示例#1
0
static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp )
/*
 * Check the upper and lower edge of "regUp", to make sure that the
 * eUp->Org is above eLo, or eLo->Org is below eUp (depending on which
 * origin is leftmost).
 *
 * The main purpose is to splice right-going edges with the same
 * dest vertex and nearly identical slopes (ie. we can't distinguish
 * the slopes numerically).  However the splicing can also help us
 * to recover from numerical errors.  For example, suppose at one
 * point we checked eUp and eLo, and decided that eUp->Org is barely
 * above eLo.  Then later, we split eLo into two edges (eg. from
 * a splice operation like this one).  This can change the result of
 * our test so that now eUp->Org is incident to eLo, or barely below it.
 * We must correct this condition to maintain the dictionary invariants.
 *
 * One possibility is to check these edges for intersection again
 * (ie. CheckForIntersect).  This is what we do if possible.  However
 * CheckForIntersect requires that tess->event lies between eUp and eLo,
 * so that it has something to fall back on when the intersection
 * calculation gives us an unusable answer.  So, for those cases where
 * we can't check for intersection, this routine fixes the problem
 * by just splicing the offending vertex into the other edge.
 * This is a guaranteed solution, no matter how degenerate things get.
 * Basically this is a combinatorial solution to a numerical problem.
 */
{
  ActiveRegion *regLo = RegionBelow(regUp);
  GLUhalfEdge *eUp = regUp->eUp;
  GLUhalfEdge *eLo = regLo->eUp;

  if( VertLeq( eUp->Org, eLo->Org )) {
    if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org ) > 0 ) return FALSE;

    /* eUp->Org appears to be below eLo */
    if( ! VertEq( eUp->Org, eLo->Org )) {
      /* Splice eUp->Org into eLo */
      if ( __gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
      if ( !__gl_meshSplice( eUp, eLo->Oprev ) ) longjmp(tess->env,1);
      regUp->dirty = regLo->dirty = TRUE;

    } else if( eUp->Org != eLo->Org ) {
      /* merge the two vertices, discarding eUp->Org */
      pqDelete( tess->pq, eUp->Org->pqHandle ); /* __gl_pqSortDelete */
      SpliceMergeVertices( tess, eLo->Oprev, eUp );
    }
  } else {
    if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org ) < 0 ) return FALSE;

    /* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */
	regUp->dirty = TRUE;
	void* valid_ptr_check = RegionAbove(regUp);//->dirty  
	if ( valid_ptr_check ) {
		RegionAbove(regUp)->dirty = TRUE;  
	}  
    if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
    if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
  }
  return TRUE;
}
示例#2
0
static int CheckForLeftSplice( GLUtesselator *tess, ActiveRegion *regUp )
/*
 * Check the upper and lower edge of "regUp", to make sure that the
 * eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which
 * destination is rightmost).
 *
 * Theoretically, this should always be true.  However, splitting an edge
 * into two pieces can change the results of previous tests.  For example,
 * suppose at one point we checked eUp and eLo, and decided that eUp->Dst
 * is barely above eLo.  Then later, we split eLo into two edges (eg. from
 * a splice operation like this one).  This can change the result of
 * the test so that now eUp->Dst is incident to eLo, or barely below it.
 * We must correct this condition to maintain the dictionary invariants
 * (otherwise new edges might get inserted in the wrong place in the
 * dictionary, and bad stuff will happen).
 *
 * We fix the problem by just splicing the offending vertex into the
 * other edge.
 */
{
  ActiveRegion *regLo = RegionBelow(regUp);
  GLUhalfEdge *eUp = regUp->eUp;
  GLUhalfEdge *eLo = regLo->eUp;
  GLUhalfEdge *e;

  assert( ! VertEq( eUp->Dst, eLo->Dst ));

  if( VertLeq( eUp->Dst, eLo->Dst )) {
    if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org ) < 0 ) return FALSE;

