示例#1
0
static void CPU_usage_Per_thread_handler(
  Thread_Control *the_thread
)
{
  #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
    _Timestamp_Set_to_zero( &the_thread->cpu_time_used );
  #else
    the_thread->cpu_time_used = 0;
  #endif
}
示例#2
0
void _TOD_Handler_initialization(void)
{
  /* POSIX format TOD (timespec) */
  _Timestamp_Set( &_TOD_Now, TOD_SECONDS_1970_THROUGH_1988, 0 );

  /* Uptime (timespec) */
  _Timestamp_Set_to_zero( &_TOD_Uptime );

  /* TOD has not been set */
  _TOD_Is_set = false;
  _TOD_Activate();
}
示例#3
0
文件: coretod.c 项目: chch1028/rtems
void _TOD_Handler_initialization(void)
{
  TOD_Control *tod = &_TOD;

  _ISR_lock_Initialize( &tod->lock );

  _Timestamp_Set( &tod->now, TOD_SECONDS_1970_THROUGH_1988, 0 );

  _Timestamp_Set_to_zero( &tod->uptime );

  tod->nanoseconds_since_last_tick =
    _TOD_Nanoseconds_since_tick_default_handler;

  /* TOD has not been set */
  tod->is_set = false;
}
示例#4
0
static void CPU_usage_Per_thread_handler(
  Thread_Control *the_thread
)
{
  const Scheduler_Control *scheduler;
  ISR_lock_Context         state_lock_context;
  ISR_lock_Context         scheduler_lock_context;

  _Thread_State_acquire( the_thread, &state_lock_context );
  scheduler = _Scheduler_Get( the_thread );
  _Scheduler_Acquire_critical( scheduler, &scheduler_lock_context );

  _Timestamp_Set_to_zero( &the_thread->cpu_time_used );

  _Scheduler_Release_critical( scheduler, &scheduler_lock_context );
  _Thread_State_release( the_thread, &state_lock_context );
}
示例#5
0
bool _Thread_Initialize(
    Objects_Information                  *information,
    Thread_Control                       *the_thread,
    void                                 *stack_area,
    size_t                                stack_size,
    bool                                  is_fp,
    Priority_Control                      priority,
    bool                                  is_preemptible,
    Thread_CPU_budget_algorithms          budget_algorithm,
    Thread_CPU_budget_algorithm_callout   budget_callout,
    uint32_t                              isr_level,
    Objects_Name                          name
)
{
    size_t               actual_stack_size = 0;
    void                *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    void              *fp_area;
#endif
    void                *sched = NULL;
    void                *extensions_area;
    bool                 extension_status;
    int                  i;

#if defined( RTEMS_SMP )
    if ( rtems_configuration_is_smp_enabled() && !is_preemptible ) {
        return false;
    }
#endif

    /*
     *  Initialize the Ada self pointer
     */
#if __RTEMS_ADA__
    the_thread->rtems_ada_self = NULL;
#endif

    /*
     *  Zero out all the allocated memory fields
     */
    for ( i=0 ; i <= THREAD_API_LAST ; i++ )
        the_thread->API_Extensions[i] = NULL;

    extensions_area = NULL;
    the_thread->libc_reent = NULL;

#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    fp_area = NULL;
#endif

    /*
     *  Allocate and Initialize the stack for this thread.
     */
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
    actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
    if ( !actual_stack_size || actual_stack_size < stack_size )
        return false;                     /* stack allocation failed */

    stack = the_thread->Start.stack;
#else
    if ( !stack_area ) {
        actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
        if ( !actual_stack_size || actual_stack_size < stack_size )
            return false;                     /* stack allocation failed */

        stack = the_thread->Start.stack;
        the_thread->Start.core_allocated_stack = true;
    } else {
        stack = stack_area;
        actual_stack_size = stack_size;
        the_thread->Start.core_allocated_stack = false;
    }
#endif

    _Stack_Initialize(
        &the_thread->Start.Initial_stack,
        stack,
        actual_stack_size
    );

