/* returns ceil(log(d)/log(2)) if d > 0, -1023 if d = +0, and floor(log(-d)/log(2))+1 if d < 0*/ long __gmpfr_ceil_log2 (double d) { long exp; #if _GMP_IEEE_FLOATS union ieee_double_extract x; x.d = d; exp = x.s.exp - 1023; x.s.exp = 1023; /* value for 1 <= d < 2 */ if (x.d != 1.0) /* d: not a power of two? */ exp++; return exp; #else double m; if (d < 0.0) return __gmpfr_floor_log2(-d)+1; else if (d == 0.0) return -1023; else if (d >= 1.0) { exp = 0; for( m= 1.0 ; m < d ; m *=2.0 ) exp++; } else { exp = 1; for( m= 1.0 ; m >= d ; m *= (1.0/2.0) ) exp--; } #endif return exp; }
static void tcmp2 (double x, double y, int i) { mpfr_t xx, yy; mp_prec_t j; if (i == -1) { if (x == y) i = 53; else i = (int) (__gmpfr_floor_log2 (x) - __gmpfr_floor_log2 (x - y)); } mpfr_init2(xx, 53); mpfr_init2(yy, 53); mpfr_set_d (xx, x, GMP_RNDN); mpfr_set_d (yy, y, GMP_RNDN); j = 0; if (mpfr_cmp2 (xx, yy, &j) == 0) { if (x != y) { printf ("Error in mpfr_cmp2 for\nx="); mpfr_out_str (stdout, 2, 0, xx, GMP_RNDN); printf ("\ny="); mpfr_out_str (stdout, 2, 0, yy, GMP_RNDN); printf ("\ngot sign 0 for x != y\n"); exit (1); } } else if (j != (unsigned) i) { printf ("Error in mpfr_cmp2 for\nx="); mpfr_out_str (stdout, 2, 0, xx, GMP_RNDN); printf ("\ny="); mpfr_out_str (stdout, 2, 0, yy, GMP_RNDN); printf ("\ngot %lu instead of %d\n", j, i); exit (1); } mpfr_clear(xx); mpfr_clear(yy); }
/* returns ceil(log(d)/log(2)) if d > 0, -1023 if d = +0, and floor(log(-d)/log(2))+1 if d < 0 */ long __gmpfr_ceil_log2 (double d) { long exp; #if _MPFR_IEEE_FLOATS union mpfr_ieee_double_extract x; x.d = d; /* The cast below is useless in theory, but let us not depend on the integer promotion rules (for instance, tcc is currently wrong). */ exp = (long) x.s.exp - 1023; MPFR_ASSERTN (exp < 1023); /* fail on infinities */ x.s.exp = 1023; /* value for 1 <= d < 2 */ if (x.d != 1.0) /* d: not a power of two? */ exp++; return exp; #else /* _MPFR_IEEE_FLOATS */ double m; if (d < 0.0) return __gmpfr_floor_log2 (-d) + 1; else if (d == 0.0) return -1023; else if (d >= 1.0) { exp = 0; for (m = 1.0; m < d; m *= 2.0) exp++; } else { exp = 1; for (m = 1.0; m >= d; m *= 0.5) exp--; } #endif /* _MPFR_IEEE_FLOATS */ return exp; }
/* Input: s - a floating-point number >= 1/2. rnd_mode - a rounding mode. Assumes s is neither NaN nor Infinite. Output: z - Zeta(s) rounded to the precision of z with direction rnd_mode */ static int mpfr_zeta_pos (mpfr_t z, mpfr_srcptr s, mp_rnd_t rnd_mode) { mpfr_t b, c, z_pre, f, s1; double beta, sd, dnep; mpfr_t *tc1; mp_prec_t precz, precs, d, dint; int p, n, l, add; int inex; MPFR_GROUP_DECL (group); MPFR_ZIV_DECL (loop); MPFR_ASSERTD (MPFR_IS_POS (s) && MPFR_GET_EXP (s) >= 0); precz = MPFR_PREC (z); precs = MPFR_PREC (s); /* Zeta(x) = 1+1/2^x+1/3^x+1/4^x+1/5^x+O(1/6^x) so with 2^(EXP(x)-1) <= x < 2^EXP(x) So for x > 2^3, k^x > k^8, so 2/k^x < 2/k^8 Zeta(x) = 1 + 1/2^x*(1+(2/3)^x+(2/4)^x+...) = 1 + 1/2^x*(1+sum((2/k)^x,k=3..infinity)) <= 1 + 1/2^x*(1+sum((2/k)^8,k=3..infinity)) And sum((2/k)^8,k=3..infinity) = -257+128*Pi^8/4725 ~= 0.0438035 So Zeta(x) <= 1 + 1/2^x*2 for x >= 8 The error is < 2^(-x+1) <= 2^(-2^(EXP(x)-1)+1) */ if (MPFR_GET_EXP (s) > 3) { mp_exp_t err; err = MPFR_GET_EXP (s) - 1; if (err > (mp_exp_t) (sizeof (mp_exp_t)*CHAR_BIT-2)) err = MPFR_EMAX_MAX; else err = ((mp_exp_t)1) << err; err = 1 - (-err+1); /* GET_EXP(one) - (-err+1) = err :) */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT (z, __gmpfr_one, err, 0, 1, rnd_mode, {}); } d = precz + MPFR_INT_CEIL_LOG2(precz) + 10; /* we want that s1 = s-1 is exact, i.e. we should have PREC(s1) >= EXP(s) */ dint = (mpfr_uexp_t) MPFR_GET_EXP (s); mpfr_init2 (s1, MAX (precs, dint)); inex = mpfr_sub (s1, s, __gmpfr_one, GMP_RNDN); MPFR_ASSERTD (inex == 0); /* case s=1 */ if (MPFR_IS_ZERO (s1)) { MPFR_SET_INF (z); MPFR_SET_POS (z); MPFR_ASSERTD (inex == 0); goto clear_and_return; } MPFR_GROUP_INIT_4 (group, MPFR_PREC_MIN, b, c, z_pre, f); MPFR_ZIV_INIT (loop, d); for (;;) { /* Principal loop: we compute, in z_pre, an approximation of Zeta(s), that we send to can_round */ if (MPFR_GET_EXP (s1) <= -(mp_exp_t) ((mpfr_prec_t) (d-3)/2)) /* Branch 1: when s-1 is very small, one uses the approximation Zeta(s)=1/(s-1)+gamma, where gamma is Euler's constant */ { dint = MAX (d + 3, precs); MPFR_TRACE (printf ("branch 1\ninternal precision=%d\n", dint)); MPFR_GROUP_REPREC_4 (group, dint, b, c, z_pre, f); mpfr_div (z_pre, __gmpfr_one, s1, GMP_RNDN); mpfr_const_euler (f, GMP_RNDN); mpfr_add (z_pre, z_pre, f, GMP_RNDN); } else /* Branch 2 */ { size_t size; MPFR_TRACE (printf ("branch 2\n")); /* Computation of parameters n, p and working precision */ dnep = (double) d * LOG2; sd = mpfr_get_d (s, GMP_RNDN); /* beta = dnep + 0.61 + sd * log (6.2832 / sd); but a larger value is ok */ #define LOG6dot2832 1.83787940484160805532 beta = dnep + 0.61 + sd * (LOG6dot2832 - LOG2 * __gmpfr_floor_log2 (sd)); if (beta <= 0.0) { p = 0; /* n = 1 + (int) (exp ((dnep - LOG2) / sd)); */ n = 1 + (int) __gmpfr_ceil_exp2 ((d - 1.0) / sd); } else { p = 1 + (int) beta / 2; n = 1 + (int) ((sd + 2.0 * (double) p - 1.0) / 6.2832); } MPFR_TRACE (printf ("\nn=%d\np=%d\n",n,p)); /* add = 4 + floor(1.5 * log(d) / log (2)). We should have add >= 10, which is always fulfilled since d = precz + 11 >= 12, thus ceil(log2(d)) >= 4 */ add = 4 + (3 * MPFR_INT_CEIL_LOG2 (d)) / 2; MPFR_ASSERTD(add >= 10); dint = d + add; if (dint < precs) dint = precs; MPFR_TRACE (printf("internal precision=%d\n",dint)); size = (p + 1) * sizeof(mpfr_t); tc1 = (mpfr_t*) (*__gmp_allocate_func) (size); for (l=1; l<=p; l++) mpfr_init2 (tc1[l], dint); MPFR_GROUP_REPREC_4 (group, dint, b, c, z_pre, f); MPFR_TRACE (printf ("precision of z =%d\n", precz)); /* Computation of the coefficients c_k */ mpfr_zeta_c (p, tc1); /* Computation of the 3 parts of the fonction Zeta. */ mpfr_zeta_part_a (z_pre, s, n); mpfr_zeta_part_b (b, s, n, p, tc1); /* s1 = s-1 is already computed above */ mpfr_div (c, __gmpfr_one, s1, GMP_RNDN); mpfr_ui_pow (f, n, s1, GMP_RNDN); mpfr_div (c, c, f, GMP_RNDN); MPFR_TRACE (MPFR_DUMP (c)); mpfr_add (z_pre, z_pre, c, GMP_RNDN); mpfr_add (z_pre, z_pre, b, GMP_RNDN); for (l=1; l<=p; l++) mpfr_clear (tc1[l]); (*__gmp_free_func) (tc1, size); /* End branch 2 */ } MPFR_TRACE (MPFR_DUMP (z_pre)); if (MPFR_LIKELY (MPFR_CAN_ROUND (z_pre, d-3, precz, rnd_mode))) break; MPFR_ZIV_NEXT (loop, d); } MPFR_ZIV_FREE (loop); inex = mpfr_set (z, z_pre, rnd_mode); MPFR_GROUP_CLEAR (group); clear_and_return: mpfr_clear (s1); return inex; }