static int eseqiv_init(struct crypto_tfm *tfm) { struct crypto_ablkcipher *geniv = __crypto_ablkcipher_cast(tfm); struct eseqiv_ctx *ctx = crypto_ablkcipher_ctx(geniv); unsigned long alignmask; unsigned int reqsize; spin_lock_init(&ctx->lock); alignmask = crypto_tfm_ctx_alignment() - 1; reqsize = sizeof(struct eseqiv_request_ctx); if (alignmask & reqsize) { alignmask &= reqsize; alignmask--; } alignmask = ~alignmask; alignmask &= crypto_ablkcipher_alignmask(geniv); reqsize += alignmask; reqsize += crypto_ablkcipher_ivsize(geniv); reqsize = ALIGN(reqsize, crypto_tfm_ctx_alignment()); ctx->reqoff = reqsize - sizeof(struct eseqiv_request_ctx); tfm->crt_ablkcipher.reqsize = reqsize + sizeof(struct ablkcipher_request); return skcipher_geniv_init(tfm); }
static int seqiv_init(struct crypto_tfm *tfm) { struct crypto_ablkcipher *geniv = __crypto_ablkcipher_cast(tfm); struct seqiv_ctx *ctx = crypto_ablkcipher_ctx(geniv); spin_lock_init(&ctx->lock); tfm->crt_ablkcipher.reqsize = sizeof(struct ablkcipher_request); return skcipher_geniv_init(tfm); }
static int seqiv_init(struct crypto_tfm *tfm) { struct crypto_ablkcipher *geniv = __crypto_ablkcipher_cast(tfm); struct seqiv_ctx *ctx = crypto_ablkcipher_ctx(geniv); spin_lock_init(&ctx->lock); tfm->crt_ablkcipher.reqsize = sizeof(struct ablkcipher_request); return crypto_rng_get_bytes(crypto_default_rng, ctx->salt, crypto_ablkcipher_ivsize(geniv)) ?: skcipher_geniv_init(tfm); }
static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm) { struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm); struct cryptd_state *state = cryptd_get_state(tfm); int active; mutex_lock(&state->mutex); active = ablkcipher_tfm_in_queue(__crypto_ablkcipher_cast(tfm)); mutex_unlock(&state->mutex); BUG_ON(active); crypto_free_blkcipher(ctx->child); }
static int dcp_aes_cbc_decrypt(struct ablkcipher_request *req) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req)); struct dcp_op *ctx = crypto_ablkcipher_ctx( crypto_ablkcipher_reqtfm(req)); if (unlikely(ctx->keylen != AES_KEYSIZE_128)) { int err = 0; ablkcipher_request_set_tfm(req, ctx->fallback); err = crypto_ablkcipher_decrypt(req); ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm)); return err; } return dcp_aes_cbc_crypt(req, DCP_AES | DCP_DEC | DCP_CBC); }
static int sahara_aes_cbc_decrypt(struct ablkcipher_request *req) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req)); struct sahara_ctx *ctx = crypto_ablkcipher_ctx( crypto_ablkcipher_reqtfm(req)); int err; if (unlikely(ctx->keylen != AES_KEYSIZE_128)) { ablkcipher_request_set_tfm(req, ctx->fallback); err = crypto_ablkcipher_decrypt(req); ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm)); return err; } return sahara_aes_crypt(req, FLAGS_CBC); }
static int crypto_init_givcipher_ops(struct crypto_tfm *tfm, u32 type, u32 mask) { struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher; struct ablkcipher_tfm *crt = &tfm->crt_ablkcipher; if (alg->ivsize > PAGE_SIZE / 8) return -EINVAL; crt->setkey = tfm->__crt_alg->cra_flags & CRYPTO_ALG_GENIV ? alg->setkey : setkey; crt->encrypt = alg->encrypt; crt->decrypt = alg->decrypt; crt->givencrypt = alg->givencrypt; crt->givdecrypt = alg->givdecrypt ?: no_givdecrypt; crt->base = __crypto_ablkcipher_cast(tfm); crt->ivsize = alg->ivsize; return 0; }
static int crypto_init_ablkcipher_ops(struct crypto_tfm *tfm, u32 type, u32 mask) { struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher; struct ablkcipher_tfm *crt = &tfm->crt_ablkcipher; if (alg->ivsize > PAGE_SIZE / 8) return -EINVAL; crt->setkey = setkey; crt->encrypt = alg->encrypt; crt->decrypt = alg->decrypt; if (!alg->ivsize) { crt->givencrypt = skcipher_null_givencrypt; crt->givdecrypt = skcipher_null_givdecrypt; } crt->base = __crypto_ablkcipher_cast(tfm); crt->ivsize = alg->ivsize; return 0; }