    /*
     *  Allocate the floating point area for this thread
     */
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    if ( is_fp ) {
        fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
        if ( !fp_area )
            goto failed;
        fp_area = _Context_Fp_start( fp_area, 0 );
    }
    the_thread->fp_context       = fp_area;
    the_thread->Start.fp_context = fp_area;
#endif

    /*
     *  Initialize the thread timer
     */
    _Watchdog_Initialize( &the_thread->Timer, NULL, 0, NULL );

#ifdef __RTEMS_STRICT_ORDER_MUTEX__
    /* Initialize the head of chain of held mutexes */
    _Chain_Initialize_empty(&the_thread->lock_mutex);
#endif

    /*
     *  Allocate the extensions area for this thread
     */
    if ( _Thread_Maximum_extensions ) {
        extensions_area = _Workspace_Allocate(
                              (_Thread_Maximum_extensions + 1) * sizeof( void * )
                          );
        if ( !extensions_area )
            goto failed;
    }
    the_thread->extensions = (void **) extensions_area;

    /*
     * Clear the extensions area so extension users can determine
     * if they are linked to the thread. An extension user may
     * create the extension long after tasks have been created
     * so they cannot rely on the thread create user extension
     * call.
     */
    if ( the_thread->extensions ) {
        for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
            the_thread->extensions[i] = NULL;
    }

    /*
     *  General initialization
     */

    the_thread->Start.is_preemptible   = is_preemptible;
    the_thread->Start.budget_algorithm = budget_algorithm;
    the_thread->Start.budget_callout   = budget_callout;

    switch ( budget_algorithm ) {
    case THREAD_CPU_BUDGET_ALGORITHM_NONE:
    case THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE:
        break;
#if defined(RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE)
    case THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE:
        the_thread->cpu_time_budget = _Thread_Ticks_per_timeslice;
        break;
#endif
#if defined(RTEMS_SCORE_THREAD_ENABLE_SCHEDULER_CALLOUT)
    case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
        break;
#endif
    }

    the_thread->Start.isr_level         = isr_level;

#if defined(RTEMS_SMP)
    the_thread->is_scheduled            = false;
    the_thread->is_executing            = false;

    /* Initialize the cpu field for the non-SMP schedulers */
    the_thread->cpu                     = _Per_CPU_Get_by_index( 0 );
#endif

    the_thread->current_state           = STATES_DORMANT;
    the_thread->Wait.queue              = NULL;
    the_thread->resource_count          = 0;
    the_thread->real_priority           = priority;
    the_thread->Start.initial_priority  = priority;
    sched =_Scheduler_Allocate( the_thread );
    if ( !sched )
        goto failed;
    _Thread_Set_priority( the_thread, priority );

    /*
     *  Initialize the CPU usage statistics
     */
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
    _Timestamp_Set_to_zero( &the_thread->cpu_time_used );
#else
    the_thread->cpu_time_used = 0;
#endif

    /*
     *  Open the object
     */
    _Objects_Open( information, &the_thread->Object, name );

    /*
     *  We assume the Allocator Mutex is locked and dispatching is
     *  enabled when we get here.  We want to be able to run the
     *  user extensions with dispatching enabled.  The Allocator
     *  Mutex provides sufficient protection to let the user extensions
     *  run safely.
     */
    extension_status = _User_extensions_Thread_create( the_thread );
    if ( extension_status )
        return true;

failed:
    _Workspace_Free( the_thread->libc_reent );

    for ( i=0 ; i <= THREAD_API_LAST ; i++ )
        _Workspace_Free( the_thread->API_Extensions[i] );

    _Workspace_Free( extensions_area );

#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    _Workspace_Free( fp_area );
#endif

    _Workspace_Free( sched );