    /* eLo->Dst is above eUp, so splice eLo->Dst into eUp */
	if ( RegionAbove(regUp) ) {
		RegionAbove(regUp)->dirty = TRUE;
	}  
	regUp->dirty = TRUE;
    e = __gl_meshSplitEdge( eUp );
    if (e == NULL) longjmp(tess->env,1);
    if ( !__gl_meshSplice( eLo->Sym, e ) ) longjmp(tess->env,1);
    e->Lface->inside = regUp->inside;
  } else {
    if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org ) > 0 ) return FALSE;

    /* eUp->Dst is below eLo, so splice eUp->Dst into eLo */
    regUp->dirty = regLo->dirty = TRUE;
    e = __gl_meshSplitEdge( eLo );
    if (e == NULL) longjmp(tess->env,1);
    if ( !__gl_meshSplice( eUp->Lnext, eLo->Sym ) ) longjmp(tess->env,1);
    e->Rface->inside = regUp->inside;
  }
  return TRUE;
}
示例#3
0
static void ConnectLeftDegenerate( GLUtesselator *tess,
				   ActiveRegion *regUp, GLUvertex *vEvent )
/*
 * The event vertex lies exacty on an already-processed edge or vertex.
 * Adding the new vertex involves splicing it into the already-processed
 * part of the mesh.
 */
{
  GLUhalfEdge *e, *eTopLeft, *eTopRight, *eLast;
  ActiveRegion *reg;

  e = regUp->eUp;
  if( VertEq( e->Org, vEvent )) {
    /* e->Org is an unprocessed vertex - just combine them, and wait
     * for e->Org to be pulled from the queue
     */
    assert( TOLERANCE_NONZERO );
    SpliceMergeVertices( tess, e, vEvent->anEdge );
    return;
  }

  if( ! VertEq( e->Dst, vEvent )) {
    /* General case -- splice vEvent into edge e which passes through it */
    if (__gl_meshSplitEdge( e->Sym ) == NULL) longjmp(tess->env,1);
    if( regUp->fixUpperEdge ) {
      /* This edge was fixable -- delete unused portion of original edge */
      if ( !__gl_meshDelete( e->Onext ) ) longjmp(tess->env,1);
      regUp->fixUpperEdge = FALSE;
    }
    if ( !__gl_meshSplice( vEvent->anEdge, e ) ) longjmp(tess->env,1);
    SweepEvent( tess, vEvent ); /* recurse */
    return;
  }

  /* vEvent coincides with e->Dst, which has already been processed.
   * Splice in the additional right-going edges.
   */
  assert( TOLERANCE_NONZERO );
  regUp = TopRightRegion( regUp );
  reg = RegionBelow( regUp );
  eTopRight = reg->eUp->Sym;
  eTopLeft = eLast = eTopRight->Onext;
  if( reg->fixUpperEdge ) {
    /* Here e->Dst has only a single fixable edge going right.
     * We can delete it since now we have some real right-going edges.
     */
    assert( eTopLeft != eTopRight );   /* there are some left edges too */
    DeleteRegion( tess, reg );
    if ( !__gl_meshDelete( eTopRight ) ) longjmp(tess->env,1);
    eTopRight = eTopLeft->Oprev;
  }
  if ( !__gl_meshSplice( vEvent->anEdge, eTopRight ) ) longjmp(tess->env,1);
  if( ! EdgeGoesLeft( eTopLeft )) {
    /* e->Dst had no left-going edges -- indicate this to AddRightEdges() */
    eTopLeft = NULL;
  }
  AddRightEdges( tess, regUp, eTopRight->Onext, eLast, eTopLeft, TRUE );
}
示例#4
0
static int AddVertex(GLUtesselator* tess, GLfloat coords[3], void* data)
{
   GLUhalfEdge* e=NULL;

   e=tess->lastEdge;
   if (e==NULL)
   {
      /* Make a self-loop (one vertex, one edge). */
      e=__gl_meshMakeEdge(tess->mesh);
      if (e==NULL)
      {
         return 0;
      }
      if (!__gl_meshSplice(e, e->Sym))
      {
         return 0;
      }
   }
   else
   {
      /* Create a new vertex and edge which immediately follow e
       * in the ordering around the left face.
       */
      if (__gl_meshSplitEdge(e)==NULL)
      {
         return 0;
      }
      e=e->Lnext;
   }

