示例#1
0
void _Semaphore_Wait( struct _Semaphore_Control *_sem )
{
  Semaphore_Control    *sem ;
  Thread_queue_Context  queue_context;
  Thread_Control       *executing;
  unsigned int          count;

  sem = _Semaphore_Get( _sem );
  _Thread_queue_Context_initialize( &queue_context );
  executing = _Semaphore_Queue_acquire( sem, &queue_context );

  count = sem->count;
  if ( count > 0 ) {
    sem->count = count - 1;
    _Semaphore_Queue_release( sem, &queue_context );
  } else {
    _Thread_queue_Context_set_expected_level( &queue_context, 1 );
    _Thread_queue_Context_set_no_timeout( &queue_context );
    _Thread_queue_Enqueue_critical(
      &sem->Queue.Queue,
      SEMAPHORE_TQ_OPERATIONS,
      executing,
      STATES_WAITING_FOR_SYS_LOCK_SEMAPHORE,
      &queue_context
    );
  }
}
示例#2
0
void _Mutex_recursive_Acquire( struct _Mutex_recursive_Control *_mutex )
{
  Mutex_recursive_Control *mutex;
  Thread_queue_Context     queue_context;
  ISR_Level             level;
  Thread_Control          *executing;
  Thread_Control          *owner;

  mutex = _Mutex_recursive_Get( _mutex );
  _Thread_queue_Context_initialize( &queue_context );
  _Thread_queue_Context_ISR_disable( &queue_context, level );
  executing = _Mutex_Queue_acquire_critical( &mutex->Mutex, &queue_context );

  owner = mutex->Mutex.Queue.Queue.owner;

  if ( __predict_true( owner == NULL ) ) {
    mutex->Mutex.Queue.Queue.owner = executing;
    _Thread_Resource_count_increment( executing );
    _Mutex_Queue_release( &mutex->Mutex, level, &queue_context );
  } else if ( owner == executing ) {
    ++mutex->nest_level;
    _Mutex_Queue_release( &mutex->Mutex, level, &queue_context );
  } else {
    _Thread_queue_Context_set_no_timeout( &queue_context );
    _Mutex_Acquire_slow( &mutex->Mutex, owner, executing, level, &queue_context );
  }
}
示例#3
0
void _Mutex_recursive_Acquire( struct _Mutex_recursive_Control *_mutex )
{
  Mutex_recursive_Control *mutex;
  Thread_queue_Context     queue_context;
  Thread_Control          *executing;
  Thread_Control          *owner;

  mutex = _Mutex_recursive_Get( _mutex );
  _Thread_queue_Context_initialize( &queue_context );
  executing = _Mutex_Queue_acquire( &mutex->Mutex, &queue_context );

  owner = mutex->Mutex.Queue.Queue.owner;

  if ( __predict_true( owner == NULL ) ) {
    mutex->Mutex.Queue.Queue.owner = executing;
    ++executing->resource_count;
    _Mutex_Queue_release( &mutex->Mutex, &queue_context );
  } else if ( owner == executing ) {
    ++mutex->nest_level;
    _Mutex_Queue_release( &mutex->Mutex, &queue_context );
  } else {
    _Thread_queue_Context_set_no_timeout( &queue_context );
    _Mutex_Acquire_slow( &mutex->Mutex, owner, executing, &queue_context );
  }
}
void _Thread_Close( Thread_Control *the_thread, Thread_Control *executing )
{
  Thread_queue_Context queue_context;

  _Thread_queue_Context_initialize( &queue_context );
  _Thread_queue_Context_set_expected_level( &queue_context, 2 );
  _Thread_queue_Context_set_no_timeout( &queue_context );
  _Thread_State_acquire( the_thread, &queue_context.Lock_context.Lock_context );
  _Thread_Join(
    the_thread,
    STATES_WAITING_FOR_JOIN,
    executing,
    &queue_context
  );
  _Thread_Cancel( the_thread, executing, NULL );
}
示例#5
0
void _Thread_Close(
  Thread_Control       *the_thread,
  Thread_Control       *executing,
  Thread_Close_context *context
)
{
  context->cancel = the_thread;
  _Thread_queue_Context_set_enqueue_callout(
    &context->Base,
    _Thread_Close_enqueue_callout
  );
  _Thread_queue_Context_set_no_timeout( &context->Base );
  _Thread_State_acquire_critical(
    the_thread,
    &context->Base.Lock_context.Lock_context
  );
  _Thread_Join(
    the_thread,
    STATES_WAITING_FOR_JOIN,
    executing,
    &context->Base
  );
}
示例#6
0
void _API_Mutex_Lock( API_Mutex_Control *the_mutex )
{
  Thread_Life_state    previous_thread_life_state;
  Thread_queue_Context queue_context;

  previous_thread_life_state =
    _Thread_Set_life_protection( THREAD_LIFE_PROTECTED );

