示例#1
0
/**
 * \param mesh pointer toward the mesh structure.
 * \param met pointer toward the metric structure.
 * \param nump index of point in which the size must be computed.
 * \param lists pointer toward the surfacic ball of \a nump.
 * \param ilists size of surfacic ball of \a nump.
 * \param hmin minimal edge size.
 * \param hmax maximal edge size.
 * \param hausd hausdorff value.
 * \return the isotropic size at the point.
 *
 * Define isotropic size at regular point nump, whose surfacic ball is provided.
 *
 */
static double
_MMG5_defsizreg(MMG5_pMesh mesh,MMG5_pSol met,int nump,int *lists,
                int ilists, double hmin,double hmax,double hausd) {
  MMG5_pTetra       pt;
  MMG5_pxTetra      pxt;
  MMG5_pPoint       p0,p1;
  MMG5_Tria         tt;
  _MMG5_Bezier      b;
  double       ux,uy,uz,det2d,h,isqhmin,isqhmax,ll,lmin,lmax,hnm,s;
  double       *n,*t,r[3][3],lispoi[3*MMG3D_LMAX+1],intm[3],b0[3],b1[3],c[3],tAA[6],tAb[3],d[3];
  double       kappa[2],vp[2][2];
  int          k,na,nb,ntempa,ntempb,iel,ip0;
  char         iface,i,j,i0;

  p0 = &mesh->point[nump];

  if ( !p0->xp || MG_EDG(p0->tag) || (p0->tag & MG_NOM) || (p0->tag & MG_REQ))  {
    fprintf(stdout,"    ## Func. _MMG5_defsizreg : wrong point qualification : xp ? %d\n",p0->xp);
    return(0);
  }
  isqhmin = 1.0 / (hmin*hmin);
  isqhmax = 1.0 / (hmax*hmax);

  n = &mesh->xpoint[p0->xp].n1[0];

  /* Step 1 : rotation matrix that sends normal n to the third coordinate vector of R^3 */
  if ( !_MMG5_rotmatrix(n,r) ) {
    fprintf(stdout,"%s:%d: Error: function _MMG5_rotmatrix return 0\n",
            __FILE__,__LINE__);
    exit(EXIT_FAILURE);
  }

  /* Step 2 : rotation of the oriented surfacic ball with r : lispoi[k] is the common edge
     between faces lists[k-1] and lists[k] */
  iel   = lists[0] / 4;
  iface = lists[0] % 4;
  pt    = &mesh->tetra[iel];
  lmin  = MAXLEN;
  lmax  = 0.0;

  na = nb = 0;
  for (i=0; i<3; i++) {
    if ( pt->v[_MMG5_idir[iface][i]] != nump ) {
      if ( !na )
        na = pt->v[_MMG5_idir[iface][i]];
      else
        nb = pt->v[_MMG5_idir[iface][i]];
    }
  }

  for (k=1; k<ilists; k++) {
    iel   = lists[k] / 4;
    iface = lists[k] % 4;
    pt    = &mesh->tetra[iel];
    ntempa = ntempb = 0;
    for (i=0; i<3; i++) {
      if ( pt->v[_MMG5_idir[iface][i]] != nump ) {
        if ( !ntempa )
          ntempa = pt->v[_MMG5_idir[iface][i]];
        else
          ntempb = pt->v[_MMG5_idir[iface][i]];
      }
    }
    if ( ntempa == na )
      p1 = &mesh->point[na];
    else if ( ntempa == nb )
      p1 = &mesh->point[nb];
    else if ( ntempb == na )
      p1 = &mesh->point[na];
    else {
      assert(ntempb == nb);
      p1 = &mesh->point[nb];
    }
    ux = p1->c[0] - p0->c[0];
    uy = p1->c[1] - p0->c[1];
    uz = p1->c[2] - p0->c[2];

    lispoi[3*k+1] =  r[0][0]*ux + r[0][1]*uy + r[0][2]*uz;
    lispoi[3*k+2] =  r[1][0]*ux + r[1][1]*uy + r[1][2]*uz;
    lispoi[3*k+3] =  r[2][0]*ux + r[2][1]*uy + r[2][2]*uz;

