示例#1
0
/* Copy no more than N characters of SRC to DEST, returning the address of
   the terminating '\0' in DEST, if any, or else DEST + N.  */
char *
__stpncpy_chk (char *dest, const char *src, size_t n, size_t destlen)
{
  if (__builtin_expect (destlen < n, 0))
    __chk_fail ();

  return __stpncpy (dest, src, n);
}
示例#2
0
static int
internal_function attribute_compat_text_section
getttyname_r (char *buf, size_t buflen, dev_t mydev, ino64_t myino,
	      int save, int *dostat)
{
  struct stat64 st;
  DIR *dirstream;
  struct dirent64 *d;
  size_t devlen = strlen (buf);

  dirstream = __opendir (buf);
  if (dirstream == NULL)
    {
      *dostat = -1;
      return errno;
    }

  while ((d = __readdir64 (dirstream)) != NULL)
    if ((d->d_fileno == myino || *dostat)
	&& strcmp (d->d_name, "stdin")
	&& strcmp (d->d_name, "stdout")
	&& strcmp (d->d_name, "stderr"))
      {
	char *cp;
	size_t needed = _D_EXACT_NAMLEN (d) + 1;

	if (needed > buflen)
	  {
	    *dostat = -1;
	    (void) __closedir (dirstream);
	    __set_errno (ERANGE);
	    return ERANGE;
	  }

	cp = __stpncpy (buf + devlen, d->d_name, needed);
	cp[0] = '\0';

	if (__xstat64 (_STAT_VER, buf, &st) == 0
#ifdef _STATBUF_ST_RDEV
	    && S_ISCHR (st.st_mode) && st.st_rdev == mydev
#else
	    && d->d_fileno == myino && st.st_dev == mydev
#endif
	   )
	  {
	    (void) __closedir (dirstream);
	    __set_errno (save);
	    return 0;
	  }
      }

  (void) __closedir (dirstream);
  __set_errno (save);
  /* It is not clear what to return in this case.  `isatty' says FD
     refers to a TTY but no entry in /dev has this inode.  */
  return ENOTTY;
}
示例#3
0
static int
_nss_nisplus_parse_etherent (nis_result *result, struct etherent *ether,
			     char *buffer, size_t buflen, int *errnop)
{
  char *p = buffer;
  size_t room_left = buflen;

  if (result == NULL)
    return 0;

  if ((result->status != NIS_SUCCESS && result->status != NIS_S_SUCCESS)
      || NIS_RES_NUMOBJ (result) != 1
      || __type_of (NIS_RES_OBJECT (result)) != NIS_ENTRY_OBJ
      || strcmp (NIS_RES_OBJECT (result)->EN_data.en_type,
		 "ethers_tbl") != 0
      || NIS_RES_OBJECT (result)->EN_data.en_cols.en_cols_len < 2)
    return 0;

  /* Generate the ether entry format and use the normal parser */
  if (NISENTRYLEN (0, 0, result) + 1 > room_left)
    {
      *errnop = ERANGE;
      return -1;
    }
  char *cp = __stpncpy (p, NISENTRYVAL (0, 0, result),
			NISENTRYLEN (0, 0, result));
  *cp = '\0';
  room_left -= NISENTRYLEN (0, 0, result) + 1;
  ether->e_name = p;

  struct ether_addr *ea = ether_aton (NISENTRYVAL (0, 1, result));
  if (ea == NULL)
    {
      *errnop = EINVAL;
      return -2;
    }

  ether->e_addr = *ea;

  return 1;
}
示例#4
0
kern_return_t
_S_msg_describe_ports (mach_port_t msgport, mach_port_t refport,
		       mach_port_t *ports, mach_msg_type_number_t nports,
		       char **desc, mach_msg_type_number_t *desclen)
{
  char *p, *end;

  if (__USEPORT (AUTH, msgport != port))
    return EPERM;

  end = *desc + *desclen;
  p = *desc;
  while (nports-- > 0)
    {
      char this[200];
      describe_port (this, *ports++);
      p = __stpncpy (p, this, end - p);
      if (p == end && p[-1] != '\0')
	return ENOMEM;
    }

