示例#1
0
/* returns ceil(log(d)/log(2)) if d > 0,
   -1023 if d = +0,
   and floor(log(-d)/log(2))+1 if d < 0*/
long
__gmpfr_ceil_log2 (double d)
{
  long exp;
#if _GMP_IEEE_FLOATS
  union ieee_double_extract x;

  x.d = d;
  exp = x.s.exp - 1023;
  x.s.exp = 1023; /* value for 1 <= d < 2 */
  if (x.d != 1.0) /* d: not a power of two? */
    exp++;
  return exp;
#else
  double m;

  if (d < 0.0)
    return __gmpfr_floor_log2(-d)+1;
  else if (d == 0.0)
    return -1023;
  else if (d >= 1.0)
    {
      exp = 0;
      for( m= 1.0 ; m < d ; m *=2.0 )
        exp++;
    }
  else
    {
      exp = 1;
      for( m= 1.0 ; m >= d ; m *= (1.0/2.0) )
        exp--;
    }
#endif
  return exp;
}
示例#2
0
static void
tcmp2 (double x, double y, int i)
{
  mpfr_t xx, yy;
  mp_prec_t j;

  if (i == -1)
    {
      if (x == y)
        i = 53;
      else
        i = (int) (__gmpfr_floor_log2 (x) - __gmpfr_floor_log2 (x - y));
    }
  mpfr_init2(xx, 53); mpfr_init2(yy, 53);
  mpfr_set_d (xx, x, GMP_RNDN);
  mpfr_set_d (yy, y, GMP_RNDN);
  j = 0;
  if (mpfr_cmp2 (xx, yy, &j) == 0)
    {
      if (x != y)
        {
          printf ("Error in mpfr_cmp2 for\nx=");
          mpfr_out_str (stdout, 2, 0, xx, GMP_RNDN);
          printf ("\ny=");
          mpfr_out_str (stdout, 2, 0, yy, GMP_RNDN);
          printf ("\ngot sign 0 for x != y\n");
          exit (1);
        }
    }
  else if (j != (unsigned) i)
    {
      printf ("Error in mpfr_cmp2 for\nx=");
      mpfr_out_str (stdout, 2, 0, xx, GMP_RNDN);
      printf ("\ny=");
      mpfr_out_str (stdout, 2, 0, yy, GMP_RNDN);
      printf ("\ngot %lu instead of %d\n", j, i);
      exit (1);
    }
  mpfr_clear(xx); mpfr_clear(yy);
}
示例#3
0
/* returns ceil(log(d)/log(2)) if d > 0,
   -1023 if d = +0,
   and floor(log(-d)/log(2))+1 if d < 0
*/
long
__gmpfr_ceil_log2 (double d)
{
  long exp;
#if _MPFR_IEEE_FLOATS
  union mpfr_ieee_double_extract x;

  x.d = d;
  /* The cast below is useless in theory, but let us not depend on the
     integer promotion rules (for instance, tcc is currently wrong). */
  exp = (long) x.s.exp - 1023;
  MPFR_ASSERTN (exp < 1023);  /* fail on infinities */
  x.s.exp = 1023; /* value for 1 <= d < 2 */
  if (x.d != 1.0) /* d: not a power of two? */
    exp++;
  return exp;
#else /* _MPFR_IEEE_FLOATS */
  double m;

  if (d < 0.0)
    return __gmpfr_floor_log2 (-d) + 1;
  else if (d == 0.0)
    return -1023;
  else if (d >= 1.0)
    {
      exp = 0;
      for (m = 1.0; m < d; m *= 2.0)
        exp++;
    }
  else
    {
      exp = 1;
      for (m = 1.0; m >= d; m *= 0.5)
        exp--;
    }
#endif /* _MPFR_IEEE_FLOATS */
  return exp;
}
示例#4
0
文件: zeta.c 项目: mmanley/Antares
/* Input: s - a floating-point number >= 1/2.
          rnd_mode - a rounding mode.
          Assumes s is neither NaN nor Infinite.
   Output: z - Zeta(s) rounded to the precision of z with direction rnd_mode
*/
static int
mpfr_zeta_pos (mpfr_t z, mpfr_srcptr s, mp_rnd_t rnd_mode)
{
  mpfr_t b, c, z_pre, f, s1;
  double beta, sd, dnep;
  mpfr_t *tc1;
  mp_prec_t precz, precs, d, dint;
  int p, n, l, add;
  int inex;
  MPFR_GROUP_DECL (group);
  MPFR_ZIV_DECL (loop);

  MPFR_ASSERTD (MPFR_IS_POS (s) && MPFR_GET_EXP (s) >= 0);

  precz = MPFR_PREC (z);
  precs = MPFR_PREC (s);

  /* Zeta(x) = 1+1/2^x+1/3^x+1/4^x+1/5^x+O(1/6^x)
     so with 2^(EXP(x)-1) <= x < 2^EXP(x)
     So for x > 2^3, k^x > k^8, so 2/k^x < 2/k^8
     Zeta(x) = 1 + 1/2^x*(1+(2/3)^x+(2/4)^x+...)
             = 1 + 1/2^x*(1+sum((2/k)^x,k=3..infinity))
            <= 1 + 1/2^x*(1+sum((2/k)^8,k=3..infinity))
     And sum((2/k)^8,k=3..infinity) = -257+128*Pi^8/4725 ~= 0.0438035
     So Zeta(x) <= 1 + 1/2^x*2 for x >= 8
     The error is < 2^(-x+1) <= 2^(-2^(EXP(x)-1)+1) */
  if (MPFR_GET_EXP (s) > 3)
    {
      mp_exp_t err;
      err = MPFR_GET_EXP (s) - 1;
      if (err > (mp_exp_t) (sizeof (mp_exp_t)*CHAR_BIT-2))
        err = MPFR_EMAX_MAX;
      else
        err = ((mp_exp_t)1) << err;
      err = 1 - (-err+1); /* GET_EXP(one) - (-err+1) = err :) */
      MPFR_FAST_COMPUTE_IF_SMALL_INPUT (z, __gmpfr_one, err, 0, 1,
                                        rnd_mode, {});
    }

  d = precz + MPFR_INT_CEIL_LOG2(precz) + 10;