static int qce_ablkcipher_crypt(struct ablkcipher_request *req, int encrypt) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req)); struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req); struct qce_alg_template *tmpl = to_cipher_tmpl(tfm); int ret; rctx->flags = tmpl->alg_flags; rctx->flags |= encrypt ? QCE_ENCRYPT : QCE_DECRYPT; if (IS_AES(rctx->flags) && ctx->enc_keylen != AES_KEYSIZE_128 && ctx->enc_keylen != AES_KEYSIZE_256) { ablkcipher_request_set_tfm(req, ctx->fallback); ret = encrypt ? crypto_ablkcipher_encrypt(req) : crypto_ablkcipher_decrypt(req); ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm)); return ret; } return tmpl->qce->async_req_enqueue(tmpl->qce, &req->base); }
static int eseqiv_init(struct crypto_tfm *tfm) { struct crypto_ablkcipher *geniv = __crypto_ablkcipher_cast(tfm); struct eseqiv_ctx *ctx = crypto_ablkcipher_ctx(geniv); unsigned long alignmask; unsigned int reqsize; #ifndef CONFIG_CRYPTO_DRBG spin_lock_init(&ctx->lock); #endif alignmask = crypto_tfm_ctx_alignment() - 1; reqsize = sizeof(struct eseqiv_request_ctx); if (alignmask & reqsize) { alignmask &= reqsize; alignmask--; } alignmask = ~alignmask; alignmask &= crypto_ablkcipher_alignmask(geniv); reqsize += alignmask; reqsize += crypto_ablkcipher_ivsize(geniv); reqsize = ALIGN(reqsize, crypto_tfm_ctx_alignment()); ctx->reqoff = reqsize - sizeof(struct eseqiv_request_ctx); tfm->crt_ablkcipher.reqsize = reqsize + sizeof(struct ablkcipher_request); #ifdef CONFIG_CRYPTO_DRBG crypto_rng_get_bytes(crypto_default_rng, ctx->salt, crypto_ablkcipher_ivsize(geniv)); #endif return skcipher_geniv_init(tfm); }
struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name, u32 type, u32 mask) { struct crypto_tfm *tfm; int err; type = crypto_skcipher_type(type); mask = crypto_skcipher_mask(mask); for (;;) { struct crypto_alg *alg; alg = crypto_lookup_skcipher(alg_name, type, mask); if (IS_ERR(alg)) { err = PTR_ERR(alg); goto err; } tfm = __crypto_alloc_tfm(alg, type, mask); if (!IS_ERR(tfm)) return __crypto_ablkcipher_cast(tfm); crypto_mod_put(alg); err = PTR_ERR(tfm); err: if (err != -EAGAIN) break; if (signal_pending(current)) { err = -EINTR; break; } } return ERR_PTR(err); }
static int async_encrypt(struct ablkcipher_request *req) { struct crypto_tfm *tfm = req->base.tfm; struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; struct blkcipher_desc desc = { .tfm = __crypto_blkcipher_cast(tfm), .info = req->info, .flags = req->base.flags, }; return alg->encrypt(&desc, req->dst, req->src, req->nbytes); } static int async_decrypt(struct ablkcipher_request *req) { struct crypto_tfm *tfm = req->base.tfm; struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; struct blkcipher_desc desc = { .tfm = __crypto_blkcipher_cast(tfm), .info = req->info, .flags = req->base.flags, }; return alg->decrypt(&desc, req->dst, req->src, req->nbytes); } static unsigned int crypto_blkcipher_ctxsize(struct crypto_alg *alg, u32 type, u32 mask) { struct blkcipher_alg *cipher = &alg->cra_blkcipher; unsigned int len = alg->cra_ctxsize; if ((mask & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_MASK && cipher->ivsize) { len = ALIGN(len, (unsigned long)alg->cra_alignmask + 1); len += cipher->ivsize; } return len; } static int crypto_init_blkcipher_ops_async(struct crypto_tfm *tfm) { struct ablkcipher_tfm *crt = &tfm->crt_ablkcipher; struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; crt->setkey = async_setkey; crt->encrypt = async_encrypt; crt->decrypt = async_decrypt; if (!alg->ivsize) { crt->givencrypt = skcipher_null_givencrypt; crt->givdecrypt = skcipher_null_givdecrypt; } crt->base = __crypto_ablkcipher_cast(tfm); crt->ivsize = alg->ivsize; return 0; } static int crypto_init_blkcipher_ops_sync(struct crypto_tfm *tfm) { struct blkcipher_tfm *crt = &tfm->crt_blkcipher; struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; unsigned long align = crypto_tfm_alg_alignmask(tfm) + 1; unsigned long addr; crt->setkey = setkey; crt->encrypt = alg->encrypt; crt->decrypt = alg->decrypt; addr = (unsigned long)crypto_tfm_ctx(tfm); addr = ALIGN(addr, align); addr += ALIGN(tfm->__crt_alg->cra_ctxsize, align); crt->iv = (void *)addr; return 0; } static int crypto_init_blkcipher_ops(struct crypto_tfm *tfm, u32 type, u32 mask) { struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; if (alg->ivsize > PAGE_SIZE / 8) return -EINVAL; if ((mask & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_MASK) return crypto_init_blkcipher_ops_sync(tfm); else return crypto_init_blkcipher_ops_async(tfm); } static void crypto_blkcipher_show(struct seq_file *m, struct crypto_alg *alg) __attribute__ ((unused)); static void crypto_blkcipher_show(struct seq_file *m, struct crypto_alg *alg) { seq_printf(m, "type : blkcipher\n"); seq_printf(m, "blocksize : %u\n", alg->cra_blocksize); seq_printf(m, "min keysize : %u\n", alg->cra_blkcipher.min_keysize); seq_printf(m, "max keysize : %u\n", alg->cra_blkcipher.max_keysize); seq_printf(m, "ivsize : %u\n", alg->cra_blkcipher.ivsize); seq_printf(m, "geniv : %s\n", alg->cra_blkcipher.geniv ?: "<default>"); } const struct crypto_type crypto_blkcipher_type = { .ctxsize = crypto_blkcipher_ctxsize, .init = crypto_init_blkcipher_ops, #ifdef CONFIG_PROC_FS .show = crypto_blkcipher_show, #endif }; EXPORT_SYMBOL_GPL(crypto_blkcipher_type); static int crypto_grab_nivcipher(struct crypto_skcipher_spawn *spawn, const char *name, u32 type, u32 mask) { struct crypto_alg *alg; int err; type = crypto_skcipher_type(type); mask = crypto_skcipher_mask(mask)| CRYPTO_ALG_GENIV; alg = crypto_alg_mod_lookup(name, type, mask); if (IS_ERR(alg)) return PTR_ERR(alg); err = crypto_init_spawn(&spawn->base, alg, spawn->base.inst, mask); crypto_mod_put(alg); return err; } struct crypto_instance *skcipher_geniv_alloc(struct crypto_template *tmpl, struct rtattr **tb, u32 type, u32 mask) { struct { int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen); int (*encrypt)(struct ablkcipher_request *req); int (*decrypt)(struct ablkcipher_request *req); unsigned int min_keysize; unsigned int max_keysize; unsigned int ivsize; const char *geniv; } balg; const char *name; struct crypto_skcipher_spawn *spawn; struct crypto_attr_type *algt; struct crypto_instance *inst; struct crypto_alg *alg; int err; algt = crypto_get_attr_type(tb); err = PTR_ERR(algt); if (IS_ERR(algt)) return ERR_PTR(err); if ((algt->type ^ (CRYPTO_ALG_TYPE_GIVCIPHER | CRYPTO_ALG_GENIV)) & algt->mask) return ERR_PTR(-EINVAL); name = crypto_attr_alg_name(tb[1]); err = PTR_ERR(name); if (IS_ERR(name)) return ERR_PTR(err); inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); if (!inst) return ERR_PTR(-ENOMEM); spawn = crypto_instance_ctx(inst); /* Ignore async algorithms if necessary. */ mask |= crypto_requires_sync(algt->type, algt->mask); crypto_set_skcipher_spawn(spawn, inst); err = crypto_grab_nivcipher(spawn, name, type, mask); if (err) goto err_free_inst; alg = crypto_skcipher_spawn_alg(spawn); if ((alg->cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_BLKCIPHER) { balg.ivsize = alg->cra_blkcipher.ivsize; balg.min_keysize = alg->cra_blkcipher.min_keysize; balg.max_keysize = alg->cra_blkcipher.max_keysize; balg.setkey = async_setkey; balg.encrypt = async_encrypt; balg.decrypt = async_decrypt; balg.geniv = alg->cra_blkcipher.geniv; } else { balg.ivsize = alg->cra_ablkcipher.ivsize; balg.min_keysize = alg->cra_ablkcipher.min_keysize; balg.max_keysize = alg->cra_ablkcipher.max_keysize; balg.setkey = alg->cra_ablkcipher.setkey; balg.encrypt = alg->cra_ablkcipher.encrypt; balg.decrypt = alg->cra_ablkcipher.decrypt; balg.geniv = alg->cra_ablkcipher.geniv; } err = -EINVAL; if (!balg.ivsize) goto err_drop_alg; /* * This is only true if we're constructing an algorithm with its * default IV generator. For the default generator we elide the * template name and double-check the IV generator. */ if (algt->mask & CRYPTO_ALG_GENIV) { if (!balg.geniv) balg.geniv = crypto_default_geniv(alg); err = -EAGAIN; if (strcmp(tmpl->name, balg.geniv)) goto err_drop_alg; memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); memcpy(inst->alg.cra_driver_name, alg->cra_driver_name, CRYPTO_MAX_ALG_NAME); } else { err = -ENAMETOOLONG; if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", tmpl->name, alg->cra_name) >= CRYPTO_MAX_ALG_NAME) goto err_drop_alg; if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", tmpl->name, alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) goto err_drop_alg; } inst->alg.cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER | CRYPTO_ALG_GENIV; inst->alg.cra_flags |= alg->cra_flags & CRYPTO_ALG_ASYNC; inst->alg.cra_priority = alg->cra_priority; inst->alg.cra_blocksize = alg->cra_blocksize; inst->alg.cra_alignmask = alg->cra_alignmask; inst->alg.cra_type = &crypto_givcipher_type; inst->alg.cra_ablkcipher.ivsize = balg.ivsize; inst->alg.cra_ablkcipher.min_keysize = balg.min_keysize; inst->alg.cra_ablkcipher.max_keysize = balg.max_keysize; inst->alg.cra_ablkcipher.geniv = balg.geniv; inst->alg.cra_ablkcipher.setkey = balg.setkey; inst->alg.cra_ablkcipher.encrypt = balg.encrypt; inst->alg.cra_ablkcipher.decrypt = balg.decrypt; out: return inst; err_drop_alg: crypto_drop_skcipher(spawn); err_free_inst: kfree(inst); inst = ERR_PTR(err); goto out; } EXPORT_SYMBOL_GPL(skcipher_geniv_alloc); void skcipher_geniv_free(struct crypto_instance *inst) { crypto_drop_skcipher(crypto_instance_ctx(inst)); kfree(inst); }
static int skcipher_crypt_blkcipher(struct skcipher_request *req, int (*crypt)(struct blkcipher_desc *, struct scatterlist *, struct scatterlist *, unsigned int)) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm); struct blkcipher_desc desc = { .tfm = *ctx, .info = req->iv, .flags = req->base.flags, }; return crypt(&desc, req->dst, req->src, req->cryptlen); } static int skcipher_encrypt_blkcipher(struct skcipher_request *req) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; return skcipher_crypt_blkcipher(req, alg->encrypt); } static int skcipher_decrypt_blkcipher(struct skcipher_request *req) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; return skcipher_crypt_blkcipher(req, alg->decrypt); } static void crypto_exit_skcipher_ops_blkcipher(struct crypto_tfm *tfm) { struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm); crypto_free_blkcipher(*ctx); } static int crypto_init_skcipher_ops_blkcipher(struct crypto_tfm *tfm) { struct crypto_alg *calg = tfm->__crt_alg; struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm); struct crypto_blkcipher *blkcipher; struct crypto_tfm *btfm; if (!crypto_mod_get(calg)) return -EAGAIN; btfm = __crypto_alloc_tfm(calg, CRYPTO_ALG_TYPE_BLKCIPHER, CRYPTO_ALG_TYPE_MASK); if (IS_ERR(btfm)) { crypto_mod_put(calg); return