  *desclen = p - *desc;
  return 0;
}
示例#5
0
char *
__sha512_crypt_r (const char *key, const char *salt, char *buffer, int buflen)
{
  unsigned char alt_result[64]
    __attribute__ ((__aligned__ (__alignof__ (uint64_t))));
  unsigned char temp_result[64]
    __attribute__ ((__aligned__ (__alignof__ (uint64_t))));
  size_t salt_len;
  size_t key_len;
  size_t cnt;
  char *cp;
  char *copied_key = NULL;
  char *copied_salt = NULL;
  char *p_bytes;
  char *s_bytes;
  /* Default number of rounds.  */
  size_t rounds = ROUNDS_DEFAULT;
  bool rounds_custom = false;
  size_t alloca_used = 0;
  char *free_key = NULL;
  char *free_pbytes = NULL;

  /* Find beginning of salt string.  The prefix should normally always
     be present.  Just in case it is not.  */
  if (strncmp (sha512_salt_prefix, salt, sizeof (sha512_salt_prefix) - 1) == 0)
    /* Skip salt prefix.  */
    salt += sizeof (sha512_salt_prefix) - 1;

  if (strncmp (salt, sha512_rounds_prefix, sizeof (sha512_rounds_prefix) - 1)
      == 0)
    {
      const char *num = salt + sizeof (sha512_rounds_prefix) - 1;
      char *endp;
      unsigned long int srounds = strtoul (num, &endp, 10);
      if (*endp == '$')
	{
	  salt = endp + 1;
	  rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
	  rounds_custom = true;
	}
    }

  salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
  key_len = strlen (key);

  if ((key - (char *) 0) % __alignof__ (uint64_t) != 0)
    {
      char *tmp;

      if (__libc_use_alloca (alloca_used + key_len + __alignof__ (uint64_t)))
	tmp = alloca_account (key_len + __alignof__ (uint64_t), alloca_used);
      else
	{
	  free_key = tmp = (char *) malloc (key_len + __alignof__ (uint64_t));
	  if (tmp == NULL)
	    return NULL;
	}

      key = copied_key =
	memcpy (tmp + __alignof__ (uint64_t)
		- (tmp - (char *) 0) % __alignof__ (uint64_t),
		key, key_len);
      assert ((key - (char *) 0) % __alignof__ (uint64_t) == 0);
    }

  if ((salt - (char *) 0) % __alignof__ (uint64_t) != 0)
    {
      char *tmp = (char *) alloca (salt_len + __alignof__ (uint64_t));
      salt = copied_salt =
	memcpy (tmp + __alignof__ (uint64_t)
		- (tmp - (char *) 0) % __alignof__ (uint64_t),
		salt, salt_len);
      assert ((salt - (char *) 0) % __alignof__ (uint64_t) == 0);
    }

#ifdef USE_NSS
  /* Initialize libfreebl3.  */
  NSSLOWInitContext *nss_ictx = NSSLOW_Init ();
  if (nss_ictx == NULL)
    {
      free (free_key);
      return NULL;
    }
  NSSLOWHASHContext *nss_ctx = NULL;
  NSSLOWHASHContext *nss_alt_ctx = NULL;
#else
  struct sha512_ctx ctx;
  struct sha512_ctx alt_ctx;
#endif

  /* Prepare for the real work.  */
  sha512_init_ctx (&ctx, nss_ctx);

  /* Add the key string.  */
  sha512_process_bytes (key, key_len, &ctx, nss_ctx);

  /* The last part is the salt string.  This must be at most 16
     characters and it ends at the first `$' character.  */
  sha512_process_bytes (salt, salt_len, &ctx, nss_ctx);


  /* Compute alternate SHA512 sum with input KEY, SALT, and KEY.  The
     final result will be added to the first context.  */
  sha512_init_ctx (&alt_ctx, nss_alt_ctx);

  /* Add key.  */
  sha512_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);

  /* Add salt.  */
  sha512_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx);

  /* Add key again.  */
  sha512_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);

  /* Now get result of this (64 bytes) and add it to the other
     context.  */
  sha512_finish_ctx (&alt_ctx, nss_alt_ctx, alt_result);