    ll = lispoi[3*k+1]*lispoi[3*k+1] + lispoi[3*k+2]*lispoi[3*k+2] + lispoi[3*k+3]*lispoi[3*k+3];
    lmin = MG_MIN(lmin,ll);
    lmax = MG_MAX(lmax,ll);

    na = ntempa;
    nb = ntempb;
  }

  /* Finish with point 0 */
  iel   = lists[0] / 4;
  iface = lists[0] % 4;
  pt    = &mesh->tetra[iel];
  ntempa = ntempb = 0;
  for (i=0; i<3; i++) {
    if ( pt->v[_MMG5_idir[iface][i]] != nump ) {
      if ( !ntempa )
        ntempa = pt->v[_MMG5_idir[iface][i]];
      else
        ntempb = pt->v[_MMG5_idir[iface][i]];
    }
  }
  if ( ntempa == na )
    p1 = &mesh->point[na];
  else if ( ntempa == nb )
    p1 = &mesh->point[nb];
  else if ( ntempb == na )
    p1 = &mesh->point[na];
  else {
    assert(ntempb == nb);
    p1 = &mesh->point[nb];
  }

  ux = p1->c[0] - p0->c[0];
  uy = p1->c[1] - p0->c[1];
  uz = p1->c[2] - p0->c[2];

  lispoi[1] =  r[0][0]*ux + r[0][1]*uy + r[0][2]*uz;
  lispoi[2] =  r[1][0]*ux + r[1][1]*uy + r[1][2]*uz;
  lispoi[3] =  r[2][0]*ux + r[2][1]*uy + r[2][2]*uz;

  ll = lispoi[1]*lispoi[1] + lispoi[2]*lispoi[2] + lispoi[3]*lispoi[3];
  lmin = MG_MIN(lmin,ll);
  lmax = MG_MAX(lmax,ll);

  /* list goes modulo ilist */
  lispoi[3*ilists+1] = lispoi[1];
  lispoi[3*ilists+2] = lispoi[2];
  lispoi[3*ilists+3] = lispoi[3];

  /* At this point, lispoi contains the oriented surface ball of point p0, that has been rotated
     through r, with the convention that triangle l has edges lispoi[l]; lispoi[l+1] */
  if ( lmax/lmin > 4.0*hmax*hmax/
       (hmin*hmin) )  return(hmax);

  /* Check all projections over tangent plane. */
  for (k=0; k<ilists-1; k++) {
    det2d = lispoi[3*k+1]*lispoi[3*(k+1)+2] - lispoi[3*k+2]*lispoi[3*(k+1)+1];
    if ( det2d < 0.0 )  return(hmax);
  }
  det2d = lispoi[3*(ilists-1)+1]*lispoi[3*0+2] - lispoi[3*(ilists-1)+2]*lispoi[3*0+1];
  if ( det2d < 0.0 )    return(hmax);

  /* Reconstitution of the curvature tensor at p0 in the tangent plane,
     with a quadric fitting approach */
  memset(intm,0.0,3*sizeof(double));
  memset(tAA,0.0,6*sizeof(double));
  memset(tAb,0.0,3*sizeof(double));

  for (k=0; k<ilists; k++) {
    iel   = lists[k] / 4;
    iface = lists[k] % 4;

    _MMG5_tet2tri(mesh,iel,iface,&tt);

    pxt   = &mesh->xtetra[mesh->tetra[iel].xt];
    if ( !_MMG5_bezierCP(mesh,&tt,&b,MG_GET(pxt->ori,iface)) ) {
      fprintf(stdout,"%s:%d: Error: function _MMG5_bezierCP return 0\n",
              __FILE__,__LINE__);
      exit(EXIT_FAILURE);
    }

    for (i0=0; i0<3; i0++) {
      if ( tt.v[i0] == nump )  break;
    }
    assert(i0 < 3);

    for (j=0; j<10; j++) {
      c[0] = b.b[j][0] - p0->c[0];
      c[1] = b.b[j][1] - p0->c[1];
      c[2] = b.b[j][2] - p0->c[2];

      b.b[j][0] =  r[0][0]*c[0] + r[0][1]*c[1] + r[0][2]*c[2];
      b.b[j][1] =  r[1][0]*c[0] + r[1][1]*c[1] + r[1][2]*c[2];
      b.b[j][2] =  r[2][0]*c[0] + r[2][1]*c[1] + r[2][2]*c[2];
    }

