void _dl_static_init (struct link_map *l) { struct link_map *rtld_map = l; struct r_scope_elem **scope; const ElfW(Sym) *ref = NULL; lookup_t loadbase; void (*f) (void *[]); size_t i; __libc_lock_lock_recursive (_dl_static_lock); loadbase = _dl_lookup_symbol_x ("_dl_var_init", l, &ref, l->l_local_scope, NULL, 0, 1, NULL); for (scope = l->l_local_scope; *scope != NULL; scope++) for (i = 0; i < (*scope)->r_nlist; i++) if ((*scope)->r_list[i] == loadbase) { rtld_map = (*scope)->r_list[i]; break; } if (ref != NULL) { f = (void (*) (void *[])) DL_SYMBOL_ADDRESS (loadbase, ref); _dl_unprotect_relro (rtld_map); f (variables); _dl_protect_relro (rtld_map); } __libc_lock_unlock_recursive (_dl_static_lock); }
const priv_data_t * __priv_parse_data_cached (void) { if (__data) return __data; __libc_lock_lock_recursive (__priv_lock); __data = __priv_parse_info (getprivimplinfo ()); __libc_lock_unlock_recursive (__priv_lock); return __data; }
void _dl_static_init (struct link_map *map) { const ElfW(Sym) *ref = NULL; lookup_t loadbase; void (*f) (void *[]); __libc_lock_lock_recursive (_dl_static_lock); loadbase = _dl_lookup_symbol_x ("_dl_var_init", map, &ref, map->l_local_scope, NULL, 0, 1, NULL); if (ref != NULL) { f = (void (*) (void *[])) DL_SYMBOL_ADDRESS (loadbase, ref); f (variables); } __libc_lock_unlock_recursive (_dl_static_lock); }
/* Load the message catalogs specified by FILENAME. If it is no valid message catalog do nothing. */ void internal_function _nl_load_domain (struct loaded_l10nfile *domain_file, struct binding *domainbinding) { __libc_lock_define_initialized_recursive (static, lock) int fd = -1; size_t size; #ifdef _LIBC struct stat64 st; #else struct stat st; #endif struct mo_file_header *data = (struct mo_file_header *) -1; int use_mmap = 0; struct loaded_domain *domain; int revision; const char *nullentry; size_t nullentrylen; __libc_lock_lock_recursive (lock); if (domain_file->decided != 0) { /* There are two possibilities: + this is the same thread calling again during this initialization via _nl_find_msg. We have initialized everything this call needs. + this is another thread which tried to initialize this object. Not necessary anymore since if the lock is available this is finished. */ goto done; } domain_file->decided = -1; domain_file->data = NULL; /* Note that it would be useless to store domainbinding in domain_file because domainbinding might be == NULL now but != NULL later (after a call to bind_textdomain_codeset). */ /* If the record does not represent a valid locale the FILENAME might be NULL. This can happen when according to the given specification the locale file name is different for XPG and CEN syntax. */ if (domain_file->filename == NULL) goto out; /* Try to open the addressed file. */ fd = open (domain_file->filename, O_RDONLY | O_BINARY); if (fd == -1) goto out; /* We must know about the size of the file. */ if ( #ifdef _LIBC __builtin_expect (fstat64 (fd, &st) != 0, 0) #else __builtin_expect (fstat (fd, &st) != 0, 0) #endif || __builtin_expect ((size = (size_t) st.st_size) != st.st_size, 0) || __builtin_expect (size < sizeof (struct mo_file_header), 0)) /* Something went wrong. */ goto out; #ifdef HAVE_MMAP /* Now we are ready to load the file. If mmap() is available we try this first. If not available or it failed we try to load it. */ data = (struct mo_file_header *) mmap (NULL, size, PROT_READ, MAP_PRIVATE, fd, 0); if (__builtin_expect (data != (struct mo_file_header *) -1, 1)) { /* mmap() call was successful. */ close (fd); fd = -1; use_mmap = 1; } #endif /* If the data is not yet available (i.e. mmap'ed) we try to load it manually. */ if (data == (struct mo_file_header *) -1) { size_t to_read; char *read_ptr; data = (struct mo_file_header *) malloc (size); if (data == NULL) goto out; to_read = size; read_ptr = (char *) data; do { long int nb = (long int) read (fd, read_ptr, to_read); if (nb <= 0) { #ifdef EINTR if (nb == -1 && errno == EINTR) continue; #endif goto out; } read_ptr += nb; to_read -= nb; } while (to_read > 0); close (fd); fd = -1; } /* Using the magic number we can test whether it really is a message catalog file. */ if (__builtin_expect (data->magic != _MAGIC && data->magic != _MAGIC_SWAPPED, 0)) { /* The magic number is wrong: not a message catalog file. */ #ifdef HAVE_MMAP if (use_mmap) munmap ((caddr_t) data, size); else #endif free (data); goto out; } domain = (struct loaded_domain *) malloc (sizeof (struct loaded_domain)); if (domain == NULL) goto out; domain_file->data = domain; domain->data = (char *) data; domain->use_mmap = use_mmap; domain->mmap_size = size; domain->must_swap = data->magic != _MAGIC; domain->malloced = NULL; /* Fill in the information about the available tables. */ revision = W (domain->must_swap, data->revision); /* We support only the major revisions 0 and 1. */ switch (revision >> 16) { case 0: case 1: domain->nstrings = W (domain->must_swap, data->nstrings); domain->orig_tab = (const struct string_desc *) ((char *) data + W (domain->must_swap, data->orig_tab_offset)); domain->trans_tab = (const struct string_desc *) ((char *) data + W (domain->must_swap, data->trans_tab_offset)); domain->hash_size = W (domain->must_swap, data->hash_tab_size); domain->hash_tab = (domain->hash_size > 2 ? (const nls_uint32 *) ((char *) data + W (domain->must_swap, data->hash_tab_offset)) : NULL); domain->must_swap_hash_tab = domain->must_swap; /* Now dispatch on the minor revision. */ switch (revision & 0xffff) { case 0: domain->n_sysdep_strings = 0; domain->orig_sysdep_tab = NULL; domain->trans_sysdep_tab = NULL; break; case 1: default: { nls_uint32 n_sysdep_strings; if (domain->hash_tab == NULL) /* This is invalid. These minor revisions need a hash table. */ goto invalid; n_sysdep_strings = W (domain->must_swap, data->n_sysdep_strings); if (n_sysdep_strings > 0) { nls_uint32 n_sysdep_segments; const struct sysdep_segment *sysdep_segments; const char **sysdep_segment_values; const nls_uint32 *orig_sysdep_tab; const nls_uint32 *trans_sysdep_tab; nls_uint32 n_inmem_sysdep_strings; size_t memneed; char *mem; struct sysdep_string_desc *inmem_orig_sysdep_tab; struct sysdep_string_desc *inmem_trans_sysdep_tab; nls_uint32 *inmem_hash_tab; unsigned int i, j; /* Get the values of the system dependent segments. */ n_sysdep_segments = W (domain->must_swap, data->n_sysdep_segments); sysdep_segments = (const struct sysdep_segment *) ((char *) data + W (domain->must_swap, data->sysdep_segments_offset)); sysdep_segment_values = (const char **) alloca (n_sysdep_segments * sizeof (const char *)); for (i = 0; i < n_sysdep_segments; i++) { const char *name = (char *) data + W (domain->must_swap, sysdep_segments[i].offset); nls_uint32 namelen = W (domain->must_swap, sysdep_segments[i].length); if (!(namelen > 0 && name[namelen - 1] == '\0')) { freea (sysdep_segment_values); goto invalid; } sysdep_segment_values[i] = get_sysdep_segment_value (name); } orig_sysdep_tab = (const nls_uint32 *) ((char *) data + W (domain->must_swap, data->orig_sysdep_tab_offset)); trans_sysdep_tab = (const nls_uint32 *) ((char *) data + W (domain->must_swap, data->trans_sysdep_tab_offset)); /* Compute the amount of additional memory needed for the system dependent strings and the augmented hash table. At the same time, also drop string pairs which refer to an undefined system dependent segment. */ n_inmem_sysdep_strings = 0; memneed = domain->hash_size * sizeof (nls_uint32); for (i = 0; i < n_sysdep_strings; i++) { int valid = 