    _Thread_Stack_Free( the_thread );
    return false;
}
bool _Thread_Initialize(
  Objects_Information                  *information,
  Thread_Control                       *the_thread,
  const Scheduler_Control              *scheduler,
  void                                 *stack_area,
  size_t                                stack_size,
  bool                                  is_fp,
  Priority_Control                      priority,
  bool                                  is_preemptible,
  Thread_CPU_budget_algorithms          budget_algorithm,
  Thread_CPU_budget_algorithm_callout   budget_callout,
  uint32_t                              isr_level,
  Objects_Name                          name
)
{
  uintptr_t                tls_size = _TLS_Get_size();
  size_t                   actual_stack_size = 0;
  void                    *stack = NULL;
  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    void                  *fp_area = NULL;
  #endif
  bool                     extension_status;
  size_t                   i;
  bool                     scheduler_node_initialized = false;
  Per_CPU_Control         *cpu = _Per_CPU_Get_by_index( 0 );

#if defined( RTEMS_SMP )
  if ( rtems_configuration_is_smp_enabled() && !is_preemptible ) {
    return false;
  }
#endif

  for ( i = 0 ; i < _Thread_Control_add_on_count ; ++i ) {
    const Thread_Control_add_on *add_on = &_Thread_Control_add_ons[ i ];

    *(void **) ( (char *) the_thread + add_on->destination_offset ) =
      (char *) the_thread + add_on->source_offset;
  }

  /*
   *  Initialize the Ada self pointer
   */
  #if __RTEMS_ADA__
    the_thread->rtems_ada_self = NULL;
  #endif

  the_thread->Start.tls_area = NULL;

  /*
   *  Allocate and Initialize the stack for this thread.
   */
  #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
    actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
    if ( !actual_stack_size || actual_stack_size < stack_size )
      return false;                     /* stack allocation failed */

    stack = the_thread->Start.stack;
  #else
    if ( !stack_area ) {
      actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
      if ( !actual_stack_size || actual_stack_size < stack_size )
        return false;                     /* stack allocation failed */

      stack = the_thread->Start.stack;
      the_thread->Start.core_allocated_stack = true;
    } else {
      stack = stack_area;
      actual_stack_size = stack_size;
      the_thread->Start.core_allocated_stack = false;
    }
  #endif

  _Stack_Initialize(
     &the_thread->Start.Initial_stack,
     stack,
     actual_stack_size
  );

  /* Thread-local storage (TLS) area allocation */
  if ( tls_size > 0 ) {
    uintptr_t tls_align = _TLS_Heap_align_up( (uintptr_t) _TLS_Alignment );
    uintptr_t tls_alloc = _TLS_Get_allocation_size( tls_size, tls_align );

    the_thread->Start.tls_area =
      _Workspace_Allocate_aligned( tls_alloc, tls_align );

    if ( the_thread->Start.tls_area == NULL ) {
      goto failed;
    }
  }

  /*
   *  Allocate the floating point area for this thread
   */
  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    if ( is_fp ) {
      fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
      if ( !fp_area )
        goto failed;
      fp_area = _Context_Fp_start( fp_area, 0 );
    }
    the_thread->fp_context       = fp_area;
    the_thread->Start.fp_context = fp_area;
  #endif

  /*
   *  Initialize the thread timer
   */
  _Watchdog_Initialize( &the_thread->Timer, NULL, 0, NULL );

  #ifdef __RTEMS_STRICT_ORDER_MUTEX__
    /* Initialize the head of chain of held mutexes */
    _Chain_Initialize_empty(&the_thread->lock_mutex);
  #endif

  /*
   * Clear the extensions area so extension users can determine
   * if they are linked to the thread. An extension user may
   * create the extension long after tasks have been created
   * so they cannot rely on the thread create user extension
   * call.  The object index starts with one, so the first extension context is
   * unused.
   */
  for ( i = 1 ; i <= rtems_configuration_get_maximum_extensions() ; ++i )
    the_thread->extensions[ i ] = NULL;

  /*
   *  General initialization
   */

  the_thread->Start.isr_level        = isr_level;
  the_thread->Start.is_preemptible   = is_preemptible;
  the_thread->Start.budget_algorithm = budget_algorithm;
  the_thread->Start.budget_callout   = budget_callout;

  switch ( budget_algorithm ) {
    case THREAD_CPU_BUDGET_ALGORITHM_NONE:
    case THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE:
      break;
    #if defined(RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE)
      case THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE:
        the_thread->cpu_time_budget =
          rtems_configuration_get_ticks_per_timeslice();
        break;
    #endif
    #if defined(RTEMS_SCORE_THREAD_ENABLE_SCHEDULER_CALLOUT)
      case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
	break;
    #endif
  }

