/*---------------------------------------------------------------------------*/ zrtp_status_t zrtp_signaling_hash_get( zrtp_stream_t* stream, char *hash_buff, uint32_t hash_buff_length) { zrtp_string32_t hash_str = ZSTR_INIT_EMPTY(hash_str); zrtp_hash_t *hash = NULL; if (!stream || !hash_buff) { return zrtp_status_bad_param; } if (ZRTP_SIGN_ZRTP_HASH_LENGTH > hash_buff_length) { return zrtp_status_buffer_size; } if (stream->state < ZRTP_STATE_ACTIVE) { return zrtp_status_wrong_state; } hash = zrtp_comp_find(ZRTP_CC_HASH, ZRTP_HASH_SHA256, stream->zrtp); hash->hash_c( hash, (const char*)&stream->messages.hello.hdr, zrtp_ntoh16(stream->messages.hello.hdr.length) * 4, ZSTR_GV(hash_str) ); hex2str(hash_str.buffer, ZRTP_MESSAGE_HASH_SIZE, hash_buff, hash_buff_length); return zrtp_status_ok; }
static int verify_sas(struct re_printf *pf, void *arg) { const struct cmd_arg *carg = arg; (void)pf; if (str_isset(carg->prm)) { char rzid[ZRTP_STRING16] = ""; zrtp_status_t s; zrtp_string16_t remote_zid = ZSTR_INIT_EMPTY(remote_zid); if (str_len(carg->prm) != 24) { warning("zrtp: invalid remote ZID (%s)\n", carg->prm); return EINVAL; } (void) str2hex(carg->prm, (int) str_len(carg->prm), rzid, sizeof(rzid)); zrtp_zstrncpyc(ZSTR_GV(remote_zid), (const char*)rzid, sizeof(zrtp_zid_t)); s = zrtp_cache_set_verified(zrtp_global->cache, ZSTR_GV(remote_zid), true); if (s == zrtp_status_ok) info("zrtp: SAS for peer %s verified\n", carg->prm); else { warning("zrtp: zrtp_cache_set_verified" " failed (status = %d)\n", s); return EINVAL; } } return 0; }
/*----------------------------------------------------------------------------*/ static zrtp_status_t _create_sasrelay( zrtp_stream_t *stream, zrtp_sas_id_t transf_sas_scheme, zrtp_string32_t* transf_sas_value, uint8_t transf_ac_flag, uint8_t transf_d_flag, zrtp_packet_SASRelay_t* sasrelay ) { zrtp_session_t *session = stream->session; zrtp_status_t s = zrtp_status_fail; void* cipher_ctx = NULL; /* (padding + sig_len + flags) + SAS scheme and SASHash */ const uint8_t encrypted_body_size = (2 + 1 + 1) + 4 + 32; zrtp_memset(sasrelay, 0, sizeof(zrtp_packet_SASRelay_t)); /* generate a random initialization vector for CFB cipher */ if (ZRTP_CFBIV_SIZE != zrtp_randstr(session->zrtp, sasrelay->iv, ZRTP_CFBIV_SIZE)) { return zrtp_status_rp_fail; } sasrelay->flags |= (session->profile.disclose_bit || transf_d_flag) ? 0x01 : 0x00; sasrelay->flags |= (session->profile.allowclear && transf_ac_flag) ? 0x02 : 0x00; sasrelay->flags |= 0x04; zrtp_memcpy( sasrelay->sas_scheme, zrtp_comp_id2type(ZRTP_CC_SAS, transf_sas_scheme), ZRTP_COMP_TYPE_SIZE ); if (transf_sas_value) zrtp_memcpy(sasrelay->sashash, transf_sas_value->buffer, transf_sas_value->length); /* Then we need to encrypt Confirm before computing Hmac. Use AES CFB */ do { cipher_ctx = session->blockcipher->start( session->blockcipher, (uint8_t*)stream->cc.zrtp_key.buffer, NULL, ZRTP_CIPHER_MODE_CFB ); if (!cipher_ctx) { break; } s = session->blockcipher->set_iv( session->blockcipher, cipher_ctx, (zrtp_v128_t*)sasrelay->iv); if (zrtp_status_ok != s) { break; } s = session->blockcipher->encrypt( session->blockcipher, cipher_ctx, (uint8_t*)&sasrelay->pad, encrypted_body_size ); } while(0); if (cipher_ctx) { session->blockcipher->stop(session->blockcipher, cipher_ctx); } if (zrtp_status_ok != s) { ZRTP_LOG(1,(_ZTU_,"\tERROR! Failed to encrypt SASRELAY Message status=%d. ID=%u\n", s, stream->id)); return s; } /* Compute Hmac over encrypted part of Confirm */ { zrtp_string128_t hmac = ZSTR_INIT_EMPTY(hmac); s = session->hash->hmac_c( session->hash, stream->cc.hmackey.buffer, stream->cc.hmackey.length, (const char*)&sasrelay->pad, encrypted_body_size, ZSTR_GV(hmac) ); if (zrtp_status_ok != s) { ZRTP_LOG(1,(_ZTU_,"\tERROR! Failed to compute CONFIRM hmac status=%d. ID=%u\n", s, stream->id)); return s; } zrtp_memcpy(sasrelay->hmac, hmac.buffer, ZRTP_HMAC_SIZE); } return s; }
/*---------------------------------------------------------------------------*/ zrtp_status_t zrtp_register_with_trusted_mitm(zrtp_stream_t* stream) { zrtp_session_t *session = stream->session; zrtp_status_t s = zrtp_status_bad_param; if (!stream) { return zrtp_status_bad_param; } ZRTP_LOG(3,(_ZTU_,"MARKING this call as REGISTRATION ID=%u\n", stream->id)); if (NULL == stream->zrtp->cb.cache_cb.on_get_mitm) { ZRTP_LOG(2,(_ZTU_,"WARNING: Can't use MiTM Functions with no ZRTP Cache.\n")); return zrtp_status_notavailable; } if (!stream->protocol) { return zrtp_status_bad_param; } /* Passive Client endpoint should NOT generate PBX Secret. */ if ((stream->mitm_mode == ZRTP_MITM_MODE_REG_CLIENT) && (ZRTP_LICENSE_MODE_PASSIVE == stream->zrtp->lic_mode)) { ZRTP_LOG(2,(_ZTU_,"WARNING: Passive Client endpoint should NOT generate PBX Secret.