  /* Add for any character in the key one byte of the alternate sum.  */
  for (cnt = key_len; cnt > 64; cnt -= 64)
    sha512_process_bytes (alt_result, 64, &ctx, nss_ctx);
  sha512_process_bytes (alt_result, cnt, &ctx, nss_ctx);

  /* Take the binary representation of the length of the key and for every
     1 add the alternate sum, for every 0 the key.  */
  for (cnt = key_len; cnt > 0; cnt >>= 1)
    if ((cnt & 1) != 0)
      sha512_process_bytes (alt_result, 64, &ctx, nss_ctx);
    else
      sha512_process_bytes (key, key_len, &ctx, nss_ctx);

  /* Create intermediate result.  */
  sha512_finish_ctx (&ctx, nss_ctx, alt_result);

  /* Start computation of P byte sequence.  */
  sha512_init_ctx (&alt_ctx, nss_alt_ctx);

  /* For every character in the password add the entire password.  */
  for (cnt = 0; cnt < key_len; ++cnt)
    sha512_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);

  /* Finish the digest.  */
  sha512_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result);

  /* Create byte sequence P.  */
  if (__libc_use_alloca (alloca_used + key_len))
    cp = p_bytes = (char *) alloca (key_len);
  else
    {
      free_pbytes = cp = p_bytes = (char *)malloc (key_len);
      if (free_pbytes == NULL)
	{
	  free (free_key);
	  return NULL;
	}
    }

  for (cnt = key_len; cnt >= 64; cnt -= 64)
    cp = mempcpy (cp, temp_result, 64);
  memcpy (cp, temp_result, cnt);

  /* Start computation of S byte sequence.  */
  sha512_init_ctx (&alt_ctx, nss_alt_ctx);

  /* For every character in the password add the entire password.  */
  for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
    sha512_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx);

  /* Finish the digest.  */
  sha512_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result);

  /* Create byte sequence S.  */
  cp = s_bytes = alloca (salt_len);
  for (cnt = salt_len; cnt >= 64; cnt -= 64)
    cp = mempcpy (cp, temp_result, 64);
  memcpy (cp, temp_result, cnt);

  /* Repeatedly run the collected hash value through SHA512 to burn
     CPU cycles.  */
  for (cnt = 0; cnt < rounds; ++cnt)
    {
      /* New context.  */
      sha512_init_ctx (&ctx, nss_ctx);

      /* Add key or last result.  */
      if ((cnt & 1) != 0)
	sha512_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
      else
	sha512_process_bytes (alt_result, 64, &ctx, nss_ctx);

      /* Add salt for numbers not divisible by 3.  */
      if (cnt % 3 != 0)
	sha512_process_bytes (s_bytes, salt_len, &ctx, nss_ctx);

      /* Add key for numbers not divisible by 7.  */
      if (cnt % 7 != 0)
	sha512_process_bytes (p_bytes, key_len, &ctx, nss_ctx);

      /* Add key or last result.  */
      if ((cnt & 1) != 0)
	sha512_process_bytes (alt_result, 64, &ctx, nss_ctx);
      else
	sha512_process_bytes (p_bytes, key_len, &ctx, nss_ctx);

      /* Create intermediate result.  */
      sha512_finish_ctx (&ctx, nss_ctx, alt_result);
    }

#ifdef USE_NSS
  /* Free libfreebl3 resources. */
  NSSLOW_Shutdown (nss_ictx);
#endif

  /* Now we can construct the result string.  It consists of three
     parts.  */
  cp = __stpncpy (buffer, sha512_salt_prefix, MAX (0, buflen));
  buflen -= sizeof (sha512_salt_prefix) - 1;

  if (rounds_custom)
    {
      int n = snprintf (cp, MAX (0, buflen), "%s%zu$",
			sha512_rounds_prefix, rounds);
      cp += n;
      buflen -= n;
    }

  cp = __stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
  buflen -= MIN ((size_t) MAX (0, buflen), salt_len);

