static void tst_icbrt (unsigned long n, unsigned long r) { unsigned long i; i = __gmpfr_cuberoot (n); if (i != r) { printf ("Error in __gmpfr_cuberoot (%lu): got %lu instead of %lu\n", n, i, r); exit (1); } }
/* use Brent's formula exp(x) = (1+r+r^2/2!+r^3/3!+...)^(2^K)*2^n where x = n*log(2)+(2^K)*r together with Brent-Kung O(t^(1/2)) algorithm for the evaluation of power series. The resulting complexity is O(n^(1/3)*M(n)). */ int mpfr_exp_2 (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode) { long n; unsigned long K, k, l, err; /* FIXME: Which type ? */ int error_r; mp_exp_t exps; mp_prec_t q, precy; int inexact; mpfr_t r, s, t; mpz_t ss; TMP_DECL(marker); precy = MPFR_PREC(y); MPFR_TRACE ( printf("Py=%d Px=%d", MPFR_PREC(y), MPFR_PREC(x)) ); MPFR_TRACE ( MPFR_DUMP (x) ); n = (long) (mpfr_get_d1 (x) / LOG2); /* error bounds the cancelled bits in x - n*log(2) */ if (MPFR_UNLIKELY(n == 0)) error_r = 0; else count_leading_zeros (error_r, (mp_limb_t) (n < 0) ? -n : n); error_r = BITS_PER_MP_LIMB - error_r + 2; /* for the O(n^(1/2)*M(n)) method, the Taylor series computation of n/K terms costs about n/(2K) multiplications when computed in fixed point */ K = (precy < SWITCH) ? __gmpfr_isqrt ((precy + 1) / 2) : __gmpfr_cuberoot (4*precy); l = (precy - 1) / K + 1; err = K + MPFR_INT_CEIL_LOG2 (2 * l + 18); /* add K extra bits, i.e. failure probability <= 1/2^K = O(1/precy) */ q = precy + err + K + 5; /*q = ( (q-1)/BITS_PER_MP_LIMB + 1) * BITS_PER_MP_LIMB; */ mpfr_init2 (r, q + error_r); mpfr_init2 (s, q + error_r); mpfr_init2 (t, q); /* the algorithm consists in computing an upper bound of exp(x) using a precision of q bits, and see if we can round to MPFR_PREC(y) taking into account the maximal error. Otherwise we increase q. */ for (;;) { MPFR_TRACE ( printf("n=%d K=%d l=%d q=%d\n",n,K,l,q) ); /* if n<0, we have to get an upper bound of log(2) in order to get an upper bound of r = x-n*log(2) */ mpfr_const_log2 (s, (n >= 0) ? GMP_RNDZ : GMP_RNDU); /* s is within 1 ulp of log(2) */ mpfr_mul_ui (r, s, (n < 0) ? -n : n, (n >= 0) ? GMP_RNDZ : GMP_RNDU); /* r is within 3 ulps of n*log(2) */ if (n < 0) mpfr_neg (r, r, GMP_RNDD); /* exact */ /* r = floor(n*log(2)), within 3 ulps */ MPFR_TRACE ( MPFR_DUMP (x) ); MPFR_TRACE ( MPFR_DUMP (r) ); mpfr_sub (r, x, r, GMP_RNDU); /* possible cancellation here: the error on r is at most 3*2^(EXP(old_r)-EXP(new_r)) */ while (MPFR_IS_NEG (r)) { /* initial approximation n was too large */ n--; mpfr_add (r, r, s, GMP_RNDU); } mpfr_prec_round (r, q, GMP_RNDU); MPFR_TRACE ( MPFR_DUMP (r) ); MPFR_ASSERTD (MPFR_IS_POS (r)); mpfr_div_2ui (r, r, K, GMP_RNDU); /* r = (x-n*log(2))/2^K, exact */ TMP_MARK(marker); MY_INIT_MPZ(ss, 3 + 2*((q-1)/BITS_PER_MP_LIMB)); exps = mpfr_get_z_exp (ss, s); /* s <- 1 + r/1! + r^2/2! + ... + r^l/l! */ l = (precy < SWITCH) ? mpfr_exp2_aux (ss, r, q, &exps) /* naive method */ : mpfr_exp2_aux2 (ss, r, q, &exps); /* Brent/Kung method */ MPFR_TRACE(printf("l=%d q=%d (K+l)*q^2=%1.3e\n", l, q, (K+l)*(double)q*q)); for (k = 0; k < K; k++) { mpz_mul (ss, ss, ss); exps <<= 1; exps += mpz_normalize (ss, ss, q); } mpfr_set_z (s, ss, GMP_RNDN); MPFR_SET_EXP(s, MPFR_GET_EXP (s) + exps); TMP_FREE(marker); /* don't need ss anymore */ if (n>0) mpfr_mul_2ui(s, s, n, GMP_RNDU); else mpfr_div_2ui(s, s, -n, GMP_RNDU); /* error is at most 2^K*(3l*(l+1)) ulp for mpfr_exp2_aux */ l = (precy < SWITCH) ? 3*l*(l+1) : l*(l+4) ; k = MPFR_INT_CEIL_LOG2 (l); /* k = 0; while (l) { k++; l >>= 1; } */ /* now k = ceil(log(error in ulps)/log(2)) */ K += k; MPFR_TRACE ( printf("after mult. by 2^n:\n") ); MPFR_TRACE ( MPFR_DUMP (s) ); MPFR_TRACE ( printf("err=%d bits\n", K) ); if (mpfr_can_round (s, q - K, GMP_RNDN, GMP_RNDZ, precy + (rnd_mode == GMP_RNDN)) ) break; MPFR_TRACE (printf("prec++, use %d\n", q+BITS_PER_MP_LIMB) ); MPFR_TRACE (printf("q=%d q-K=%d precy=%d\n",q,q-K,precy) ); q += BITS_PER_MP_LIMB; mpfr_set_prec (r, q); mpfr_set_prec (s, q); mpfr_set_prec (t, q); } inexact = mpfr_set (y, s, rnd_mode); mpfr_clear (r); mpfr_clear (s); mpfr_clear (t); return inexact; }