\n")); return zrtp_status_bad_param; } /* * Generate new MitM cache: * pbxsecret = KDF(ZRTPSess, "Trusted MiTM key", (ZIDi | ZIDr), negotiated hash length) */ if ( (stream->state == ZRTP_STATE_SECURE) && ((stream->mitm_mode == ZRTP_MITM_MODE_REG_CLIENT) || (stream->mitm_mode == ZRTP_MITM_MODE_REG_SERVER)) ) { zrtp_string32_t kdf_context = ZSTR_INIT_EMPTY(kdf_context); static const zrtp_string32_t trusted_mitm_key_label = ZSTR_INIT_WITH_CONST_CSTRING(ZRTP_TRUSTMITMKEY_STR); zrtp_string16_t *zidi, *zidr; if (stream->protocol->type == ZRTP_STATEMACHINE_INITIATOR) { zidi = &session->zid; zidr = &session->peer_zid; } else { zidi = &session->peer_zid; zidr = &session->zid; } zrtp_zstrcat(ZSTR_GV(kdf_context), ZSTR_GVP(zidi)); zrtp_zstrcat(ZSTR_GV(kdf_context), ZSTR_GVP(zidr)); _zrtp_kdf( stream, ZSTR_GV(session->zrtpsess), ZSTR_GV(trusted_mitm_key_label), ZSTR_GV(kdf_context), ZRTP_HASH_SIZE, ZSTR_GV(session->secrets.pbxs->value)); session->secrets.pbxs->_cachedflag = 1; session->secrets.pbxs->lastused_at = (uint32_t)(zrtp_time_now()/1000); session->secrets.cached |= ZRTP_BIT_PBX; session->secrets.matches |= ZRTP_BIT_PBX; s = zrtp_status_ok; if (session->zrtp->cb.cache_cb.on_put_mitm) { s = session->zrtp->cb.cache_cb.on_put_mitm( ZSTR_GV(session->zid), ZSTR_GV(session->peer_zid), session->secrets.pbxs); } ZRTP_LOG(3,(_ZTU_,"Makring this call as REGISTRATION - DONE\n")); } return s; }
/*----------------------------------------------------------------------------*/ zrtp_status_t _zrtp_machine_process_sasrelay(zrtp_stream_t *stream, zrtp_rtp_info_t *packet) { zrtp_session_t *session = stream->session; zrtp_packet_SASRelay_t *sasrelay = (zrtp_packet_SASRelay_t*) packet->message; void* cipher_ctx = NULL; zrtp_sas_id_t rendering_id = ZRTP_COMP_UNKN; zrtp_status_t s = zrtp_status_fail; zrtp_string128_t hmac = ZSTR_INIT_EMPTY(hmac); char zerosashash[32]; unsigned sas_scheme_did_change = 0; unsigned sas_hash_did_change = 0; /* (padding + sig_len + flags) + SAS scheme and SAS hash */ const uint8_t encrypted_body_size = (2 + 1 + 1) + 4 + 32; zrtp_memset(zerosashash, 0, sizeof(zerosashash)); /* Check if the remote endpoint is assigned to relay the SAS values */ if (!stream->peer_mitm_flag) { ZRTP_LOG(2,(_ZTU_, ZRTP_RELAYED_SAS_FROM_NONMITM_STR)); return zrtp_status_fail; } /* Check the HMAC */ s = session->hash->hmac_c( session->hash, stream->cc.peer_hmackey.buffer, stream->cc.peer_hmackey.length, (const char*)&sasrelay->pad, encrypted_body_size, ZSTR_GV(hmac) ); if (zrtp_status_ok != s ) { ZRTP_LOG(1,(_ZTU_,"\tERROR! Failed to compute CONFIRM hmac. status=%d ID=%u\n", s, stream->id)); return zrtp_status_fail; } if (0 != zrtp_memcmp(sasrelay->hmac, hmac.buffer, ZRTP_HMAC_SIZE)) { ZRTP_LOG(2,(_ZTU_, ZRTP_VERIFIED_RESP_WARNING_STR)); return zrtp_status_fail; } ZRTP_LOG(3,(_ZTU_, "\tHMAC value for the SASRELAY is correct - decrypting...\n")); /* Then we need to decrypt Confirm body */ do { cipher_ctx = session->blockcipher->start( session->blockcipher, (uint8_t*)stream->cc.peer_zrtp_key.buffer, NULL, ZRTP_CIPHER_MODE_CFB ); if (!cipher_ctx) { break; } s = session->blockcipher->set_iv(session->blockcipher, cipher_ctx, (zrtp_v128_t*)sasrelay->iv); if (zrtp_status_ok != s) { break; } s = session->blockcipher->encrypt( session->blockcipher, cipher_ctx, (uint8_t*)&sasrelay->pad, encrypted_body_size); } while(0); if (cipher_ctx) { session->blockcipher->stop(session->blockcipher, cipher_ctx); } if (zrtp_status_ok != s) { ZRTP_LOG(1,(_ZTU_,"\tERROR! Failed to decrypt Confirm. status=%d ID=%u\n", s, stream->id)); return s; } ZRTP_LOG(2,(_ZTU_,"\tSasRelay FLAGS old/new A=%d/%d, D=%d/%d.\n", stream->allowclear, (uint8_t)(sasrelay->flags & 0x02), stream->peer_disclose_bit, (uint8_t)(sasrelay->flags & 0x01))); /* Set evil bit if other-side disclosed session key */ stream->peer_disclose_bit = (sasrelay->flags & 0x01); /* Enable ALLOWCLEAR option only if both sides support it */ stream->allowclear = (sasrelay->flags & 0x02) && session->profile.allowclear; /* * We don't handle verified flag in SASRelaying because it makes no * sense in implementation of the ZRTP Internet Draft. */ /* * Only enrolled users can do SAS transferring. (Non-enrolled users can * only change the SAS rendering scheme). */ rendering_id = zrtp_comp_type2id(ZRTP_CC_SAS, (char*)sasrelay->sas_scheme); if (-1 == zrtp_profile_find(&session->profile, ZRTP_CC_SAS, rendering_id)) { ZRTP_LOG(1,(_ZTU_,"\tERROR! PBX Confirm packet with transferred SAS have unknown or" " unsupported rendering scheme %.4s.ID=%u\n", sasrelay->sas_scheme, stream->id)); _zrtp_machine_enter_initiatingerror(stream, zrtp_error_invalid_packet, 1); return zrtp_status_fail; } /* Check is SAS rendering did change */ if (rendering_id != session->sasscheme->base.id) { session->sasscheme = zrtp_comp_find(ZRTP_CC_SAS, rendering_id, session->zrtp ); sas_scheme_did_change = 1; ZRTP_LOG(3,(_ZTU_,"\tSasrelay: Rendering scheme was updated to %.4s.