   /* The new vertex is now e->Org. */
   e->Org->data=data;
   e->Org->coords[0]=coords[0];
   e->Org->coords[1]=coords[1];
   e->Org->coords[2]=coords[2];

   /* The winding of an edge says how the winding number changes as we
    * cross from the edge''s right face to its left face.  We add the
    * vertices in such an order that a CCW contour will add +1 to
    * the winding number of the region inside the contour.
    */
   e->winding=1;
   e->Sym->winding=-1;

   tess->lastEdge=e;

   return 1;
}
示例#5
0
static int CheckForIntersect( GLUtesselator *tess, ActiveRegion *regUp )
/*
 * Check the upper and lower edges of the given region to see if
 * they intersect.  If so, create the intersection and add it
 * to the data structures.
 *
 * Returns TRUE if adding the new intersection resulted in a recursive
 * call to AddRightEdges(); in this case all "dirty" regions have been
 * checked for intersections, and possibly regUp has been deleted.
 */
{
  ActiveRegion *regLo = RegionBelow(regUp);
  GLUhalfEdge *eUp = regUp->eUp;
  GLUhalfEdge *eLo = regLo->eUp;
  GLUvertex *orgUp = eUp->Org;
  GLUvertex *orgLo = eLo->Org;
  GLUvertex *dstUp = eUp->Dst;
  GLUvertex *dstLo = eLo->Dst;
  GLdouble tMinUp, tMaxLo;
  GLUvertex isect, *orgMin;
  GLUhalfEdge *e;

  assert( ! VertEq( dstLo, dstUp ));
  assert( EdgeSign( dstUp, tess->event, orgUp ) <= 0 );
  assert( EdgeSign( dstLo, tess->event, orgLo ) >= 0 );
  assert( orgUp != tess->event && orgLo != tess->event );
  assert( ! regUp->fixUpperEdge && ! regLo->fixUpperEdge );

  if( orgUp == orgLo ) return FALSE;	/* right endpoints are the same */

  tMinUp = MIN( orgUp->t, dstUp->t );
  tMaxLo = MAX( orgLo->t, dstLo->t );
  if( tMinUp > tMaxLo ) return FALSE;	/* t ranges do not overlap */

  if( VertLeq( orgUp, orgLo )) {
    if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) return FALSE;
  } else {
    if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) return FALSE;
  }

  /* At this point the edges intersect, at least marginally */
  DebugEvent( tess );

  __gl_edgeIntersect( dstUp, orgUp, dstLo, orgLo, &isect );
  /* The following properties are guaranteed: */
  assert( MIN( orgUp->t, dstUp->t ) <= isect.t );
  assert( isect.t <= MAX( orgLo->t, dstLo->t ));
  assert( MIN( dstLo->s, dstUp->s ) <= isect.s );
  assert( isect.s <= MAX( orgLo->s, orgUp->s ));

  if( VertLeq( &isect, tess->event )) {
    /* The intersection point lies slightly to the left of the sweep line,
     * so move it until it''s slightly to the right of the sweep line.
     * (If we had perfect numerical precision, this would never happen
     * in the first place).  The easiest and safest thing to do is
     * replace the intersection by tess->event.
     */
    isect.s = tess->event->s;
    isect.t = tess->event->t;
  }
  /* Similarly, if the computed intersection lies to the right of the
   * rightmost origin (which should rarely happen), it can cause
   * unbelievable inefficiency on sufficiently degenerate inputs.
   * (If you have the test program, try running test54.d with the
   * "X zoom" option turned on).
   */
  orgMin = VertLeq( orgUp, orgLo ) ? orgUp : orgLo;
  if( VertLeq( orgMin, &isect )) {
    isect.s = orgMin->s;
    isect.t = orgMin->t;
  }