1; size_t needs[2]; for (j = 0; j < 2; j++) { const struct sysdep_string *sysdep_string = (const struct sysdep_string *) ((char *) data + W (domain->must_swap, j == 0 ? orig_sysdep_tab[i] : trans_sysdep_tab[i])); size_t need = 0; const struct segment_pair *p = sysdep_string->segments; if (W (domain->must_swap, p->sysdepref) != SEGMENTS_END) for (p = sysdep_string->segments;; p++) { nls_uint32 sysdepref; need += W (domain->must_swap, p->segsize); sysdepref = W (domain->must_swap, p->sysdepref); if (sysdepref == SEGMENTS_END) break; if (sysdepref >= n_sysdep_segments) { /* Invalid. */ freea (sysdep_segment_values); goto invalid; } if (sysdep_segment_values[sysdepref] == NULL) { /* This particular string pair is invalid. */ valid = 0; break; } need += strlen (sysdep_segment_values[sysdepref]); } needs[j] = need; if (!valid) break; } if (valid) { n_inmem_sysdep_strings++; memneed += needs[0] + needs[1]; } } memneed += 2 * n_inmem_sysdep_strings * sizeof (struct sysdep_string_desc); if (n_inmem_sysdep_strings > 0) { unsigned int k; /* Allocate additional memory. */ mem = (char *) malloc (memneed); if (mem == NULL) goto invalid; domain->malloced = mem; inmem_orig_sysdep_tab = (struct sysdep_string_desc *) mem; mem += n_inmem_sysdep_strings * sizeof (struct sysdep_string_desc); inmem_trans_sysdep_tab = (struct sysdep_string_desc *) mem; mem += n_inmem_sysdep_strings * sizeof (struct sysdep_string_desc); inmem_hash_tab = (nls_uint32 *) mem; mem += domain->hash_size * sizeof (nls_uint32); /* Compute the system dependent strings. */ k = 0; for (i = 0; i < n_sysdep_strings; i++) { int valid = 1; for (j = 0; j < 2; j++) { const struct sysdep_string *sysdep_string = (const struct sysdep_string *) ((char *) data + W (domain->must_swap, j == 0 ? orig_sysdep_tab[i] : trans_sysdep_tab[i])); const struct segment_pair *p = sysdep_string->segments; if (W (domain->must_swap, p->sysdepref) != SEGMENTS_END) for (p = sysdep_string->segments;; p++) { nls_uint32 sysdepref; sysdepref = W (domain->must_swap, p->sysdepref); if (sysdepref == SEGMENTS_END) break; if (sysdep_segment_values[sysdepref] == NULL) { /* This particular string pair is invalid. */ valid = 0; break; } } if (!valid) break; } if (valid) { for (j = 0; j < 2; j++) { const struct sysdep_string *sysdep_string = (const struct sysdep_string *) ((char *) data + W (domain->must_swap, j == 0 ? orig_sysdep_tab[i] : trans_sysdep_tab[i])); const char *static_segments = (char *) data + W (domain->must_swap, sysdep_string->offset); const struct segment_pair *p = sysdep_string->segments; /* Concatenate the segments, and fill inmem_orig_sysdep_tab[k] (for j == 0) and inmem_trans_sysdep_tab[k] (for j == 1). */ struct sysdep_string_desc *inmem_tab_entry = (j == 0 ? inmem_orig_sysdep_tab : inmem_trans_sysdep_tab) + k; if (W (domain->must_swap, p->sysdepref) == SEGMENTS_END) { /* Only one static segment. */ inmem_tab_entry->length = W (domain->must_swap, p->segsize); inmem_tab_entry->pointer = static_segments; } else { inmem_tab_entry->pointer = mem; for (p = sysdep_string->segments;; p++) { nls_uint32 segsize = W (domain->must_swap, p->segsize); nls_uint32 sysdepref = W (domain->must_swap, p->sysdepref); size_t n; if (segsize > 0) { memcpy (mem, static_segments, segsize); mem += segsize; static_segments += segsize; } if (sysdepref == SEGMENTS_END) break; n = strlen (sysdep_segment_values[sysdepref]); memcpy (mem, sysdep_segment_values[sysdepref], n); mem += n; } inmem_tab_entry->length = mem - inmem_tab_entry->pointer; } } k++; } } if (k != n_inmem_sysdep_strings) abort (); /* Compute the augmented hash table. */ for (i = 0; i < domain->hash_size; i++) inmem_hash_tab[i] = W (domain->must_swap_hash_tab, domain->hash_tab[i]); for (i = 0; i < n_inmem_sysdep_strings; i++) { const char *msgid = inmem_orig_sysdep_tab[i].pointer; nls_uint32 hash_val = __hash_string (msgid); nls_uint32 idx = hash_val % domain->hash_size; nls_uint32 incr = 1 + (hash_val % (domain->hash_size - 2)); for (;;) { if (inmem_hash_tab[idx] == 0) { /* Hash table entry is empty. Use it. */ inmem_hash_tab[idx] = 1 + domain->nstrings + i; break; } if (idx >= domain->hash_size - incr) idx -= domain->hash_size - incr; else idx += incr; } } domain->n_sysdep_strings = n_inmem_sysdep_strings; domain->orig_sysdep_tab = inmem_orig_sysdep_tab; domain->trans_sysdep_tab = inmem_trans_sysdep_tab; domain->hash_tab = inmem_hash_tab; domain->must_swap_hash_tab = 0; } else { domain->n_sysdep_strings = 0; domain->orig_sysdep_tab = NULL; domain->trans_sysdep_tab = NULL; } freea (sysdep_segment_values); } else { domain->n_sysdep_strings = 0; domain->orig_sysdep_tab = NULL; domain->trans_sysdep_tab = NULL; } } break; } break; default: /* This is an invalid revision. */ invalid: /* This is an invalid .mo file. */ if (domain->malloced) free (domain->malloced); #ifdef HAVE_MMAP if (use_mmap) munmap ((caddr_t) data, size); else #endif free (data); free (domain); domain_file->data = NULL; goto out; } /* No caches of converted translations so far. */ domain->conversions = NULL; domain->nconversions = 0; gl_rwlock_init (domain->conversions_lock); /* Get the header entry and look for a plural specification. */ #ifdef IN_LIBGLOCALE nullentry = _nl_find_msg (domain_file, domainbinding, NULL, "", &nullentrylen); #else nullentry = _nl_find_msg (domain_file, domainbinding, "", 0, &nullentrylen); #endif EXTRACT_PLURAL_EXPRESSION (nullentry, &domain->plural, &domain->nplurals); out: if (fd != -1) close (fd); domain_file->decided = 1; done: __libc_lock_unlock_recursive (lock); }
/* Cause an abnormal program termination with core-dump. */ void abort (void) { struct sigaction act; sigset_t sigs; /* First acquire the lock. */ __libc_lock_lock_recursive (lock); /* Now it's for sure we are alone. But recursive calls are possible. */ /* Unlock SIGABRT. */ if (stage == 0) { ++stage; if (__sigemptyset (&sigs) == 0 && __sigaddset (&sigs, SIGABRT) == 0) __sigprocmask (SIG_UNBLOCK, &sigs, (sigset_t *) NULL); } /* Flush all streams. We cannot close them now because the user might have registered a handler for SIGABRT. */ if (stage == 1) { ++stage; fflush (NULL); } /* Send signal which possibly calls a user handler. */ if (stage == 2) { /* This stage is special: we must allow repeated calls of `abort' when a user defined handler for SIGABRT is installed. This is risky since the `raise' implementation might also fail but I don't see another possibility. */ int save_stage = stage; stage = 0; __libc_lock_unlock_recursive (lock); raise (SIGABRT); __libc_lock_lock_recursive (lock); stage = save_stage + 1; } /* There was a handler installed. Now remove it. */ if (stage == 3) { ++stage; memset (&act, '\0', sizeof (struct sigaction)); act.sa_handler = SIG_DFL; __sigfillset (&act.sa_mask); act.sa_flags = 0; __sigaction (SIGABRT, &act, NULL); } /* Now close the streams which also flushes the output the user defined handler might has produced. */ if (stage == 4) { ++stage; __fcloseall (); } /* Try again. */ if (stage == 5) { ++stage; raise (SIGABRT); } /* Now try to abort using the system specific command. */ if (stage == 6) { ++stage; ABORT_INSTRUCTION; } /* If we can't signal ourselves and the abort instruction failed, exit. */ if (stage == 7) { ++stage; _exit (127); } /* If even this fails try to use the provided instruction to crash or otherwise make sure we never return. */ while (1) /* Try for ever and ever. */ ABORT_INSTRUCTION; }
void _IO_funlockfile(_IO_FILE *stream) { __libc_lock_unlock_recursive(*stream->_lock); }