  _Thread_queue_Context_initialize( &queue_context );
  _ISR_lock_ISR_disable( &queue_context.Lock_context );
  _Thread_queue_Context_set_no_timeout( &queue_context );
  _CORE_recursive_mutex_Seize(
    &the_mutex->Mutex,
    _Thread_Executing,
    true,
    _CORE_recursive_mutex_Seize_nested,
    &queue_context
  );

  if ( the_mutex->Mutex.nest_level == 0 ) {
    the_mutex->previous_thread_life_state = previous_thread_life_state;
  }
}
示例#7
0
int _POSIX_Condition_variables_Wait_support(
  pthread_cond_t            *cond,
  pthread_mutex_t           *mutex,
  const struct timespec     *abstime
)
{
  POSIX_Condition_variables_Control *the_cond;
  Thread_queue_Context               queue_context;
  int                                error;
  int                                mutex_error;
  Per_CPU_Control                   *cpu_self;
  Thread_Control                    *executing;
  Watchdog_Interval                  timeout;
  bool                               already_timedout;
  TOD_Absolute_timeout_conversion_results  status;

  if ( mutex == NULL ) {
    return EINVAL;
  }

  the_cond = _POSIX_Condition_variables_Get( cond, &queue_context );

  if ( the_cond == NULL ) {
    return EINVAL;
  }

  already_timedout = false;

  if ( abstime != NULL ) {
    /*
     *  POSIX requires that blocking calls with timeouts that take
     *  an absolute timeout must ignore issues with the absolute
     *  time provided if the operation would otherwise succeed.
     *  So we check the abstime provided, and hold on to whether it
     *  is valid or not.  If it isn't correct and in the future,
     *  then we do a polling operation and convert the UNSATISFIED
     *  status into the appropriate error.
     */
    _Assert( the_cond->clock );
    status = _TOD_Absolute_timeout_to_ticks(abstime, the_cond->clock, &timeout);
    if ( status == TOD_ABSOLUTE_TIMEOUT_INVALID )
      return EINVAL;

    if ( status == TOD_ABSOLUTE_TIMEOUT_IS_IN_PAST ||
        status == TOD_ABSOLUTE_TIMEOUT_IS_NOW ) {
      already_timedout = true;
    } else {
      _Thread_queue_Context_set_relative_timeout( &queue_context, timeout );
    }
  } else {
    _Thread_queue_Context_set_no_timeout( &queue_context );
  }

  _POSIX_Condition_variables_Acquire_critical( the_cond, &queue_context );

  if (
    the_cond->mutex != POSIX_CONDITION_VARIABLES_NO_MUTEX
      && the_cond->mutex != *mutex
  ) {
    _POSIX_Condition_variables_Release( the_cond, &queue_context );
    return EINVAL;
  }

  the_cond->mutex = *mutex;

  cpu_self = _Thread_Dispatch_disable_critical( &queue_context.Lock_context );
  executing = _Per_CPU_Get_executing( cpu_self );

  if ( !already_timedout ) {
    _Thread_queue_Context_set_expected_level( &queue_context, 2 );
    _Thread_queue_Enqueue_critical(
      &the_cond->Wait_queue.Queue,
      POSIX_CONDITION_VARIABLES_TQ_OPERATIONS,
      executing,
      STATES_WAITING_FOR_CONDITION_VARIABLE,
      &queue_context
    );
  } else {
    _POSIX_Condition_variables_Release( the_cond, &queue_context );
    executing->Wait.return_code = STATUS_TIMEOUT;
  }

  mutex_error = pthread_mutex_unlock( mutex );
  if ( mutex_error != 0 ) {
    /*
     *  Historically, we ignored the unlock status since the behavior
     *  is undefined by POSIX. But GNU/Linux returns EPERM in this
     *  case, so we follow their lead.
     */
    _Assert( mutex_error == EINVAL || mutex_error == EPERM );
    _Thread_queue_Extract( executing );
    _Thread_Dispatch_enable( cpu_self );
    return EPERM;
  }

  /*
   *  Switch ourself out because we blocked as a result of the
   *  _Thread_queue_Enqueue_critical().
   */

  _Thread_Dispatch_enable( cpu_self );

  error = _POSIX_Get_error_after_wait( executing );

  /*
   *  If the thread is interrupted, while in the thread queue, by
   *  a POSIX signal, then pthread_cond_wait returns spuriously,
   *  according to the POSIX standard. It means that pthread_cond_wait
   *  returns a success status, except for the fact that it was not
   *  woken up a pthread_cond_signal() or a pthread_cond_broadcast().
   */

  if ( error == EINTR ) {
    error = 0;
  }

  /*
   *  When we get here the dispatch disable level is 0.
   */

  mutex_error = pthread_mutex_lock( mutex );
  if ( mutex_error != 0 ) {
    _Assert( mutex_error == EINVAL );
    return EINVAL;
  }

  return error;
}