outC[16];

        // destination address
        devAddr.addrMode = Addr16Bit;
        devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
        pData += 2;

        // Network address of interest
        shortAddr = BUILD_UINT16( pData[1], pData[0] );
        pData += 2;

        x = *pData++;      // EPInt

        uAttr = BUILD_UINT16( pData[1], pData[0] );   // Profile ID
        pData += 2;

        attr = *pData++;   // NumInClusters
        for (i=0; i<16; ++i)  {
          inC[i] = BUILD_UINT16(pData[1], pData[0]);
          pData += 2;
        }

        attr1 = *pData++;  // NumOutClusters
        for (i=0; i<16; ++i)  {
          outC[i] = BUILD_UINT16(pData[1], pData[0]);
          pData += 2;
        }

        i = *pData;        // SecuritySuite

        ret = (byte)ZDP_EndDeviceBindReq( &devAddr, shortAddr, x, uAttr,
                                attr, inC, attr1, outC, i );
      }
      break;
#endif

#if defined ( ZDO_BIND_UNBIND_REQUEST )
    case SPI_CMD_ZDO_BIND_REQ:
      // destination address
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      MT_ReverseBytes( pData, Z_EXTADDR_LEN );
      ptr = pData;       // SrcAddress
      pData += Z_EXTADDR_LEN;

      attr = *pData++;   // SrcEPInt

      cID = BUILD_UINT16( pData[1], pData[0]);      // ClusterID
      pData += 2;
      
      dstAddr.addrMode = *pData++;
      if ( NLME_GetProtocolVersion() == ZB_PROT_V1_0 )
        dstAddr.addrMode = Addr64Bit;
      
      MT_ReverseBytes( pData, Z_EXTADDR_LEN );
      if ( dstAddr.addrMode == Addr64Bit )
      {
        ptr1 = pData;      // DstAddress
        osal_cpyExtAddr( dstAddr.addr.extAddr, ptr1 );
      }
      else
      {
        dstAddr.addr.shortAddr = BUILD_UINT16( pData[0], pData[1] ); 
      }
      
      // The short address occupies lsb two bytes
      pData += Z_EXTADDR_LEN;

      
      attr1 = *pData++;  // DstEPInt

      x = *pData;        // SecuritySuite
     
#if defined ( REFLECTOR )
      if ( devAddr.addr.shortAddr == _NIB.nwkDevAddress )
      {
	ZDApp_BindReqCB( 0, &devAddr, ptr, attr, cID, &dstAddr, attr1, x );
        ret = ZSuccess;
      }
      else
#endif
      ret = (byte)ZDP_BindReq( &devAddr, ptr, attr, cID, &dstAddr, attr1, x );
      break;
#endif

#if defined ( ZDO_BIND_UNBIND_REQUEST )
    case SPI_CMD_ZDO_UNBIND_REQ:
      // destination address
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      MT_ReverseBytes( pData, Z_EXTADDR_LEN );
      ptr = pData;       // SrcAddress
      pData += Z_EXTADDR_LEN;

      attr = *pData++;   // SrcEPInt

      cID = BUILD_UINT16( pData[1], pData[0]);      // ClusterID
      pData += 2;

      dstAddr.addrMode = *pData++;
      if ( NLME_GetProtocolVersion() == ZB_PROT_V1_0 )
        dstAddr.addrMode = Addr64Bit;
      MT_ReverseBytes( pData, Z_EXTADDR_LEN );
      if ( dstAddr.addrMode == Addr64Bit )
      {
        ptr1 = pData;      // DstAddress
        osal_cpyExtAddr( dstAddr.addr.extAddr, ptr1 );
      }
      else
      {
        dstAddr.addr.shortAddr = BUILD_UINT16( pData[0], pData[1] ); 
      }      
      pData += Z_EXTADDR_LEN;

      attr1 = *pData++;  // DstEPInt

      x = *pData;        // SecuritySuite

#if defined ( REFLECTOR )
      if ( devAddr.addr.shortAddr == _NIB.nwkDevAddress )
      {
        ZDApp_UnbindReqCB( 0, &devAddr, ptr, attr, cID, &dstAddr, attr1, x );
        ret = ZSuccess;
      }
      else
#endif
      {
        ret = (byte)ZDP_UnbindReq( &devAddr, ptr, attr, cID, &dstAddr, attr1, x );
      }
      break;
#endif