    /* Mid-point along left edge and endpoint in the rotated frame */
    if ( i0 == 0 ) {
      memcpy(b0,&(b.b[7][0]),3*sizeof(double));
      memcpy(b1,&(b.b[8][0]),3*sizeof(double));
    }
    else if ( i0 == 1 ) {
      memcpy(b0,&(b.b[3][0]),3*sizeof(double));
      memcpy(b1,&(b.b[4][0]),3*sizeof(double));
    }
    else {
      memcpy(b0,&(b.b[5][0]),3*sizeof(double));
      memcpy(b1,&(b.b[6][0]),3*sizeof(double));
    }
    s = 0.5;

    /* At this point, the two control points are expressed in the rotated frame */
    c[0] = 3.0*s*(1.0-s)*(1.0-s)*b0[0] + 3.0*s*s*(1.0-s)*b1[0] + s*s*s*lispoi[3*k+1];
    c[1] = 3.0*s*(1.0-s)*(1.0-s)*b0[1] + 3.0*s*s*(1.0-s)*b1[1] + s*s*s*lispoi[3*k+2];
    c[2] = 3.0*s*(1.0-s)*(1.0-s)*b0[2] + 3.0*s*s*(1.0-s)*b1[2] + s*s*s*lispoi[3*k+3];

    /* Fill matric tAA and second member tAb*/
    tAA[0] += c[0]*c[0]*c[0]*c[0];
    tAA[1] += c[0]*c[0]*c[1]*c[1];
    tAA[2] += c[0]*c[0]*c[0]*c[1];
    tAA[3] += c[1]*c[1]*c[1]*c[1];
    tAA[4] += c[0]*c[1]*c[1]*c[1];
    tAA[5] += c[0]*c[0]*c[1]*c[1];

    tAb[0] += c[0]*c[0]*c[2];
    tAb[1] += c[1]*c[1]*c[2];
    tAb[2] += c[0]*c[1]*c[2];

    s = 1.0;
    /* At this point, the two control points are expressed in the rotated frame */
    c[0] = 3.0*s*(1.0-s)*(1.0-s)*b0[0] + 3.0*s*s*(1.0-s)*b1[0] + s*s*s*lispoi[3*k+1];
    c[1] = 3.0*s*(1.0-s)*(1.0-s)*b0[1] + 3.0*s*s*(1.0-s)*b1[1] + s*s*s*lispoi[3*k+2];
    c[2] = 3.0*s*(1.0-s)*(1.0-s)*b0[2] + 3.0*s*s*(1.0-s)*b1[2] + s*s*s*lispoi[3*k+3];

    /* Fill matric tAA and second member tAb*/
    tAA[0] += c[0]*c[0]*c[0]*c[0];
    tAA[1] += c[0]*c[0]*c[1]*c[1];
    tAA[2] += c[0]*c[0]*c[0]*c[1];
    tAA[3] += c[1]*c[1]*c[1]*c[1];
    tAA[4] += c[0]*c[1]*c[1]*c[1];
    tAA[5] += c[0]*c[0]*c[1]*c[1];

    tAb[0] += c[0]*c[0]*c[2];
    tAb[1] += c[1]*c[1]*c[2];
    tAb[2] += c[0]*c[1]*c[2];

    /* Mid-point along median edge and endpoint in the rotated frame */
    if ( i0 == 0 ) {
      c[0] = A64TH*(b.b[1][0] + b.b[2][0] + 3.0*(b.b[3][0] + b.b[4][0])) \
        + 3.0*A16TH*(b.b[6][0] + b.b[7][0] + b.b[9][0]) + A32TH*(b.b[5][0] + b.b[8][0]);
      c[1] = A64TH*(b.b[1][1] + b.b[2][1] + 3.0*(b.b[3][1] + b.b[4][1])) \
        + 3.0*A16TH*(b.b[6][1] + b.b[7][1] + b.b[9][1]) + A32TH*(b.b[5][1] + b.b[8][1]);
      c[2] = A64TH*(b.b[1][2] + b.b[2][2] + 3.0*(b.b[3][2] + b.b[4][2])) \
        + 3.0*A16TH*(b.b[6][2] + b.b[7][2] + b.b[9][2]) + A32TH*(b.b[5][2] + b.b[8][2]);