  if (buflen > 0)
    {
      *cp++ = '$';
      --buflen;
    }

  __b64_from_24bit (&cp, &buflen,
		    alt_result[0], alt_result[21], alt_result[42], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[22], alt_result[43], alt_result[1], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[44], alt_result[2], alt_result[23], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[3], alt_result[24], alt_result[45], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[25], alt_result[46], alt_result[4], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[47], alt_result[5], alt_result[26], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[6], alt_result[27], alt_result[48], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[28], alt_result[49], alt_result[7], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[50], alt_result[8], alt_result[29], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[9], alt_result[30], alt_result[51], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[31], alt_result[52], alt_result[10], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[53], alt_result[11], alt_result[32], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[12], alt_result[33], alt_result[54], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[34], alt_result[55], alt_result[13], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[56], alt_result[14], alt_result[35], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[15], alt_result[36], alt_result[57], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[37], alt_result[58], alt_result[16], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[59], alt_result[17], alt_result[38], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[18], alt_result[39], alt_result[60], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[40], alt_result[61], alt_result[19], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[62], alt_result[20], alt_result[41], 4);
  __b64_from_24bit (&cp, &buflen,
		    0, 0, alt_result[63], 2);

  if (buflen <= 0)
    {
      __set_errno (ERANGE);
      buffer = NULL;
    }
  else
    *cp = '\0';		/* Terminate the string.  */

  /* Clear the buffer for the intermediate result so that people
     attaching to processes or reading core dumps cannot get any
     information.  We do it in this way to clear correct_words[]
     inside the SHA512 implementation as well.  */
#ifndef USE_NSS
  __sha512_init_ctx (&ctx);
  __sha512_finish_ctx (&ctx, alt_result);
  memset (&ctx, '\0', sizeof (ctx));
  memset (&alt_ctx, '\0', sizeof (alt_ctx));
#endif
  memset (temp_result, '\0', sizeof (temp_result));
  memset (p_bytes, '\0', key_len);
  memset (s_bytes, '\0', salt_len);
  if (copied_key != NULL)
    memset (copied_key, '\0', key_len);
  if (copied_salt != NULL)
    memset (copied_salt, '\0', salt_len);

  free (free_key);
  free (free_pbytes);
  return buffer;
}
示例#6
0
static int sha512_crypt_r(const char *key,
                          const char *salt,
                          char *buffer, size_t buflen)
{
    unsigned char temp_result[64] __attribute__((__aligned__(ALIGN64)));
    unsigned char alt_result[64] __attribute__((__aligned__(ALIGN64)));
    size_t rounds = ROUNDS_DEFAULT;
    bool rounds_custom = false;
    HASHContext *alt_ctx = NULL;
    HASHContext *ctx = NULL;
    size_t salt_len;
    size_t key_len;
    size_t cnt;
    char *copied_salt = NULL;
    char *copied_key = NULL;
    char *p_bytes = NULL;
    char *s_bytes = NULL;
    int p1, p2, p3, pt, n;
    unsigned int part;
    char *cp, *tmp;
    int ret;

    /* Find beginning of salt string. The prefix should normally always be
     * present. Just in case it is not. */
    if (strncmp(salt, sha512_salt_prefix, SALT_PREF_SIZE) == 0) {
        /* Skip salt prefix.  */
        salt += SALT_PREF_SIZE;
    }

    if (strncmp(salt, sha512_rounds_prefix, ROUNDS_SIZE) == 0) {
        unsigned long int srounds;
        const char *num;
        char *endp;

        num = salt + ROUNDS_SIZE;
        srounds = strtoul(num, &endp, 10);
        if (*endp == '$') {
            salt = endp + 1;
            if (srounds < ROUNDS_MIN) srounds = ROUNDS_MIN;
            if (srounds > ROUNDS_MAX) srounds = ROUNDS_MAX;
            rounds = srounds;
            rounds_custom = true;
        }
    }

    salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
    key_len = strlen(key);

    if ((PTR_2_INT(key) % ALIGN64) != 0) {
        tmp = (char *)alloca(key_len + ALIGN64);
        key = copied_key = memcpy(tmp + ALIGN64 - PTR_2_INT(tmp) % ALIGN64, key, key_len);
    }