#if defined ( ZDO_MGMT_NWKDISC_REQUEST )
    case SPI_CMD_ZDO_MGMT_NWKDISC_REQ:
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;
      scanChans = BUILD_UINT32( pData[3], pData[2], pData[1], pData[0] );
      ret = (byte)ZDP_MgmtNwkDiscReq( &devAddr, scanChans, pData[4], pData[5], false );
      break;
#endif

#if defined ( ZDO_MGMT_LQI_REQUEST )
    case SPI_CMD_ZDO_MGMT_LQI_REQ:
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      ret = (byte)ZDP_MgmtLqiReq( &devAddr, pData[2], false );
      break;
#endif

#if defined ( ZDO_MGMT_RTG_REQUEST )
    case SPI_CMD_ZDO_MGMT_RTG_REQ:
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      ret = (byte)ZDP_MgmtRtgReq( &devAddr, pData[2], false );
      break;
#endif

#if defined ( ZDO_MGMT_BIND_REQUEST )
    case SPI_CMD_ZDO_MGMT_BIND_REQ:
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      ret = (byte)ZDP_MgmtBindReq( &devAddr, pData[2], false );
      break;
#endif

#if defined ( ZDO_MGMT_JOINDIRECT_REQUEST )
    case SPI_CMD_ZDO_MGMT_DIRECT_JOIN_REQ:
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      MT_ReverseBytes( &pData[2], Z_EXTADDR_LEN );
      ret = (byte)ZDP_MgmtDirectJoinReq( &devAddr,
                               &pData[2],
                               pData[2 + Z_EXTADDR_LEN],
                               false );
      break;
#endif

#if defined ( ZDO_MGMT_LEAVE_REQUEST )
    case SPI_CMD_ZDO_MGMT_LEAVE_REQ:
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      MT_ReverseBytes( &pData[2], Z_EXTADDR_LEN );
      ret = (byte)ZDP_MgmtLeaveReq( &devAddr, &pData[2], false );
      break;
#endif

#if defined ( ZDO_MGMT_PERMIT_JOIN_REQUEST )
    case SPI_CMD_ZDO_MGMT_PERMIT_JOIN_REQ:
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      ret = (byte)ZDP_MgmtPermitJoinReq( &devAddr, pData[2], pData[3], false );
      break;
#endif


#if defined ( ZDO_USERDESCSET_REQUEST )
    case SPI_CMD_ZDO_USER_DESC_SET:
      // destination address
      devAddr.addrMode = Addr16Bit;
      devAddr.addr.shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      // Network address of interest
      shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      // User descriptor
      userDesc.len = *pData++;
      osal_memcpy( userDesc.desc, pData, userDesc.len );
      pData += 16;  // len of user desc

      ret =(byte)ZDP_UserDescSet( &devAddr, shortAddr, &userDesc, pData[0] );
      break;
#endif

#if defined ( ZDO_ENDDEVICE_ANNCE_REQUEST )
    case SPI_CMD_ZDO_END_DEV_ANNCE:
      // network address
      shortAddr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;

      // extended address
      ptr = pData;
      MT_ReverseBytes( ptr, Z_EXTADDR_LEN );
      pData += Z_EXTADDR_LEN;

      // security
      attr = *pData++;

      ret = (byte)ZDP_EndDeviceAnnce( shortAddr, ptr, *pData, attr );
      break;
#endif

#if defined (ZDO_SERVERDISC_REQUEST )
    case SPI_CMD_ZDO_SERVERDISC_REQ:
      
      // Service Mask
      uAttr = BUILD_UINT16( pData[1], pData[0] );
      pData += 2;
      attr = *pData++; // Security suite
      
      ret = (byte) ZDP_ServerDiscReq( uAttr, attr );
      break;
#endif
      
#if defined (ZDO_NETWORKSTART_REQUEST )
    case SPI_CMD_ZDO_NETWORK_START_REQ:
      ret = ZDApp_StartUpFromApp( ZDAPP_STARTUP_AUTO );
      break;
    
#endif
    
    default:
      break;
  }

  MT_SendSPIRespMsg( ret, cmd_id, len, respLen );
}