#if defined(RTEMS_SMP)
  the_thread->Scheduler.state = THREAD_SCHEDULER_BLOCKED;
  the_thread->Scheduler.own_control = scheduler;
  the_thread->Scheduler.control = scheduler;
  the_thread->Scheduler.own_node = the_thread->Scheduler.node;
  _Resource_Node_initialize( &the_thread->Resource_node );
  _CPU_Context_Set_is_executing( &the_thread->Registers, false );
#endif

  _Thread_Debug_set_real_processor( the_thread, cpu );

  /* Initialize the CPU for the non-SMP schedulers */
  _Thread_Set_CPU( the_thread, cpu );

  the_thread->current_state           = STATES_DORMANT;
  the_thread->Wait.queue              = NULL;
  the_thread->resource_count          = 0;
  the_thread->real_priority           = priority;
  the_thread->Start.initial_priority  = priority;

  _Scheduler_Node_initialize( scheduler, the_thread );
  scheduler_node_initialized = true;

  _Thread_Set_priority( the_thread, priority );

  /*
   *  Initialize the CPU usage statistics
   */
  #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
    _Timestamp_Set_to_zero( &the_thread->cpu_time_used );
  #else
    the_thread->cpu_time_used = 0;
  #endif

  /*
   * initialize thread's key vaule node chain
   */
  _Chain_Initialize_empty( &the_thread->Key_Chain );

  _Thread_Action_control_initialize( &the_thread->Post_switch_actions );

  _Thread_Action_initialize(
    &the_thread->Life.Action,
    _Thread_Life_action_handler
  );
  the_thread->Life.state = THREAD_LIFE_NORMAL;
  the_thread->Life.terminator = NULL;

  /*
   *  Open the object
   */
  _Objects_Open( information, &the_thread->Object, name );

  /*
   *  We assume the Allocator Mutex is locked and dispatching is
   *  enabled when we get here.  We want to be able to run the
   *  user extensions with dispatching enabled.  The Allocator
   *  Mutex provides sufficient protection to let the user extensions
   *  run safely.
   */
  extension_status = _User_extensions_Thread_create( the_thread );
  if ( extension_status )
    return true;

failed:

  if ( scheduler_node_initialized ) {
    _Scheduler_Node_destroy( scheduler, the_thread );
  }

  _Workspace_Free( the_thread->Start.tls_area );

  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    _Workspace_Free( fp_area );
  #endif

   _Thread_Stack_Free( the_thread );
  return false;
}
示例#7
0
/*
 *  rtems_cpu_usage_report
 */
void rtems_cpu_usage_report_with_plugin(
  void                  *context,
  rtems_printk_plugin_t  print
)
{
  uint32_t             i;
  uint32_t             api_index;
  Thread_Control      *the_thread;
  Objects_Information *information;
  char                 name[13];
  uint32_t             ival, fval;
  #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
    Timestamp_Control  uptime, total, ran, uptime_at_last_reset;
    uint32_t seconds, nanoseconds;
  #else
    uint32_t           total_units = 0;
  #endif

  if ( !print )
    return;

  /*
   *  When not using nanosecond CPU usage resolution, we have to count
   *  the number of "ticks" we gave credit for to give the user a rough
   *  guideline as to what each number means proportionally.
   */
  #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
    _Timestamp_Set_to_zero( &total );
    uptime_at_last_reset = CPU_usage_Uptime_at_last_reset;
  #else
    for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
      #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
        if ( !_Objects_Information_table[ api_index ] )
          continue;
      #endif

      information = _Objects_Information_table[ api_index ][ 1 ];
      if ( information ) {
        for ( i=1 ; i <= information->maximum ; i++ ) {
          the_thread = (Thread_Control *)information->local_table[ i ];

          if ( the_thread )
            total_units += the_thread->cpu_time_used;
        }
      }
    }
  #endif