      d[0] = 0.125*b.b[1][0] + 0.375*(b.b[3][0] + b.b[4][0]) + 0.125*b.b[2][0];
      d[1] = 0.125*b.b[1][1] + 0.375*(b.b[3][1] + b.b[4][1]) + 0.125*b.b[2][1];
      d[2] = 0.125*b.b[1][2] + 0.375*(b.b[3][2] + b.b[4][2]) + 0.125*b.b[2][2];
    }
    else if (i0 == 1) {
      c[0] = A64TH*(b.b[0][0] + b.b[2][0] + 3.0*(b.b[5][0] + b.b[6][0])) \
        + 3.0*A16TH*(b.b[3][0] + b.b[8][0] + b.b[9][0]) + A32TH*(b.b[4][0] + b.b[7][0]);
      c[1] = A64TH*(b.b[0][1] + b.b[2][1] + 3.0*(b.b[5][1] + b.b[6][1])) \
        + 3.0*A16TH*(b.b[3][1] + b.b[8][1] + b.b[9][1]) + A32TH*(b.b[4][1] + b.b[7][1]);
      c[2] = A64TH*(b.b[0][2] + b.b[2][2] + 3.0*(b.b[5][2] + b.b[6][2])) \
        + 3.0*A16TH*(b.b[3][2] + b.b[8][2] + b.b[9][2]) + A32TH*(b.b[4][2] + b.b[7][2]);

      d[0] = 0.125*b.b[2][0] + 0.375*(b.b[5][0] + b.b[6][0]) + 0.125*b.b[0][0];
      d[1] = 0.125*b.b[2][1] + 0.375*(b.b[5][1] + b.b[6][1]) + 0.125*b.b[0][1];
      d[2] = 0.125*b.b[2][2] + 0.375*(b.b[5][2] + b.b[6][2]) + 0.125*b.b[0][2];
    }
    else {
      c[0] = A64TH*(b.b[0][0] + b.b[1][0] + 3.0*(b.b[7][0] + b.b[8][0])) \
        + 3.0*A16TH*(b.b[4][0] + b.b[5][0] + b.b[9][0]) + A32TH*(b.b[3][0] + b.b[6][0]);
      c[1] = A64TH*(b.b[0][1] + b.b[1][1] + 3.0*(b.b[7][1] + b.b[8][1])) \
        + 3.0*A16TH*(b.b[4][1] + b.b[5][1] + b.b[9][1]) + A32TH*(b.b[3][1] + b.b[6][1]);
      c[2] = A64TH*(b.b[0][2] + b.b[1][2] + 3.0*(b.b[7][2] + b.b[8][2])) \
        + 3.0*A16TH*(b.b[4][2] + b.b[5][2] + b.b[9][2]) + A32TH*(b.b[3][2] + b.b[6][2]);

      d[0] = 0.125*b.b[0][0] + 0.375*(b.b[7][0] + b.b[8][0]) + 0.125*b.b[1][0];
      d[1] = 0.125*b.b[0][1] + 0.375*(b.b[7][1] + b.b[8][1]) + 0.125*b.b[1][1];
      d[2] = 0.125*b.b[0][2] + 0.375*(b.b[7][2] + b.b[8][2]) + 0.125*b.b[1][2];
    }

    /* Fill matric tAA and second member tAb*/
    tAA[0] += c[0]*c[0]*c[0]*c[0];
    tAA[1] += c[0]*c[0]*c[1]*c[1];
    tAA[2] += c[0]*c[0]*c[0]*c[1];
    tAA[3] += c[1]*c[1]*c[1]*c[1];
    tAA[4] += c[0]*c[1]*c[1]*c[1];
    tAA[5] += c[0]*c[0]*c[1]*c[1];

    tAb[0] += c[0]*c[0]*c[2];
    tAb[1] += c[1]*c[1]*c[2];
    tAb[2] += c[0]*c[1]*c[2];

    tAA[0] += d[0]*d[0]*d[0]*d[0];
    tAA[1] += d[0]*d[0]*d[1]*d[1];
    tAA[2] += d[0]*d[0]*d[0]*d[1];
    tAA[3] += d[1]*d[1]*d[1]*d[1];
    tAA[4] += d[0]*d[1]*d[1]*d[1];
    tAA[5] += d[0]*d[0]*d[1]*d[1];

    tAb[0] += d[0]*d[0]*d[2];
    tAb[1] += d[1]*d[1]*d[2];
    tAb[2] += d[0]*d[1]*d[2];
  }