    if (PTR_2_INT(salt) % ALIGN64 != 0) {
        tmp = (char *)alloca(salt_len + ALIGN64);
        salt = copied_salt = memcpy(tmp + ALIGN64 - PTR_2_INT(tmp) % ALIGN64, salt, salt_len);
    }

    ret = nspr_nss_init();
    if (ret != EOK) {
        ret = EIO;
        goto done;
    }

    ctx = HASH_Create(HASH_AlgSHA512);
    if (!ctx) {
        ret = EIO;
        goto done;
    }

    alt_ctx = HASH_Create(HASH_AlgSHA512);
    if (!alt_ctx) {
        ret = EIO;
        goto done;
    }

    /* Prepare for the real work.  */
    HASH_Begin(ctx);

    /* Add the key string.  */
    HASH_Update(ctx, (const unsigned char *)key, key_len);

    /* The last part is the salt string. This must be at most 16
     * characters and it ends at the first `$' character (for
     * compatibility with existing implementations). */
    HASH_Update(ctx, (const unsigned char *)salt, salt_len);


    /* Compute alternate SHA512 sum with input KEY, SALT, and KEY.
     * The final result will be added to the first context. */
    HASH_Begin(alt_ctx);

    /* Add key. */
    HASH_Update(alt_ctx, (const unsigned char *)key, key_len);

    /* Add salt. */
    HASH_Update(alt_ctx, (const unsigned char *)salt, salt_len);

    /* Add key again. */
    HASH_Update(alt_ctx, (const unsigned char *)key, key_len);

    /* Now get result of this (64 bytes) and add it to the other context. */
    HASH_End(alt_ctx, alt_result, &part, HASH_ResultLenContext(alt_ctx));

    /* Add for any character in the key one byte of the alternate sum. */
    for (cnt = key_len; cnt > 64; cnt -= 64) {
        HASH_Update(ctx, alt_result, 64);
    }
    HASH_Update(ctx, alt_result, cnt);

    /* Take the binary representation of the length of the key and for every
     * 1 add the alternate sum, for every 0 the key. */
    for (cnt = key_len; cnt > 0; cnt >>= 1) {
        if ((cnt & 1) != 0) {
            HASH_Update(ctx, alt_result, 64);
        } else {
            HASH_Update(ctx, (const unsigned char *)key, key_len);
        }
    }

    /* Create intermediate result. */
    HASH_End(ctx, alt_result, &part, HASH_ResultLenContext(ctx));

    /* Start computation of P byte sequence. */
    HASH_Begin(alt_ctx);

    /* For every character in the password add the entire password. */
    for (cnt = 0; cnt < key_len; cnt++) {
        HASH_Update(alt_ctx, (const unsigned char *)key, key_len);
    }

    /* Finish the digest. */
    HASH_End(alt_ctx, temp_result, &part, HASH_ResultLenContext(alt_ctx));

    /* Create byte sequence P. */
    cp = p_bytes = alloca(key_len);
    for (cnt = key_len; cnt >= 64; cnt -= 64) {
        cp = mempcpy(cp, temp_result, 64);
    }
    memcpy(cp, temp_result, cnt);

    /* Start computation of S byte sequence. */
    HASH_Begin(alt_ctx);

    /* For every character in the password add the entire salt. */
    for (cnt = 0; cnt < 16 + alt_result[0]; cnt++) {
        HASH_Update(alt_ctx, (const unsigned char *)salt, salt_len);
    }

    /* Finish the digest. */
    HASH_End(alt_ctx, temp_result, &part, HASH_ResultLenContext(alt_ctx));

    /* Create byte sequence S.  */
    cp = s_bytes = alloca(salt_len);
    for (cnt = salt_len; cnt >= 64; cnt -= 64) {
        cp = mempcpy(cp, temp_result, 64);
    }
    memcpy(cp, temp_result, cnt);

    /* Repeatedly run the collected hash value through SHA512 to burn CPU cycles. */
    for (cnt = 0; cnt < rounds; cnt++) {

        HASH_Begin(ctx);