\n", session->sasscheme->base.type)); } if (session->secrets.matches & ZRTP_BIT_PBX) { if ( ( ((uint32_t) *sasrelay->sas_scheme) != (uint32_t)0x0L ) && (0 != zrtp_memcmp(sasrelay->sashash, zerosashash, sizeof(sasrelay->sashash))) ) { char buff[256]; session->sasbin.length = ZRTP_MITM_SAS_SIZE; /* First 32 bits if sashash includes sasvalue */ zrtp_memcpy(session->sasbin.buffer, sasrelay->sashash, session->sasbin.length); stream->mitm_mode = ZRTP_MITM_MODE_RECONFIRM_CLIENT; sas_hash_did_change = 1; ZRTP_LOG(3,(_ZTU_,"\tSasRelay: SAS value was updated to bin=%s.\n", hex2str(buff, sizeof(buff), session->sasbin.buffer, session->sasbin.length))); } } else if (0 != zrtp_memcmp(sasrelay->sashash, zerosashash, sizeof(sasrelay->sashash))) { ZRTP_LOG(1,(_ZTU_,"\tWARNING! SAS Value was received from NOT Trusted MiTM. ID=%u\n", stream->id)); _zrtp_machine_enter_initiatingerror(stream, zrtp_error_possible_mitm3, 1); return zrtp_status_fail; } else { ZRTP_LOG(1,(_ZTU_, "\rERROR! For SasRelay Other secret doesn't match. ID=%u\n", stream->id)); } /* Generate new SAS if hash or rendering scheme did change. * Note: latest libzrtp may send "empty" SasRelay with the same SAS rendering * scheme and empty Hello hash for consistency reasons, we should ignore * such packets. */ if (sas_scheme_did_change || sas_hash_did_change) { s = session->sasscheme->compute(session->sasscheme, stream, session->hash, 1); if (zrtp_status_ok != s) { _zrtp_machine_enter_initiatingerror(stream, zrtp_error_software, 1); return s; } ZRTP_LOG(3,(_ZTU_,"\tSasRelay: Updated SAS is <%s> <%s>.\n", session->sas1.buffer, session->sas2.buffer)); if (session->zrtp->cb.event_cb.on_zrtp_protocol_event) { session->zrtp->cb.event_cb.on_zrtp_protocol_event(stream, ZRTP_EVENT_LOCAL_SAS_UPDATED); } } return zrtp_status_ok; }
/*----------------------------------------------------------------------------*/ zrtp_status_t zrtp_stream_attach(zrtp_session_t *session, zrtp_stream_t** stream) { uint32_t i = 0; zrtp_status_t s = zrtp_status_fail; zrtp_stream_t* new_stream = NULL; ZRTP_LOG(3, (_ZTU_,"ATTACH NEW STREAM to sID=%d:\n", session->id)); /* * Initialize first unused stream. If there are no available streams return error. */ zrtp_mutex_lock(session->streams_protector); for (i=0; i<ZRTP_MAX_STREAMS_PER_SESSION; i++) { if (ZRTP_STATE_NONE == session->streams[i].state) { new_stream = &session->streams[i]; zrtp_memset(new_stream, 0, sizeof(zrtp_stream_t)); break; } } zrtp_mutex_unlock(session->streams_protector); if (!new_stream) { ZRTP_LOG(1, (_ZTU_,"\tWARNING! Can't attach one more stream. Limit is reached." " Use #ZRTP_MAX_STREAMS_PER_SESSION. sID=%u\n", session->id)); return zrtp_status_alloc_fail; } /* * Initialize the private data stream with default initial values */ zrtp_mutex_init(&new_stream->stream_protector); _zrtp_change_state(new_stream, ZRTP_STATE_ACTIVE); new_stream->mode = ZRTP_STREAM_MODE_CLEAR; new_stream->id = session->zrtp->streams_count++; new_stream->session = session; new_stream->zrtp = session->zrtp; new_stream->mitm_mode = ZRTP_MITM_MODE_UNKN; new_stream->is_hello_received = 0; ZSTR_SET_EMPTY(new_stream->cc.hmackey); ZSTR_SET_EMPTY(new_stream->cc.peer_hmackey); ZSTR_SET_EMPTY(new_stream->cc.zrtp_key); ZSTR_SET_EMPTY(new_stream->cc.peer_zrtp_key); new_stream->dh_cc.initialized_with = ZRTP_COMP_UNKN; bnBegin(&new_stream->dh_cc.peer_pv); ZSTR_SET_EMPTY(new_stream->dh_cc.dhss); ZRTP_LOG(3, (_ZTU_,"\tEmpty slot was found - initializing new stream with ID=%u.\n", new_stream->id)); do { zrtp_string32_t hash_buff = ZSTR_INIT_EMPTY(hash_buff); zrtp_hash_t *hash = zrtp_comp_find(ZRTP_CC_HASH, ZRTP_HASH_SHA256, new_stream->zrtp); s = zrtp_status_algo_fail; if (sizeof(uint16_t) != zrtp_randstr( new_stream->zrtp, (uint8_t*)&new_stream->media_ctx.high_out_zrtp_seq, sizeof(uint16_t))) { break; } /* * Compute and store message hashes to prevent DoS attacks. * Generate H0 as a random nonce and compute H1, H2 and H3 * using the leftmost 128 bits from every hash. * Then insert these directly into the message structures. */ zrtp_memset(&new_stream->messages, 0, sizeof(new_stream->messages)); ZSTR_SET_EMPTY(new_stream->messages.h0); ZSTR_SET_EMPTY(new_stream->messages.signaling_hash); /* Generate Random nonce, compute H1 and store in the DH packet */ new_stream->messages.h0.length = (uint16_t)zrtp_randstr( new_stream->zrtp, (unsigned char*)new_stream->messages.h0.buffer, ZRTP_MESSAGE_HASH_SIZE); if (ZRTP_MESSAGE_HASH_SIZE != new_stream->messages.h0.length) { break; } s = hash->hash(hash, ZSTR_GV(new_stream->messages.h0), ZSTR_GV(hash_buff)); if (zrtp_status_ok != s) { break; } zrtp_memcpy(new_stream->messages.dhpart.hash, hash_buff.buffer, ZRTP_MESSAGE_HASH_SIZE); /* Compute H2 for the Commit */ s = hash->hash_c(hash, (char*)new_stream->messages.dhpart.hash, ZRTP_MESSAGE_HASH_SIZE, ZSTR_GV(hash_buff)); if (zrtp_status_ok != s) { break; } zrtp_memcpy(new_stream->messages.commit.hash, hash_buff.buffer, ZRTP_MESSAGE_HASH_SIZE); /* Compute H3 for the Hello message */ s = hash->hash_c(hash, (char*)new_stream->messages.commit.hash, ZRTP_MESSAGE_HASH_SIZE, ZSTR_GV(hash_buff)); if (zrtp_status_ok != s) { break; } zrtp_memcpy(new_stream->messages.hello.hash, hash_buff.buffer, ZRTP_MESSAGE_HASH_SIZE); s = zrtp_status_ok; } while (0); if (zrtp_status_ok != s) { ZRTP_LOG(1, (_ZTU_,"\tERROR! Fail to compute messages hashes <%s>.