  (*print)(
     context,
     "-------------------------------------------------------------------------------\n"
     "                              CPU USAGE BY THREAD\n"
     "------------+----------------------------------------+---------------+---------\n"
     #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
       " ID         | NAME                                   | SECONDS       | PERCENT\n"
     #else
       " ID         | NAME                                   | TICKS         | PERCENT\n"
     #endif
     "------------+----------------------------------------+---------------+---------\n"
  );

  for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
    #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
      if ( !_Objects_Information_table[ api_index ] )
        continue;
    #endif

    information = _Objects_Information_table[ api_index ][ 1 ];
    if ( information ) {
      for ( i=1 ; i <= information->maximum ; i++ ) {
        the_thread = (Thread_Control *)information->local_table[ i ];

        if ( !the_thread )
          continue;

        rtems_object_get_name( the_thread->Object.id, sizeof(name), name );

        (*print)(
          context,
          " 0x%08" PRIx32 " | %-38s |",
          the_thread->Object.id,
          name
        );

        #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
        {
          Timestamp_Control last;

          /*
           * If this is the currently executing thread, account for time
           * since the last context switch.
           */
          ran = the_thread->cpu_time_used;
          if ( is_executing_on_a_core( the_thread, &last ) ) {
            Timestamp_Control used;
            _TOD_Get_uptime( &uptime );
            _Timestamp_Subtract( &last, &uptime, &used );
            _Timestamp_Add_to( &ran, &used );
          } else {
            _TOD_Get_uptime( &uptime );
          }
          _Timestamp_Subtract( &uptime_at_last_reset, &uptime, &total );
          _Timestamp_Divide( &ran, &total, &ival, &fval );

          /*
           * Print the information
           */

          seconds = _Timestamp_Get_seconds( &ran );
          nanoseconds = _Timestamp_Get_nanoseconds( &ran ) /
            TOD_NANOSECONDS_PER_MICROSECOND;
          (*print)( context,
            "%7" PRIu32 ".%06" PRIu32 " |%4" PRIu32 ".%03" PRIu32 "\n",
            seconds, nanoseconds,
            ival, fval
          );
        }
        #else
         if (total_units) {
            uint64_t ival_64;

            ival_64 = the_thread->cpu_time_used;
            ival_64 *= 100000;
            ival = ival_64 / total_units;
          } else {
            ival = 0;
          }

          fval = ival % 1000;
          ival /= 1000;
          (*print)( context,
            "%14" PRIu32 " |%4" PRIu32 ".%03" PRIu32 "\n",
            the_thread->cpu_time_used,
            ival,
            fval
          );
        #endif
      }
    }
  }

  #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
    seconds = _Timestamp_Get_seconds( &total );
    nanoseconds = _Timestamp_Get_nanoseconds( &total ) /
      TOD_NANOSECONDS_PER_MICROSECOND;
    (*print)(
       context,
       "------------+----------------------------------------+---------------+---------\n"
       " TIME SINCE LAST CPU USAGE RESET IN SECONDS:                    %7" PRIu32 ".%06" PRIu32 "\n"
       "-------------------------------------------------------------------------------\n",
       seconds, nanoseconds
    );
  #else
    (*print)(
       context,
       "------------+----------------------------------------+---------------+---------\n"
       " TICKS SINCE LAST SYSTEM RESET:                                 %14" PRIu32 "\n"
       " TOTAL UNITS:                                                   %14" PRIu32 "\n"
       "-------------------------------------------------------------------------------\n",
       _Watchdog_Ticks_since_boot - CPU_usage_Ticks_at_last_reset,
       total_units
    );
  #endif
}
示例#8
0
static void CPU_usage_Per_thread_handler(
  Thread_Control *the_thread
)
{
  _Timestamp_Set_to_zero( &the_thread->cpu_time_used );
}
示例#9
0
文件: cpuusagetop.c 项目: AoLaD/rtems
static void
rtems_cpuusage_top_thread (rtems_task_argument arg)
{
  rtems_cpu_usage_data*  data = (rtems_cpu_usage_data*) arg;
  char                   name[13];
  int                    i;
  Heap_Information_block wksp;
  uint32_t               ival, fval;
  int                    task_count;
  rtems_event_set        out;
  rtems_status_code      sc;
  bool                   first_time = true;

  data->thread_active = true;