  /* solve now (a b c) = tAA^{-1} * tAb */
  if ( !_MMG5_sys33sym(tAA,tAb,c) )  return(hmax);

  intm[0] = 2.0*c[0];
  intm[1] = c[2];
  intm[2] = 2.0*c[1];

  /* At this point, intm stands for the integral matrix of Taubin's approach : vp[0] and vp[1]
     are the two pr. directions of curvature, and the two curvatures can be inferred from lambdas*/
  if( !_MMG5_eigensym(intm,kappa,vp) ){
    fprintf(stdout,"%s:%d: Error: function _MMG5_eigensym return 0\n",
            __FILE__,__LINE__);
    exit(EXIT_FAILURE);
  }

  /* h computation : h(x) = sqrt( 9*hausd / (2 * max(kappa1(x),kappa2(x)) ) */
  kappa[0] = 2.0/9.0 * fabs(kappa[0]) / hausd;
  kappa[0] = MG_MIN(kappa[0],isqhmin);
  kappa[0] = MG_MAX(kappa[0],isqhmax);

  kappa[1] = 2.0/9.0 * fabs(kappa[1]) / hausd;
  kappa[1] = MG_MIN(kappa[1],isqhmin);
  kappa[1] = MG_MAX(kappa[1],isqhmax);

  kappa[0] = 1.0 / sqrt(kappa[0]);
  kappa[1] = 1.0 / sqrt(kappa[1]);

  h = MG_MIN(kappa[0],kappa[1]);

  /* Travel surfacic ball one last time and update non manifold point metric */
  for (k=0; k<ilists; k++) {
    iel = lists[k] / 4;
    iface = lists[k] % 4;

    for (j=0; j<3; j++) {
      i0  = _MMG5_idir[iface][j];
      ip0 = pt->v[i0];
      p1  = &mesh->point[ip0];
      if( !(p1->tag & MG_NOM) || MG_SIN(p1->tag) ) continue;
      assert(p1->xp);
      t = &p1->n[0];
      memcpy(c,t,3*sizeof(double));

      d[0] =  r[0][0]*c[0] + r[0][1]*c[1] + r[0][2]*c[2];
      d[1] =  r[1][0]*c[0] + r[1][1]*c[1] + r[1][2]*c[2];

      hnm = intm[0]*d[0]*d[0] + 2.0*intm[1]*d[0]*d[1] + intm[2]*d[1]*d[1];
      hnm = 2.0/9.0 * fabs(hnm) / hausd;
      hnm = MG_MIN(hnm,isqhmin);
      hnm = MG_MAX(hnm,isqhmax);
      hnm = 1.0 / sqrt(hnm);
      met->m[ip0] = MG_MIN(met->m[ip0],hnm);
    }
  }
  return(h);
}
示例#2
0
/**
 * \param mesh pointer toward the mesh structure.
 * \param met pointer toward the meric structure.
 * \param ptt pointer toward the triangle structure.
 * \return The computed area.
 *
 * Compute the area of the surface triangle \a ptt with respect to
 * the anisotropic metric \a met.
 *
 */
double _MMG5_surftri_ani(MMG5_pMesh mesh,MMG5_pSol met,MMG5_pTria ptt) {
  MMG5_pPoint    p[3];
  _MMG5_Bezier    b;
  int       np[3];
  double    surf,ux,uy,uz,dens,m[3][6],J[3][2],mJ[3][2],tJmJ[2][2];
  char      i,i1,i2;

  surf = 0.0;

  for (i=0; i<3; i++) {
    np[i] = ptt->v[i];
    p[i]  = &mesh->point[np[i]];
  }
  if ( !_MMG5_bezierCP(mesh,ptt,&b,1) ) return(0.0);