\n", zrtp_log_status2str(s))); return s; } /* * Preparing HELLO based on user's profile */ ZRTP_LOG(3, (_ZTU_,"\tPreparing ZRTP Hello according to the Session profile.\n")); { zrtp_packet_Hello_t* hello = &new_stream->messages.hello; uint8_t i = 0; int8_t* comp_ptr = NULL; /* Set Protocol Version and ClientID */ zrtp_memcpy(hello->version, ZRTP_PROTOCOL_VERSION, ZRTP_VERSION_SIZE); zrtp_memcpy(hello->cliend_id, session->zrtp->client_id.buffer, session->zrtp->client_id.length); /* Set flags. */ hello->pasive = (ZRTP_LICENSE_MODE_PASSIVE == session->zrtp->lic_mode) ? 1 : 0; hello->uflag = (ZRTP_LICENSE_MODE_UNLIMITED == session->zrtp->lic_mode) ? 1 : 0; hello->mitmflag = session->zrtp->is_mitm; hello->sigflag = 0; zrtp_memcpy(hello->zid, session->zid.buffer, session->zid.length); comp_ptr = (int8_t*)hello->comp; i = 0; while ( session->profile.hash_schemes[i]) { zrtp_memcpy( comp_ptr, zrtp_comp_id2type(ZRTP_CC_HASH, session->profile.hash_schemes[i++]), ZRTP_COMP_TYPE_SIZE ); comp_ptr += ZRTP_COMP_TYPE_SIZE; } hello->hc = i; i = 0; while (session->profile.cipher_types[i]) { zrtp_memcpy( comp_ptr, zrtp_comp_id2type(ZRTP_CC_CIPHER, session->profile.cipher_types[i++]), ZRTP_COMP_TYPE_SIZE ); comp_ptr += ZRTP_COMP_TYPE_SIZE; } hello->cc = i; i = 0; while (session->profile.auth_tag_lens[i] ) { zrtp_memcpy( comp_ptr, zrtp_comp_id2type(ZRTP_CC_ATL, session->profile.auth_tag_lens[i++]), ZRTP_COMP_TYPE_SIZE ); comp_ptr += ZRTP_COMP_TYPE_SIZE; } hello->ac = i; i = 0; while (session->profile.pk_schemes[i] ) { zrtp_memcpy( comp_ptr, zrtp_comp_id2type(ZRTP_CC_PKT, session->profile.pk_schemes[i++]), ZRTP_COMP_TYPE_SIZE ); comp_ptr += ZRTP_COMP_TYPE_SIZE; } hello->kc = i; i = 0; while (session->profile.sas_schemes[i]) { zrtp_memcpy( comp_ptr, zrtp_comp_id2type(ZRTP_CC_SAS, session->profile.sas_schemes[i++]), ZRTP_COMP_TYPE_SIZE ); comp_ptr += ZRTP_COMP_TYPE_SIZE; } hello->sc = i; /* * Hmac will appear at the end of the message, after the dynamic portion. * i is the length of the dynamic part. */ i = (hello->hc + hello->cc + hello->ac + hello->kc + hello->sc) * ZRTP_COMP_TYPE_SIZE; _zrtp_packet_fill_msg_hdr( new_stream, ZRTP_HELLO, ZRTP_HELLO_STATIC_SIZE + i + ZRTP_HMAC_SIZE, &hello->hdr); } *stream = new_stream; ZRTP_LOG(3, (_ZTU_,"ATTACH NEW STREAM - DONE.\n")); return zrtp_status_ok; }
/*---------------------------------------------------------------------------*/ static zrtp_status_t _derive_s0(zrtp_stream_t* stream, int is_initiator) { static const zrtp_string32_t zrtp_kdf_label = ZSTR_INIT_WITH_CONST_CSTRING(ZRTP_KDF_STR); static const zrtp_string32_t zrtp_sess_label = ZSTR_INIT_WITH_CONST_CSTRING(ZRTP_SESS_STR); static const zrtp_string32_t zrtp_multi_label = ZSTR_INIT_WITH_CONST_CSTRING(ZRTP_MULTI_STR); static const zrtp_string32_t zrtp_presh_label = ZSTR_INIT_WITH_CONST_CSTRING(ZRTP_PRESH_STR); zrtp_session_t *session = stream->session; zrtp_secrets_t* secrets = &session->secrets; zrtp_proto_crypto_t* cc = stream->protocol->cc; void* hash_ctx = NULL; char print_buff[256]; switch (stream->mode) { /* * S0 computing for FULL DH exchange * S0 computing. s0 is the master shared secret used for all * cryptographic operations. In particular, note the inclusion * of "total_hash", a hash of all packets exchanged up to this * point. This belatedly detects any tampering with earlier * packets, e.g. bid-down attacks. * * s0 = hash( 1 | DHResult | "ZRTP-HMAC-KDF" | ZIDi | ZIDr | * total_hash | len(s1) | s1 | len(s2) | s2 | len(s3) | s3 ) * The constant 1 and all lengths are 32 bits big-endian values. * The fields without length prefixes are fixed-witdh: * - DHresult is fixed to the width of the DH prime. * - The hash type string and ZIDs are fixed width. * - total_hash is fixed by the hash negotiation. * The constant 1 is per NIST SP 800-56A section 5.8.1, and is * a counter which can be incremented to generate more than 256 * bits of key material. * ======================================================================== */ case ZRTP_STREAM_MODE_DH: { zrtp_proto_secret_t *C[3] = { 0, 0, 0}; int i = 0; uint32_t comp_length = 0; zrtp_stringn_t *zidi = NULL, *zidr = NULL; struct BigNum dhresult; #if (defined(ZRTP_USE_STACK_MINIM) && (ZRTP_USE_STACK_MINIM == 1)) zrtp_uchar1024_t* buffer = zrtp_sys_alloc( sizeof(zrtp_uchar1024_t) ); if (!buffer) { return zrtp_status_alloc_fail; } #else zrtp_uchar1024_t holder; zrtp_uchar1024_t* buffer = &holder; #endif ZRTP_LOG(3,(_ZTU_,"\tDERIVE S0 from DH exchange and RS secrets...