  /* we want that s1 = s-1 is exact, i.e. we should have PREC(s1) >= EXP(s) */
  dint = (mpfr_uexp_t) MPFR_GET_EXP (s);
  mpfr_init2 (s1, MAX (precs, dint));
  inex = mpfr_sub (s1, s, __gmpfr_one, GMP_RNDN);
  MPFR_ASSERTD (inex == 0);

  /* case s=1 */
  if (MPFR_IS_ZERO (s1))
    {
      MPFR_SET_INF (z);
      MPFR_SET_POS (z);
      MPFR_ASSERTD (inex == 0);
      goto clear_and_return;
    }

  MPFR_GROUP_INIT_4 (group, MPFR_PREC_MIN, b, c, z_pre, f);

  MPFR_ZIV_INIT (loop, d);
  for (;;)
    {
      /* Principal loop: we compute, in z_pre,
         an approximation of Zeta(s), that we send to can_round */
      if (MPFR_GET_EXP (s1) <= -(mp_exp_t) ((mpfr_prec_t) (d-3)/2))
        /* Branch 1: when s-1 is very small, one
           uses the approximation Zeta(s)=1/(s-1)+gamma,
           where gamma is Euler's constant */
        {
          dint = MAX (d + 3, precs);
          MPFR_TRACE (printf ("branch 1\ninternal precision=%d\n", dint));
          MPFR_GROUP_REPREC_4 (group, dint, b, c, z_pre, f);
          mpfr_div (z_pre, __gmpfr_one, s1, GMP_RNDN);
          mpfr_const_euler (f, GMP_RNDN);
          mpfr_add (z_pre, z_pre, f, GMP_RNDN);
        }
      else /* Branch 2 */
        {
          size_t size;

          MPFR_TRACE (printf ("branch 2\n"));
          /* Computation of parameters n, p and working precision */
          dnep = (double) d * LOG2;
          sd = mpfr_get_d (s, GMP_RNDN);
          /* beta = dnep + 0.61 + sd * log (6.2832 / sd);
             but a larger value is ok */
#define LOG6dot2832 1.83787940484160805532
          beta = dnep + 0.61 + sd * (LOG6dot2832 - LOG2 *
                                     __gmpfr_floor_log2 (sd));
          if (beta <= 0.0)
            {
              p = 0;
              /* n = 1 + (int) (exp ((dnep - LOG2) / sd)); */
              n = 1 + (int) __gmpfr_ceil_exp2 ((d - 1.0) / sd);
            }
          else
            {
              p = 1 + (int) beta / 2;
              n = 1 + (int) ((sd + 2.0 * (double) p - 1.0) / 6.2832);
            }
          MPFR_TRACE (printf ("\nn=%d\np=%d\n",n,p));
          /* add = 4 + floor(1.5 * log(d) / log (2)).
             We should have add >= 10, which is always fulfilled since
             d = precz + 11 >= 12, thus ceil(log2(d)) >= 4 */
          add = 4 + (3 * MPFR_INT_CEIL_LOG2 (d)) / 2;
          MPFR_ASSERTD(add >= 10);
          dint = d + add;
          if (dint < precs)
            dint = precs;

          MPFR_TRACE (printf("internal precision=%d\n",dint));

          size = (p + 1) * sizeof(mpfr_t);
          tc1 = (mpfr_t*) (*__gmp_allocate_func) (size);
          for (l=1; l<=p; l++)
            mpfr_init2 (tc1[l], dint);
          MPFR_GROUP_REPREC_4 (group, dint, b, c, z_pre, f);

          MPFR_TRACE (printf ("precision of z =%d\n", precz));

          /* Computation of the coefficients c_k */
          mpfr_zeta_c (p, tc1);
          /* Computation of the 3 parts of the fonction Zeta. */
          mpfr_zeta_part_a (z_pre, s, n);
          mpfr_zeta_part_b (b, s, n, p, tc1);
          /* s1 = s-1 is already computed above */
          mpfr_div (c, __gmpfr_one, s1, GMP_RNDN);
          mpfr_ui_pow (f, n, s1, GMP_RNDN);
          mpfr_div (c, c, f, GMP_RNDN);
          MPFR_TRACE (MPFR_DUMP (c));
          mpfr_add (z_pre, z_pre, c, GMP_RNDN);
          mpfr_add (z_pre, z_pre, b, GMP_RNDN);
          for (l=1; l<=p; l++)
            mpfr_clear (tc1[l]);
          (*__gmp_free_func) (tc1, size);
          /* End branch 2 */
        }

      MPFR_TRACE (MPFR_DUMP (z_pre));
      if (MPFR_LIKELY (MPFR_CAN_ROUND (z_pre, d-3, precz, rnd_mode)))
        break;
      MPFR_ZIV_NEXT (loop, d);
    }
  MPFR_ZIV_FREE (loop);

  inex = mpfr_set (z, z_pre, rnd_mode);

  MPFR_GROUP_CLEAR (group);
 clear_and_return:
  mpfr_clear (s1);

  return inex;
}