  if( VertEq( &isect, orgUp ) || VertEq( &isect, orgLo )) {
    /* Easy case -- intersection at one of the right endpoints */
    (void) CheckForRightSplice( tess, regUp );
    return FALSE;
  }

  if(	 (! VertEq( dstUp, tess->event )
	  && EdgeSign( dstUp, tess->event, &isect ) >= 0)
      || (! VertEq( dstLo, tess->event )
	  && EdgeSign( dstLo, tess->event, &isect ) <= 0 ))
  {
    /* Very unusual -- the new upper or lower edge would pass on the
     * wrong side of the sweep event, or through it.  This can happen
     * due to very small numerical errors in the intersection calculation.
     */
    if( dstLo == tess->event ) {
      /* Splice dstLo into eUp, and process the new region(s) */
      if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
      if ( !__gl_meshSplice( eLo->Sym, eUp ) ) longjmp(tess->env,1);
      regUp = TopLeftRegion( regUp );
      if (regUp == NULL) longjmp(tess->env,1);
      eUp = RegionBelow(regUp)->eUp;
      FinishLeftRegions( tess, RegionBelow(regUp), regLo );
      AddRightEdges( tess, regUp, eUp->Oprev, eUp, eUp, TRUE );
      return TRUE;
    }
    if( dstUp == tess->event ) {
      /* Splice dstUp into eLo, and process the new region(s) */
      if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
      if ( !__gl_meshSplice( eUp->Lnext, eLo->Oprev ) ) longjmp(tess->env,1);
      regLo = regUp;
      regUp = TopRightRegion( regUp );
      e = RegionBelow(regUp)->eUp->Rprev;
      regLo->eUp = eLo->Oprev;
      eLo = FinishLeftRegions( tess, regLo, NULL );
      AddRightEdges( tess, regUp, eLo->Onext, eUp->Rprev, e, TRUE );
      return TRUE;
    }
    /* Special case: called from ConnectRightVertex.  If either
     * edge passes on the wrong side of tess->event, split it
     * (and wait for ConnectRightVertex to splice it appropriately).
     */
    if( EdgeSign( dstUp, tess->event, &isect ) >= 0 ) {
      RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
      if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
      eUp->Org->s = tess->event->s;
      eUp->Org->t = tess->event->t;
    }
    if( EdgeSign( dstLo, tess->event, &isect ) <= 0 ) {
      regUp->dirty = regLo->dirty = TRUE;
      if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
      eLo->Org->s = tess->event->s;
      eLo->Org->t = tess->event->t;
    }
    /* leave the rest for ConnectRightVertex */
    return FALSE;
  }

  /* General case -- split both edges, splice into new vertex.
   * When we do the splice operation, the order of the arguments is
   * arbitrary as far as correctness goes.  However, when the operation
   * creates a new face, the work done is proportional to the size of
   * the new face.  We expect the faces in the processed part of
   * the mesh (ie. eUp->Lface) to be smaller than the faces in the
   * unprocessed original contours (which will be eLo->Oprev->Lface).
   */
  if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
  if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
  if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
  eUp->Org->s = isect.s;
  eUp->Org->t = isect.t;
  eUp->Org->pqHandle = pqInsert( tess->pq, eUp->Org ); /* __gl_pqSortInsert */
  if (eUp->Org->pqHandle == LONG_MAX) {
     pqDeletePriorityQ(tess->pq);	/* __gl_pqSortDeletePriorityQ */
     tess->pq = NULL;
     longjmp(tess->env,1);
  }
  GetIntersectData( tess, eUp->Org, orgUp, dstUp, orgLo, dstLo );
  RegionAbove(regUp)->dirty = regUp->dirty = regLo->dirty = TRUE;
  return FALSE;
}