\n")); ZRTP_LOG(3,(_ZTU_,"\t my rs1ID:%s\n", hex2str(cc->rs1.id.buffer, cc->rs1.id.length, print_buff, sizeof(print_buff)))); ZRTP_LOG(3,(_ZTU_,"\t his rs1ID:%s\n", hex2str((const char*)stream->messages.peer_dhpart.rs1ID, ZRTP_RSID_SIZE, print_buff, sizeof(print_buff)))); ZRTP_LOG(3,(_ZTU_,"\t his rs1ID comp:%s\n", hex2str(cc->rs1.peer_id.buffer, cc->rs1.peer_id.length, print_buff, sizeof(print_buff)))); ZRTP_LOG(3,(_ZTU_,"\t my rs2ID:%s\n", hex2str(cc->rs2.id.buffer, cc->rs2.id.length, print_buff, sizeof(print_buff)))); ZRTP_LOG(3,(_ZTU_,"\t his rs2ID:%s\n", hex2str((const char*)stream->messages.peer_dhpart.rs2ID, ZRTP_RSID_SIZE, print_buff, sizeof(print_buff)))); ZRTP_LOG(3,(_ZTU_,"\t his rs2ID comp:%s\n", hex2str(cc->rs2.peer_id.buffer, cc->rs2.peer_id.length, print_buff, sizeof(print_buff)))); ZRTP_LOG(3,(_ZTU_,"\t my pbxsID:%s\n", hex2str(cc->pbxs.id.buffer, cc->pbxs.id.length, print_buff, sizeof(print_buff)))); ZRTP_LOG(3,(_ZTU_,"\t his pbxsID:%s\n", hex2str((const char*)stream->messages.peer_dhpart.pbxsID, ZRTP_RSID_SIZE, print_buff, sizeof(print_buff)))); ZRTP_LOG(3,(_ZTU_,"\this pbxsID comp:%s\n", hex2str(cc->pbxs.peer_id.buffer, cc->pbxs.peer_id.length, print_buff, sizeof(print_buff)))); hash_ctx = session->hash->hash_begin(session->hash); if (0 == hash_ctx) { ZRTP_LOG(1,(_ZTU_, "\tERROR! can't start hash calculation for S0 computing. ID=%u.\n", stream->id)); return zrtp_status_fail; } /* * NIST requires a 32-bit big-endian integer counter to be included * in the hash each time the hash is computed, which we have set to * the fixed value of 1, because we only compute the hash once. */ comp_length = zrtp_hton32(1L); session->hash->hash_update(session->hash, hash_ctx, (const int8_t*)&comp_length, 4); switch (stream->pubkeyscheme->base.id) { case ZRTP_PKTYPE_DH2048: case ZRTP_PKTYPE_DH3072: case ZRTP_PKTYPE_DH4096: comp_length = stream->pubkeyscheme->pv_length; ZRTP_LOG(3,(_ZTU_,"DH comp_length=%u\n", comp_length)); break; case ZRTP_PKTYPE_EC256P: case ZRTP_PKTYPE_EC384P: case ZRTP_PKTYPE_EC521P: comp_length = stream->pubkeyscheme->pv_length/2; ZRTP_LOG(3,(_ZTU_,"ECDH comp_length=%u\n", comp_length)); break; default: break; } bnBegin(&dhresult); stream->pubkeyscheme->compute(stream->pubkeyscheme, &stream->dh_cc, &dhresult, &stream->dh_cc.peer_pv); bnExtractBigBytes(&dhresult, (uint8_t *)buffer, 0, comp_length); session->hash->hash_update(session->hash, hash_ctx, (const int8_t*)buffer, comp_length); bnEnd(&dhresult); #if (defined(ZRTP_USE_STACK_MINIM) && (ZRTP_USE_STACK_MINIM == 1)) zrtp_sys_free(buffer); #endif /* Add "ZRTP-HMAC-KDF" to the S0 hash */ session->hash->hash_update( session->hash, hash_ctx, (const int8_t*)&zrtp_kdf_label.buffer, zrtp_kdf_label.length); /* Then Initiator's and Responder's ZIDs */ if (stream->protocol->type == ZRTP_STATEMACHINE_INITIATOR) { zidi = ZSTR_GV(stream->session->zrtp->zid); zidr = ZSTR_GV(stream->session->peer_zid); } else { zidr = ZSTR_GV(stream->session->zrtp->zid); zidi = ZSTR_GV(stream->session->peer_zid); } session->hash->hash_update(session->hash, hash_ctx, (const int8_t*)&zidi->buffer, zidi->length); session->hash->hash_update(session->hash, hash_ctx, (const int8_t*)&zidr->buffer, zidr->length); session->hash->hash_update(session->hash, hash_ctx, (const int8_t*)&cc->mes_hash.buffer, cc->mes_hash.length); /* If everything is OK - RS1 should much */ if (!zrtp_memcmp(cc->rs1.peer_id.buffer, stream->messages.peer_dhpart.rs1ID, ZRTP_RSID_SIZE)) { C[0] = &cc->rs1; secrets->matches |= ZRTP_BIT_RS1; } /* If we have lost our RS1 - remote party should use backup (RS2) instead */ else if (!zrtp_memcmp(cc->rs1.peer_id.buffer, stream->messages.peer_dhpart.rs2ID, ZRTP_RSID_SIZE)) { C[0] = &cc->rs1; secrets->matches |= ZRTP_BIT_RS1; ZRTP_LOG(2,(_ZTU_,"\tINFO! We have lost our RS1 from previous broken exchange" " - remote party will use RS2 backup. ID=%u\n", stream->id)); } /* If remote party lost it's secret - we will use backup */ else if (!zrtp_memcmp(cc->rs2.peer_id.buffer, stream->messages.peer_dhpart.rs1ID, ZRTP_RSID_SIZE)) { C[0] = &cc->rs2; cc->rs1 = cc->rs2; secrets->matches |= ZRTP_BIT_RS1; secrets->cached |= ZRTP_BIT_RS1; ZRTP_LOG(2,(_ZTU_,"\tINFO! Remote party has lost it's RS1 - use RS2 backup. ID=%u\n", stream->id)); } else { secrets->matches &= ~ZRTP_BIT_RS1; zrtp_cache_set_verified(session->zrtp->cache, ZSTR_GV(session->peer_zid), 0); zrtp_cache_reset_secure_since(session->zrtp->cache, ZSTR_GV(session->peer_zid)); ZRTP_LOG(2,(_ZTU_,"\tINFO! Our RS1 doesn't equal to other-side's one %s. ID=%u\n", cc->rs1.secret->_cachedflag ? " - drop verified!" : "", stream->id)); } if (!zrtp_memcmp(cc->rs2.peer_id.buffer, stream->messages.peer_dhpart.rs2ID, ZRTP_RSID_SIZE)) { secrets->matches |= ZRTP_BIT_RS2; if (0 == C[0]) { C[0] = &cc->rs2; } } if (secrets->auxs && (!zrtp_memcmp(stream->messages.peer_dhpart.auxsID, cc->auxs.peer_id.buffer, ZRTP_RSID_SIZE)) ) { C[1] =&cc->auxs; secrets->matches |= ZRTP_BIT_AUX; } if ( secrets->pbxs && (!zrtp_memcmp(stream->messages.peer_dhpart.pbxsID, cc->pbxs.peer_id.buffer, ZRTP_RSID_SIZE)) ) { C[2] = &cc->pbxs; secrets->matches |= ZRTP_BIT_PBX; } /* Finally hashing matched shared secrets */ for (i=0; i<3; i++) { /* * Some of the shared secrets s1 through s5 may have lengths of zero * if they are null (not shared), and are each preceded by a 4-octet * length field. For example, if s4 is null, len(s4) is 00 00 00 00, * and s4 itself would be absent from the hash calculation, which * means len(s5) would immediately follow len(s4). */ comp_length = C[i] ? zrtp_hton32(ZRTP_RS_SIZE) : 0; session->hash->hash_update(session->hash, hash_ctx, (const int8_t*)&comp_length, 4); if (C[i]) { session->hash->hash_update( session->hash, hash_ctx, (const int8_t*)C[i]->secret->value.buffer, C[i]->secret->value.length ); ZRTP_LOG(3,(_ZTU_,"\tUse S%d in calculations.\n", i+1)); } } session->hash->hash_end(session->hash, hash_ctx, ZSTR_GV(cc->s0)); } break; /* S0 for for DH and Preshared streams */ /* * Compute all possible combinations of preshared_key: * hash(len(rs1) | rs1 | len(auxsecret) | auxsecret | len(pbxsecret) | pbxsecret) * Find matched preshared_key and derive S0 from it: * s0 = KDF(preshared_key, "ZRTP Stream Key", KDF_Context, negotiated hash length) * * INFO: Take into account that RS1 and RS2 may be swapped. * If no matched were found - generate DH commit. * ======================================================================== */ case ZRTP_STREAM_MODE_PRESHARED: { zrtp_status_t s = zrtp_status_ok; zrtp_string32_t presh_key = ZSTR_INIT_EMPTY(presh_key); ZRTP_LOG(3,(_ZTU_,"\tDERIVE S0 for PRESHARED from cached secret. ID=%u\n", stream->id)); /* Use the same hash as we used for Commitment */ if (is_initiator) { s = _zrtp_compute_preshared_key( session, ZSTR_GV(session->secrets.rs1->value), (session->secrets.auxs->_cachedflag) ? ZSTR_GV(session->secrets.auxs->value) : NULL, (session->secrets.pbxs->_cachedflag) ? ZSTR_GV(session->secrets.pbxs->value) : NULL, ZSTR_GV(presh_key), NULL); if (zrtp_status_ok != s) { return s; } secrets->matches |= ZRTP_BIT_RS1; if (session->secrets.auxs->_cachedflag) { secrets->matches |= ZRTP_BIT_AUX; } if (session->secrets.pbxs->_cachedflag) { secrets->matches |= ZRTP_BIT_PBX; } } /* * Let's find appropriate hv key for Responder: * <RS1, 0, 0>, <RS1, AUX, 0>, <RS1, 0, PBX>, <RS1, AUX, PBX>. */ else { int res=-1; char* peer_key_id = (char*)stream->messages.peer_commit.hv+ZRTP_HV_NONCE_SIZE; zrtp_string8_t key_id = ZSTR_INIT_EMPTY(key_id); do { /* RS1 MUST be available at this stage.*/ s = _zrtp_compute_preshared_key( session, ZSTR_GV(secrets->rs1->value), NULL, NULL, ZSTR_GV(presh_key), ZSTR_GV(key_id)); if (zrtp_status_ok == s) { res = zrtp_memcmp(peer_key_id, key_id.buffer, ZRTP_HV_KEY_SIZE); if (0 == res) { secrets->matches |= ZRTP_BIT_RS1; break; } } if (session->secrets.pbxs->_cachedflag) { s = _zrtp_compute_preshared_key( session, ZSTR_GV(secrets->rs1->value), NULL, ZSTR_GV(secrets->pbxs->value), ZSTR_GV(presh_key), ZSTR_GV(key_id)); if (zrtp_status_ok == s) { res = zrtp_memcmp(peer_key_id, key_id.buffer, ZRTP_HV_KEY_SIZE); if (0 == res) { secrets->matches |= ZRTP_BIT_PBX; break; } } } if (session->secrets.auxs->_cachedflag) { s = _zrtp_compute_preshared_key( session, ZSTR_GV(secrets->rs1->value), ZSTR_GV(secrets->auxs->value), NULL, ZSTR_GV(presh_key), ZSTR_GV(key_id)); if (zrtp_status_ok == s) { res = zrtp_memcmp(peer_key_id, key_id.buffer, ZRTP_HV_KEY_SIZE); if (0 == res) { secrets->matches |= ZRTP_BIT_AUX; break; } } } if ((session->secrets.pbxs->_cachedflag) && (session->secrets.auxs->_cachedflag)) { s = _zrtp_compute_preshared_key( session, ZSTR_GV(secrets->rs1->value), ZSTR_GV(secrets->auxs->value), ZSTR_GV(secrets->pbxs->value), ZSTR_GV(presh_key), ZSTR_GV(key_id)); if (zrtp_status_ok == s) { res = zrtp_memcmp(peer_key_id, key_id.buffer, ZRTP_HV_KEY_SIZE); if (0 == res) { secrets->matches |= ZRTP_BIT_AUX; secrets->matches |= ZRTP_BIT_PBX; break; } } } } while (0); if (0 != res) { ZRTP_LOG(3,(_ZTU_,"\tINFO! Matched Key wasn't found - initate DH exchange.\n")); secrets->cached = 0; secrets->rs1->_cachedflag = 0; _zrtp_machine_start_initiating_secure(stream); return zrtp_status_ok; } } ZRTP_LOG(3,(_ZTU_,"\tUse RS1, %s, %s in calculations.