  _TOD_Get_uptime(&data->last_uptime);

  CPU_usage_Set_to_zero(&data->zero);

  while (data->thread_run)
  {
    Timestamp_Control uptime_at_last_reset = CPU_usage_Uptime_at_last_reset;
    size_t            tasks_size;
    size_t            usage_size;
    Timestamp_Control load;

    data->task_count = 0;
    rtems_iterate_over_all_threads_2(task_counter, data);

    tasks_size = sizeof(Thread_Control*) * (data->task_count + 1);
    usage_size = sizeof(Timestamp_Control) * (data->task_count + 1);

    if (data->task_count > data->task_size)
    {
      data->tasks = realloc(data->tasks, tasks_size);
      data->usage = realloc(data->usage, usage_size);
      data->current_usage = realloc(data->current_usage, usage_size);
      if ((data->tasks == NULL) || (data->usage == NULL) || (data->current_usage == NULL))
      {
        rtems_printf(data->printer, "top worker: error: no memory\n");
        data->thread_run = false;
        break;
      }
    }

    memset(data->tasks, 0, tasks_size);
    memset(data->usage, 0, usage_size);
    memset(data->current_usage, 0, usage_size);

    _Timestamp_Set_to_zero(&data->total);
    _Timestamp_Set_to_zero(&data->current);
    data->stack_size = 0;

    _TOD_Get_uptime(&data->uptime);
    _Timestamp_Subtract(&uptime_at_last_reset, &data->uptime, &data->uptime);
    _Timestamp_Subtract(&data->last_uptime, &data->uptime, &data->period);
    data->last_uptime = data->uptime;

    rtems_iterate_over_all_threads_2(task_usage, data);

    if (data->task_count > data->task_size)
    {
      data->last_tasks = realloc(data->last_tasks, tasks_size);
      data->last_usage = realloc(data->last_usage, usage_size);
      if ((data->last_tasks == NULL) || (data->last_usage == NULL))
      {
        rtems_printf(data->printer, "top worker: error: no memory\n");
        data->thread_run = false;
        break;
      }
      data->task_size = data->task_count;
    }

    memcpy(data->last_tasks, data->tasks, tasks_size);
    memcpy(data->last_usage, data->usage, usage_size);
    data->last_task_count = data->task_count;

    /*
     * We need to loop again to get suitable current usage values as we need a
     * last sample to work.
     */
    if (first_time)
    {
      rtems_task_wake_after(RTEMS_MILLISECONDS_TO_TICKS(500));
      first_time = false;
      continue;
    }

    _Protected_heap_Get_information(&_Workspace_Area, &wksp);

    if (data->single_page)
      rtems_printf(data->printer,
                   "\x1b[H\x1b[J"
                   " ENTER:Exit  SPACE:Refresh"
                   "  S:Scroll  A:All  <>:Order  +/-:Lines\n");
    rtems_printf(data->printer, "\n");

    /*
     * Uptime and period of this sample.
     */
    rtems_printf(data->printer, "Uptime: ");
    print_time(data, &data->uptime, 20);
    rtems_printf(data->printer, " Period: ");
    print_time(data, &data->period, 20);

    /*
     * Task count, load and idle levels.
     */
    rtems_printf(data->printer, "\nTasks: %4i  ", data->task_count);

    _Timestamp_Subtract(&data->idle, &data->total, &load);
    _Timestamp_Divide(&load, &data->uptime, &ival, &fval);
    rtems_printf(data->printer,
                 "Load Average: %4" PRIu32 ".%03" PRIu32 "%%", ival, fval);
    _Timestamp_Subtract(&data->current_idle, &data->current, &load);
    _Timestamp_Divide(&load, &data->period, &ival, &fval);
    rtems_printf(data->printer,
                 "  Load: %4" PRIu32 ".%03" PRIu32 "%%", ival, fval);
    _Timestamp_Divide(&data->current_idle, &data->period, &ival, &fval);
    rtems_printf(data->printer,
                 "  Idle: %4" PRIu32 ".%03" PRIu32 "%%", ival, fval);