  /* Set metric tensors at vertices of tria iel */
  for(i=0; i<3; i++) {
    i1 = _MMG5_inxt2[i];
    i2 = _MMG5_iprv2[i];
    ux = 0.5*(p[i1]->c[0]+p[i2]->c[0]) - p[i]->c[0];
    uy = 0.5*(p[i1]->c[1]+p[i2]->c[1]) - p[i]->c[1];
    uz = 0.5*(p[i1]->c[2]+p[i2]->c[2]) - p[i]->c[2];

    if ( MS_SIN(p[i]->tag) ) {
      memcpy(&m[i][0],&met->m[6*np[i]+1],6*sizeof(double));
    }
    else if ( p[i]->tag & MG_GEO ) {
      if ( !_MMG5_buildridmet(mesh,met,np[i],ux,uy,uz,&m[i][0]) )  return(0.0);
    }
    else {
      memcpy(&m[i][0],&met->m[6*np[i]+1],6*sizeof(double));
    }
  }

  /* Compute density integrand of volume at the 3 vertices of T */
  for (i=0; i<3; i++) {
    if ( i == 0 ) {
      J[0][0] = 3.0*( b.b[7][0] - b.b[0][0] ) ; J[0][1] = 3.0*( b.b[6][0] - b.b[0][0] );
      J[1][0] = 3.0*( b.b[7][1] - b.b[0][1] ) ; J[1][1] = 3.0*( b.b[6][1] - b.b[0][1] );
      J[2][0] = 3.0*( b.b[7][2] - b.b[0][2] ) ; J[2][1] = 3.0*( b.b[6][2] - b.b[0][2] );
    }
    else if ( i == 1 ) {
      J[0][0] = 3.0*( b.b[1][0] - b.b[8][0] ) ; J[0][1] = 3.0*( b.b[3][0] - b.b[8][0] );
      J[1][0] = 3.0*( b.b[1][1] - b.b[8][1] ) ; J[1][1] = 3.0*( b.b[3][1] - b.b[8][1] );
      J[2][0] = 3.0*( b.b[1][2] - b.b[8][2] ) ; J[2][1] = 3.0*( b.b[3][2] - b.b[8][2] );
    }
    else {
      J[0][0] = 3.0*( b.b[4][0] - b.b[5][0] ) ; J[0][1] = 3.0*( b.b[2][0] - b.b[5][0] );
      J[1][0] = 3.0*( b.b[4][1] - b.b[5][1] ) ; J[1][1] = 3.0*( b.b[2][1] - b.b[5][1] );
      J[2][0] = 3.0*( b.b[4][2] - b.b[5][2] ) ; J[2][1] = 3.0*( b.b[2][2] - b.b[5][2] );
    }

    mJ[0][0] = m[i][0]*J[0][0] + m[i][1]*J[1][0] + m[i][2]*J[2][0];
    mJ[1][0] = m[i][1]*J[0][0] + m[i][3]*J[1][0] + m[i][4]*J[2][0];
    mJ[2][0] = m[i][2]*J[0][0] + m[i][4]*J[1][0] + m[i][5]*J[2][0];

    mJ[0][1] = m[i][0]*J[0][1] + m[i][1]*J[1][1] + m[i][2]*J[2][1];
    mJ[1][1] = m[i][1]*J[0][1] + m[i][3]*J[1][1] + m[i][4]*J[2][1];
    mJ[2][1] = m[i][2]*J[0][1] + m[i][4]*J[1][1] + m[i][5]*J[2][1];

    /* dens = sqrt(tJacsigma * M * Jacsigma )*/
    tJmJ[0][0] = J[0][0]*mJ[0][0] + J[1][0]*mJ[1][0] + J[2][0]*mJ[2][0];
    tJmJ[0][1] = J[0][0]*mJ[0][1] + J[1][0]*mJ[1][1] + J[2][0]*mJ[2][1];
    tJmJ[1][0] = J[0][1]*mJ[0][0] + J[1][1]*mJ[1][0] + J[2][1]*mJ[2][0];
    tJmJ[1][1] = J[0][1]*mJ[0][1] + J[1][1]*mJ[1][1] + J[2][1]*mJ[2][1];

    dens = tJmJ[0][0]*tJmJ[1][1] - tJmJ[1][0]*tJmJ[0][1];
    if ( dens < 0.0 ) {
      //fprintf(stdout,"  ## Density should be positive : %E for elt %d %d %d \n",dens,ptt->v[0],ptt->v[1],ptt->v[2]);
      //return(0.0);
    }
    surf += sqrt(fabs(dens));
  }

  surf *= _MMG5_ATHIRD;
  return(surf);
}