\n", (session->secrets.matches & ZRTP_BIT_AUX) ? "AUX" : "NULL", (session->secrets.matches & ZRTP_BIT_PBX) ? "PBX" : "NULL")); _zrtp_kdf( stream, ZSTR_GV(presh_key), ZSTR_GV(zrtp_presh_label), ZSTR_GV(stream->protocol->cc->kdf_context), session->hash->digest_length, ZSTR_GV(cc->s0)); } break; /* * For FAST Multistream: * s0n = KDF(ZRTPSess, "ZRTP Multistream Key", KDF_Context, negotiated hash length) * ======================================================================== */ case ZRTP_STREAM_MODE_MULT: { ZRTP_LOG(3,(_ZTU_,"\tDERIVE S0 for MULTISTREAM from ZRTP Session key... ID=%u\n", stream->id)); _zrtp_kdf( stream, ZSTR_GV(session->zrtpsess), ZSTR_GV(zrtp_multi_label), ZSTR_GV(stream->protocol->cc->kdf_context), session->hash->digest_length, ZSTR_GV(cc->s0)); } break; default: break; } /* * Compute ZRTP session key for FULL streams only: * ZRTPSess = KDF(s0, "ZRTP Session Key", KDF_Context, negotiated hash length) */ if (!ZRTP_IS_STREAM_MULT(stream)) { if (session->zrtpsess.length == 0) { _zrtp_kdf( stream, ZSTR_GV(cc->s0), ZSTR_GV(zrtp_sess_label), ZSTR_GV(stream->protocol->cc->kdf_context), session->hash->digest_length, ZSTR_GV(session->zrtpsess)); } } return zrtp_status_ok; }
/*----------------------------------------------------------------------------*/ zrtp_status_t _zrtp_machine_process_confirm( zrtp_stream_t *stream, zrtp_packet_Confirm_t *confirm) { /* Compute Hmac over encrypted part of Confirm and reject malformed packets */ void* cipher_ctx = NULL; zrtp_status_t s = zrtp_status_fail; zrtp_session_t *session = stream->session; zrtp_string128_t hmac = ZSTR_INIT_EMPTY(hmac); /* hash + (padding + sig_len + flags) + ttl */ const uint8_t encrypted_body_size = ZRTP_MESSAGE_HASH_SIZE + (2 + 1 + 1) + 4; s = session->hash->hmac_c( session->hash, stream->cc.peer_hmackey.buffer, stream->cc.peer_hmackey.length, (const char*)&confirm->hash, encrypted_body_size, ZSTR_GV(hmac) ); if (zrtp_status_ok != s) { ZRTP_LOG(1,(_ZTU_,"\tERROR! failed to compute Incoming Confirm hmac. s=%d ID=%u\n", s, stream->id)); return zrtp_status_fail; } // MARK: TRACE CONFIRM HMAC ERROR #if 0 { char buff[512]; ZRTP_LOG(3,(_ZTU_,"HMAC TRACE. VERIFY\n")); ZRTP_LOG(3,(_ZTU_,"\tcipher text:%s. size=%u\n", hex2str((const char*)&confirm->hash, encrypted_body_size, buff, sizeof(buff)), encrypted_body_size)); ZRTP_LOG(3,(_ZTU_,"\t key:%s.\n", hex2str(stream->cc.peer_hmackey.buffer, stream->cc.peer_hmackey.length, buff, sizeof(buff)))); ZRTP_LOG(3,(_ZTU_,"\t comp hmac:%s.\n", hex2str(hmac.buffer, hmac.length, buff, sizeof(buff)))); ZRTP_LOG(3,(_ZTU_,"\t hmac:%s.\n", hex2str((const char*)confirm->hmac, ZRTP_HMAC_SIZE, buff, sizeof(buff)))); } #endif if (0 != zrtp_memcmp(confirm->hmac, hmac.buffer, ZRTP_HMAC_SIZE)) { /* * Weird. Perhaps a bug in our code or our peer's code. Or it could be an attacker * who doesn't realize that Man-In-The-Middling the Diffie-Hellman key generation * but allowing the correct rsIds to pass through accomplishes nothing more than * forcing us to fallback to cleartext mode. If this attacker had gone ahead and deleted * or replaced the rsIds, then he would have been able to stay in the middle (although * he would of course still face the threat of a Voice Authentication Check). On the * other hand if this attacker wanted to force us to fallback to cleartext mode, he could * have done that more simply, for example by intercepting our ZRTP HELLO packet and * replacing it with a normal non-ZRTP comfort noise packet. In any case, we'll do our * "switch to cleartext fallback" behavior. */ ZRTP_LOG(2,(_ZTU_,"\tWARNING!" ZRTP_VERIFIED_RESP_WARNING_STR "ID=%u\n", stream->id)); _zrtp_machine_enter_initiatingerror(stream, zrtp_error_auth_decrypt, 1); return zrtp_status_fail; } /* Then we need to decrypt Confirm body */ do { cipher_ctx = session->blockcipher->start( session->blockcipher, (uint8_t*)stream->cc.peer_zrtp_key.buffer, NULL, ZRTP_CIPHER_MODE_CFB); if (!cipher_ctx) { break; } s = session->blockcipher->set_iv( session->blockcipher, cipher_ctx, (zrtp_v128_t*)confirm->iv); if (zrtp_status_ok != s) { break; } s = session->blockcipher->decrypt( session->blockcipher, cipher_ctx, (uint8_t*)&confirm->hash, encrypted_body_size); } while(0); if (cipher_ctx) { session->blockcipher->stop(session->blockcipher, cipher_ctx); } if (zrtp_status_ok != s) { ZRTP_LOG(3,(_ZTU_,"\tERROR! failed to decrypt incoming Confirm. s=%d ID=%u\n", s, stream->id)); return s; } /* We have access to hash field and can check hmac of the previous message */ { zrtp_msg_hdr_t *hdr = NULL; char *key=NULL; zrtp_string32_t tmphash_str = ZSTR_INIT_EMPTY(tmphash_str); zrtp_hash_t *hash = zrtp_comp_find( ZRTP_CC_HASH, ZRTP_HASH_SHA256, stream->zrtp); if (ZRTP_IS_STREAM_DH(stream)) { hdr = &stream->messages.peer_dhpart.hdr; key = (char*)confirm->hash; } else { hash->hash_c(hash, (char*)confirm->hash, ZRTP_MESSAGE_HASH_SIZE, ZSTR_GV(tmphash_str)); if (ZRTP_STATEMACHINE_INITIATOR == stream->protocol->type) { hdr = &stream->messages.peer_hello.hdr; hash->hash_c( hash, tmphash_str.buffer, ZRTP_MESSAGE_HASH_SIZE, ZSTR_GV(tmphash_str) ); } else { hdr = &stream->messages.peer_commit.hdr; } key = tmphash_str.buffer; } if (0 != _zrtp_validate_message_hmac(stream, hdr, key)) { return zrtp_status_fail; } } /* Set evil bit if other-side shared session key */ stream->peer_disclose_bit = (confirm->flags & 0x01); /* Enable ALLOWCLEAR option if only both sides support it */ stream->allowclear = (confirm->flags & 0x02) && session->profile.allowclear; /* Drop RS1 VERIFIED flag if other side didn't verified key exchange */ if (0 == (confirm->flags & 0x04)) { ZRTP_LOG(2,(_ZTU_,"\tINFO: Other side Confirm V=0 - set verified to 0! ID=%u\n", stream->id)); zrtp_verified_set(session->zrtp, &session->zrtp->zid, &session->peer_zid, 0); } /* Look for Enrollment replay flag */ if (confirm->flags & 0x08) { ZRTP_LOG(2,(_ZTU_,"\tINFO: Confirm PBX Enrolled flag is set - it is a Registration call! ID=%u\n", stream->id)); if (stream->mitm_mode != ZRTP_MITM_MODE_CLIENT) { ZRTP_LOG(2,(_ZTU_,"\tERROR: PBX enrollment flag was received in wrong MiTM mode %s." " ID=%u\n", zrtp_log_mode2str(stream->mode), stream->id)); _zrtp_machine_enter_initiatingerror(stream, zrtp_error_invalid_packet, 1); return zrtp_status_fail; } /* Passive endpoint should ignore PBX Enrollment. */ if (ZRTP_LICENSE_MODE_PASSIVE != stream->zrtp->lic_mode) { stream->mitm_mode = ZRTP_MITM_MODE_REG_CLIENT; } else { ZRTP_LOG(2,(_ZTU_,"\tINFO: Ignore PBX Enrollment flag as we are Passive ID=%u\n", stream->id)); } } stream->cache_ttl = ZRTP_MIN(session->profile.cache_ttl, zrtp_ntoh32(confirm->expired_interval)); /* Copy packet for future hashing */ zrtp_memcpy(&stream->messages.peer_confirm, confirm, zrtp_ntoh16(confirm->hdr.length)*4); return zrtp_status_ok; }
/*----------------------------------------------------------------------------*/ zrtp_status_t _zrtp_machine_create_confirm( zrtp_stream_t *stream, zrtp_packet_Confirm_t* confirm) { void* cipher_ctx = NULL; zrtp_status_t s = zrtp_status_fail; zrtp_session_t *session = stream->session; uint32_t verifiedflag = 0; /* hash + (padding + sig_len + flags) + ttl */ const uint8_t encrypted_body_size = ZRTP_MESSAGE_HASH_SIZE + (2 + 1 + 1) + 4; /* * Create the Confirm packet according to draft 6.7 * AES CFB vector at first, SIG length and flags octet and cache TTL at the end * This version doesn't support signatures so sig_length=0 */ if (ZRTP_CFBIV_SIZE != zrtp_randstr(session->zrtp, confirm->iv, ZRTP_CFBIV_SIZE)) { return zrtp_status_fail; } zrtp_memcpy(confirm->hash, stream->messages.h0.buffer, ZRTP_MESSAGE_HASH_SIZE); zrtp_cache_get_verified(session->zrtp->cache, ZSTR_GV(session->peer_zid), &verifiedflag); confirm->expired_interval = zrtp_hton32(session->profile.cache_ttl); confirm->flags = 0; confirm->flags |= session->profile.disclose_bit ? 0x01 : 0x00; confirm->flags |= session->profile.allowclear ? 0x02 : 0x00; confirm->flags |= verifiedflag ? 0x04 : 0x00; confirm->flags |= (ZRTP_MITM_MODE_REG_SERVER == stream->mitm_mode) ? 0x08 : 0x00; /* Then we need to encrypt Confirm before Hmac computing. Use AES CFB */ do { cipher_ctx = session->blockcipher->start( session->blockcipher, (uint8_t*)stream->cc.zrtp_key.buffer, NULL, ZRTP_CIPHER_MODE_CFB); if (!cipher_ctx) { break; } s = session->blockcipher->set_iv(session->blockcipher, cipher_ctx, (zrtp_v128_t*)confirm->iv); if (zrtp_status_ok != s) { break; } s = session->blockcipher->encrypt( session->blockcipher, cipher_ctx, (uint8_t*)&confirm->hash, encrypted_body_size ); } while(0); if (cipher_ctx) { session->blockcipher->stop(session->blockcipher, cipher_ctx); } if (zrtp_status_ok != s) { ZRTP_LOG(1,(_ZTU_,"ERROR! failed to encrypt Confirm. s=%d ID=%u\n", s, stream->id)); return s; } /* Compute Hmac over encrypted part of Confirm */ { zrtp_string128_t hmac = ZSTR_INIT_EMPTY(hmac); s = session->hash->hmac_c( session->hash, stream->cc.hmackey.buffer, stream->cc.hmackey.length, (const char*)&confirm->hash, encrypted_body_size, ZSTR_GV(hmac) ); if (zrtp_status_ok != s) { ZRTP_LOG(1,(_ZTU_,"ERROR! failed to compute Confirm hmac. s=%d ID=%u\n", s, stream->id)); return s; } zrtp_memcpy(confirm->hmac, hmac.buffer, ZRTP_HMAC_SIZE); { char buff[512]; ZRTP_LOG(3,(_ZTU_,"HMAC TRACE. COMPUTE.\n")); ZRTP_LOG(3,(_ZTU_,"\tcipher text:%s. size=%u\n", hex2str((const char*)&confirm->hash, encrypted_body_size, buff, sizeof(buff)), encrypted_body_size)); ZRTP_LOG(3,(_ZTU_,"\t key:%s.\n", hex2str(stream->cc.hmackey.buffer, stream->cc.hmackey.length, buff, sizeof(buff)))); ZRTP_LOG(3,(_ZTU_,"\t comp hmac:%s.\n", hex2str(hmac.buffer, hmac.length, buff, sizeof(buff)))); ZRTP_LOG(3,(_ZTU_,"\t hmac:%s.\n", hex2str((const char*)confirm->hmac, ZRTP_HMAC_SIZE, buff, sizeof(buff)))); } } return zrtp_status_ok; }