        /* Add key or last result. */
        if ((cnt & 1) != 0) {
            HASH_Update(ctx, (const unsigned char *)p_bytes, key_len);
        } else {
            HASH_Update(ctx, alt_result, 64);
        }

        /* Add salt for numbers not divisible by 3. */
        if (cnt % 3 != 0) {
            HASH_Update(ctx, (const unsigned char *)s_bytes, salt_len);
        }

        /* Add key for numbers not divisible by 7. */
        if (cnt % 7 != 0) {
            HASH_Update(ctx, (const unsigned char *)p_bytes, key_len);
        }

        /* Add key or last result. */
        if ((cnt & 1) != 0) {
            HASH_Update(ctx, alt_result, 64);
        } else {
            HASH_Update(ctx, (const unsigned char *)p_bytes, key_len);
        }

        /* Create intermediate result. */
        HASH_End(ctx, alt_result, &part, HASH_ResultLenContext(ctx));
    }

    /* Now we can construct the result string.
     * It consists of three parts. */
    if (buflen <= SALT_PREF_SIZE) {
        ret = ERANGE;
        goto done;
    }

    cp = __stpncpy(buffer, sha512_salt_prefix, SALT_PREF_SIZE);
    buflen -= SALT_PREF_SIZE;

    if (rounds_custom) {
        n = snprintf(cp, buflen, "%s%zu$",
                     sha512_rounds_prefix, rounds);
        if (n < 0 || n >= buflen) {
            ret = ERANGE;
            goto done;
        }
        cp += n;
        buflen -= n;
    }

    if (buflen <= salt_len + 1) {
        ret = ERANGE;
        goto done;
    }
    cp = __stpncpy(cp, salt, salt_len);
    *cp++ = '$';
    buflen -= salt_len + 1;

    /* fuzzyfill the base 64 string */
    p1 = 0;
    p2 = 21;
    p3 = 42;
    for (n = 0; n < 21; n++) {
        b64_from_24bit(&cp, &buflen, 4, alt_result[p1], alt_result[p2], alt_result[p3]);
        if (buflen == 0) {
            ret = ERANGE;
            goto done;
        }
        pt = p1;
        p1 = p2 + 1;
        p2 = p3 + 1;
        p3 = pt + 1;
    }
    /* 64th and last byte */
    b64_from_24bit(&cp, &buflen, 2, 0, 0, alt_result[p3]);
    if (buflen == 0) {
        ret = ERANGE;
        goto done;
    }

    *cp = '\0';
    ret = EOK;

done:
    /* Clear the buffer for the intermediate result so that people attaching
     * to processes or reading core dumps cannot get any information. We do it
     * in this way to clear correct_words[] inside the SHA512 implementation
     * as well.  */
    if (ctx) HASH_Destroy(ctx);
    if (alt_ctx) HASH_Destroy(alt_ctx);
    if (p_bytes) memset(p_bytes, '\0', key_len);
    if (s_bytes) memset(s_bytes, '\0', salt_len);
    if (copied_key) memset(copied_key, '\0', key_len);
    if (copied_salt) memset(copied_salt, '\0', salt_len);
    memset(temp_result, '\0', sizeof(temp_result));

    return ret;
}
示例#7
0
文件: md5-crypt.c 项目: bminor/glibc
/* This entry point is equivalent to the `crypt' function in Unix
   libcs.  */
char *
__md5_crypt_r (const char *key, const char *salt, char *buffer, int buflen)
{
  unsigned char alt_result[16]
    __attribute__ ((__aligned__ (__alignof__ (md5_uint32))));
  size_t salt_len;
  size_t key_len;
  size_t cnt;
  char *cp;
  char *copied_key = NULL;
  char *copied_salt = NULL;
  char *free_key = NULL;
  size_t alloca_used = 0;