    /*
     * Memory usage.
     */
    if (rtems_configuration_get_unified_work_area())
    {
      rtems_printf(data->printer, "\nMem: ");
      print_memsize(data, wksp.Free.total, "free");
      print_memsize(data, wksp.Used.total, "used");
    }
    else
    {
      region_information_block libc_heap;
      malloc_info(&libc_heap);
      rtems_printf(data->printer, "\nMem: Wksp: ");
      print_memsize(data, wksp.Free.total, "free");
      print_memsize(data, wksp.Used.total, "used  Heap: ");
      print_memsize(data, libc_heap.Free.total, "free");
      print_memsize(data, libc_heap.Used.total, "used");
    }

    print_memsize(data, data->stack_size, "stack\n");

    rtems_printf(data->printer,
       "\n"
        " ID         | NAME                | RPRI | CPRI   | TIME                | TOTAL   | CURRENT\n"
        "-%s---------+---------------------+-%s-----%s-----+---------------------+-%s------+--%s----\n",
       data->sort_order == RTEMS_TOP_SORT_ID ? "^^" : "--",
       data->sort_order == RTEMS_TOP_SORT_REAL_PRI ? "^^" : "--",
       data->sort_order == RTEMS_TOP_SORT_CURRENT_PRI ? "^^" : "--",
                          data->sort_order == RTEMS_TOP_SORT_TOTAL ? "^^" : "--",
       data->sort_order == RTEMS_TOP_SORT_CURRENT ? "^^" : "--"
    );

    task_count = 0;

    for (i = 0; i < data->task_count; i++)
    {
      Thread_Control*   thread = data->tasks[i];
      Timestamp_Control usage;
      Timestamp_Control current_usage;

      if (thread == NULL)
        break;

      if (data->single_page && (data->show != 0) && (i >= data->show))
        break;

      /*
       * We need to count the number displayed to clear the remainder of the
       * the display.
       */
      ++task_count;

      /*
       * If the API os POSIX print the entry point.
       */
      rtems_object_get_name(thread->Object.id, sizeof(name), name);
      if (name[0] == '\0')
        snprintf(name, sizeof(name) - 1, "(%p)", thread->Start.Entry.Kinds.Numeric.entry);

      rtems_printf(data->printer,
                   " 0x%08" PRIx32 " | %-19s |  %3" PRId64 " |  %3" PRId64 "   | ",
                   thread->Object.id,
                   name,
                   thread->Real_priority.priority,
                   _Thread_Get_priority(thread));

      usage = data->usage[i];
      current_usage = data->current_usage[i];

      /*
       * Print the information
       */
      print_time(data, &usage, 19);
      _Timestamp_Divide(&usage, &data->total, &ival, &fval);
      rtems_printf(data->printer,
                   " |%4" PRIu32 ".%03" PRIu32, ival, fval);
      _Timestamp_Divide(&current_usage, &data->period, &ival, &fval);
      rtems_printf(data->printer,
                   " |%4" PRIu32 ".%03" PRIu32 "\n", ival, fval);
    }

    if (data->single_page && (data->show != 0) && (task_count < data->show))
    {
      i = data->show - task_count;
      while (i > 0)
      {
        rtems_printf(data->printer, "\x1b[K\n");
        i--;
      }
    }

    sc = rtems_event_receive(RTEMS_EVENT_1,
                             RTEMS_EVENT_ANY,
                             RTEMS_MILLISECONDS_TO_TICKS (data->poll_rate_usecs),
                             &out);
    if ((sc != RTEMS_SUCCESSFUL) && (sc != RTEMS_TIMEOUT))
    {
      rtems_printf(data->printer,
                   "error: event receive: %s\n", rtems_status_text(sc));
      break;
    }
  }

  free(data->tasks);
  free(data->last_tasks);
  free(data->last_usage);
  free(data->current_usage);

  data->thread_active = false;

  rtems_task_delete (RTEMS_SELF);
}