PTR_ERR(btfm); } blkcipher = __crypto_blkcipher_cast(btfm); *ctx = blkcipher; tfm->exit = crypto_exit_skcipher_ops_blkcipher; skcipher->setkey = skcipher_setkey_blkcipher; skcipher->encrypt = skcipher_encrypt_blkcipher; skcipher->decrypt = skcipher_decrypt_blkcipher; skcipher->ivsize = crypto_blkcipher_ivsize(blkcipher); skcipher->keysize = calg->cra_blkcipher.max_keysize; return 0; } static int skcipher_setkey_ablkcipher(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm); struct crypto_ablkcipher *ablkcipher = *ctx; int err; crypto_ablkcipher_clear_flags(ablkcipher, ~0); crypto_ablkcipher_set_flags(ablkcipher, crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); err = crypto_ablkcipher_setkey(ablkcipher, key, keylen); crypto_skcipher_set_flags(tfm, crypto_ablkcipher_get_flags(ablkcipher) & CRYPTO_TFM_RES_MASK); return err; } static int skcipher_crypt_ablkcipher(struct skcipher_request *req, int (*crypt)(struct ablkcipher_request *)) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm); struct ablkcipher_request *subreq = skcipher_request_ctx(req); ablkcipher_request_set_tfm(subreq, *ctx); ablkcipher_request_set_callback(subreq, skcipher_request_flags(req), req->base.complete, req->base.data); ablkcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); return crypt(subreq); } static int skcipher_encrypt_ablkcipher(struct skcipher_request *req) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher; return skcipher_crypt_ablkcipher(req, alg->encrypt); } static int skcipher_decrypt_ablkcipher(struct skcipher_request *req) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher; return skcipher_crypt_ablkcipher(req, alg->decrypt); } static void crypto_exit_skcipher_ops_ablkcipher(struct crypto_tfm *tfm) { struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm); crypto_free_ablkcipher(*ctx); } static int crypto_init_skcipher_ops_ablkcipher(struct crypto_tfm *tfm) { struct crypto_alg *calg = tfm->__crt_alg; struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm); struct crypto_ablkcipher *ablkcipher; struct crypto_tfm *abtfm; if (!crypto_mod_get(calg)) return -EAGAIN; abtfm = __crypto_alloc_tfm(calg, 0, 0); if (IS_ERR(abtfm)) { crypto_mod_put(calg); return PTR_ERR(abtfm); } ablkcipher = __crypto_ablkcipher_cast(abtfm); *ctx = ablkcipher; tfm->exit = crypto_exit_skcipher_ops_ablkcipher; skcipher->setkey = skcipher_setkey_ablkcipher; skcipher->encrypt = skcipher_encrypt_ablkcipher; skcipher->decrypt = skcipher_decrypt_ablkcipher; skcipher->ivsize = crypto_ablkcipher_ivsize(ablkcipher); skcipher->reqsize = crypto_ablkcipher_reqsize(ablkcipher) + sizeof(struct ablkcipher_request); skcipher->keysize = calg->cra_ablkcipher.max_keysize; return 0; } static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm) { if (tfm->__crt_alg->cra_type == &crypto_blkcipher_type) return crypto_init_skcipher_ops_blkcipher(tfm); BUG_ON(tfm->__crt_alg->cra_type != &crypto_ablkcipher_type && tfm->__crt_alg->cra_type != &crypto_givcipher_type); return crypto_init_skcipher_ops_ablkcipher(tfm); } static const struct crypto_type crypto_skcipher_type2 = { .extsize = crypto_skcipher_extsize, .init_tfm = crypto_skcipher_init_tfm, .maskclear = ~CRYPTO_ALG_TYPE_MASK, .maskset = CRYPTO_ALG_TYPE_BLKCIPHER_MASK, .type = CRYPTO_ALG_TYPE_BLKCIPHER, .tfmsize = offsetof(struct crypto_skcipher, base), }; struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, u32 type, u32 mask) { return crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask); } EXPORT_SYMBOL_GPL(crypto_alloc_skcipher); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Symmetric key cipher type");