  /* Find beginning of salt string.  The prefix should normally always
     be present.  Just in case it is not.  */
  if (strncmp (md5_salt_prefix, salt, sizeof (md5_salt_prefix) - 1) == 0)
    /* Skip salt prefix.  */
    salt += sizeof (md5_salt_prefix) - 1;

  salt_len = MIN (strcspn (salt, "$"), 8);
  key_len = strlen (key);

  if ((key - (char *) 0) % __alignof__ (md5_uint32) != 0)
    {
      char *tmp;

      if (__libc_use_alloca (alloca_used + key_len + __alignof__ (md5_uint32)))
	tmp = (char *) alloca (key_len + __alignof__ (md5_uint32));
      else
	{
	  free_key = tmp = (char *) malloc (key_len + __alignof__ (md5_uint32));
	  if (tmp == NULL)
	    return NULL;
	}

      key = copied_key =
	memcpy (tmp + __alignof__ (md5_uint32)
		- (tmp - (char *) 0) % __alignof__ (md5_uint32),
		key, key_len);
      assert ((key - (char *) 0) % __alignof__ (md5_uint32) == 0);
    }

  if ((salt - (char *) 0) % __alignof__ (md5_uint32) != 0)
    {
      char *tmp = (char *) alloca (salt_len + __alignof__ (md5_uint32));
      salt = copied_salt =
	memcpy (tmp + __alignof__ (md5_uint32)
		- (tmp - (char *) 0) % __alignof__ (md5_uint32),
		salt, salt_len);
      assert ((salt - (char *) 0) % __alignof__ (md5_uint32) == 0);
    }

#ifdef USE_NSS
  /* Initialize libfreebl3.  */
  NSSLOWInitContext *nss_ictx = NSSLOW_Init ();
  if (nss_ictx == NULL)
    {
      free (free_key);
      return NULL;
    }
  NSSLOWHASHContext *nss_ctx = NULL;
  NSSLOWHASHContext *nss_alt_ctx = NULL;
#else
  struct md5_ctx ctx;
  struct md5_ctx alt_ctx;
#endif

  /* Prepare for the real work.  */
  md5_init_ctx (&ctx, nss_ctx);

  /* Add the key string.  */
  md5_process_bytes (key, key_len, &ctx, nss_ctx);

  /* Because the SALT argument need not always have the salt prefix we
     add it separately.  */
  md5_process_bytes (md5_salt_prefix, sizeof (md5_salt_prefix) - 1,
		     &ctx, nss_ctx);

  /* The last part is the salt string.  This must be at most 8
     characters and it ends at the first `$' character (for
     compatibility with existing implementations).  */
  md5_process_bytes (salt, salt_len, &ctx, nss_ctx);


  /* Compute alternate MD5 sum with input KEY, SALT, and KEY.  The
     final result will be added to the first context.  */
  md5_init_ctx (&alt_ctx, nss_alt_ctx);

  /* Add key.  */
  md5_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);

  /* Add salt.  */
  md5_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx);

  /* Add key again.  */
  md5_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);

  /* Now get result of this (16 bytes) and add it to the other
     context.  */
  md5_finish_ctx (&alt_ctx, nss_alt_ctx, alt_result);

  /* Add for any character in the key one byte of the alternate sum.  */
  for (cnt = key_len; cnt > 16; cnt -= 16)
    md5_process_bytes (alt_result, 16, &ctx, nss_ctx);
  md5_process_bytes (alt_result, cnt, &ctx, nss_ctx);

  /* For the following code we need a NUL byte.  */
  *alt_result = '\0';

  /* The original implementation now does something weird: for every 1
     bit in the key the first 0 is added to the buffer, for every 0
     bit the first character of the key.  This does not seem to be
     what was intended but we have to follow this to be compatible.  */
  for (cnt = key_len; cnt > 0; cnt >>= 1)
    md5_process_bytes ((cnt & 1) != 0
		       ? (const void *) alt_result : (const void *) key, 1,
		       &ctx, nss_ctx);

  /* Create intermediate result.  */
  md5_finish_ctx (&ctx, nss_ctx, alt_result);

  /* Now comes another weirdness.  In fear of password crackers here
     comes a quite long loop which just processes the output of the
     previous round again.  We cannot ignore this here.  */
  for (cnt = 0; cnt < 1000; ++cnt)
    {
      /* New context.  */
      md5_init_ctx (&ctx, nss_ctx);

      /* Add key or last result.  */
      if ((cnt & 1) != 0)
	md5_process_bytes (key, key_len, &ctx, nss_ctx);
      else
	md5_process_bytes (alt_result, 16, &ctx, nss_ctx);

      /* Add salt for numbers not divisible by 3.  */
      if (cnt % 3 != 0)
	md5_process_bytes (salt, salt_len, &ctx, nss_ctx);

      /* Add key for numbers not divisible by 7.  */
      if (cnt % 7 != 0)
	md5_process_bytes (key, key_len, &ctx, nss_ctx);

      /* Add key or last result.  */
      if ((cnt & 1) != 0)
	md5_process_bytes (alt_result, 16, &ctx, nss_ctx);
      else
	md5_process_bytes (key, key_len, &ctx, nss_ctx);

      /* Create intermediate result.  */
      md5_finish_ctx (&ctx, nss_ctx, alt_result);
    }

#ifdef USE_NSS
  /* Free libfreebl3 resources. */
  NSSLOW_Shutdown (nss_ictx);
#endif

  /* Now we can construct the result string.  It consists of three
     parts.  */
  cp = __stpncpy (buffer, md5_salt_prefix, MAX (0, buflen));
  buflen -= sizeof (md5_salt_prefix) - 1;

  cp = __stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
  buflen -= MIN ((size_t) MAX (0, buflen), salt_len);

  if (buflen > 0)
    {
      *cp++ = '$';
      --buflen;
    }

  __b64_from_24bit (&cp, &buflen,
		    alt_result[0], alt_result[6], alt_result[12], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[1], alt_result[7], alt_result[13], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[2], alt_result[8], alt_result[14], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[3], alt_result[9], alt_result[15], 4);
  __b64_from_24bit (&cp, &buflen,
		    alt_result[4], alt_result[10], alt_result[5], 4);
  __b64_from_24bit (&cp, &buflen,
		    0, 0, alt_result[11], 2);
  if (buflen <= 0)
    {
      __set_errno (ERANGE);
      buffer = NULL;
    }
  else
    *cp = '\0';		/* Terminate the string.  */

  /* Clear the buffer for the intermediate result so that people
     attaching to processes or reading core dumps cannot get any
     information.  We do it in this way to clear correct_words[]
     inside the MD5 implementation as well.  */
#ifndef USE_NSS
  __md5_init_ctx (&ctx);
  __md5_finish_ctx (&ctx, alt_result);
  explicit_bzero (&ctx, sizeof (ctx));
  explicit_bzero (&alt_ctx, sizeof (alt_ctx));
#endif
  if (copied_key != NULL)
    explicit_bzero (copied_key, key_len);
  if (copied_salt != NULL)
    explicit_bzero (copied_salt, salt_len);

  free (free_key);
  return buffer;
}
示例#8
0
enum nss_status
_nss_nisplus_getnetgrent_r (struct __netgrent *result, char *buffer,
			    size_t buflen, int *errnop)
{
  enum nss_status status;

  /* Some sanity checks.  */
  if (result->data == NULL || result->data_size == 0)
    return NSS_STATUS_NOTFOUND;

  if (result->position == result->data_size)
    return result->first ? NSS_STATUS_NOTFOUND : NSS_STATUS_RETURN;

  unsigned int entrylen
    = NISENTRYLEN (result->position, 1, (nis_result *) result->data);
  if (entrylen > 0)
    {
      /* We have a list of other netgroups.  */

      result->type = group_val;
      if (entrylen >= buflen)
	{
	  *errnop = ERANGE;
	  return NSS_STATUS_TRYAGAIN;
	}
      strncpy (buffer, NISENTRYVAL (result->position, 1,
				    (nis_result *) result->data),
	       entrylen);
      buffer[entrylen] = '\0';
      result->val.group = buffer;
      ++result->position;
      result->first = 0;

      return NSS_STATUS_SUCCESS;
    }

  /* Before we can copy the entry to the private buffer we have to make
     sure it is big enough.  */
  unsigned int hostlen
    = NISENTRYLEN (result->position, 2, (nis_result *) result->data);
  unsigned int userlen
    = NISENTRYLEN (result->position, 3, (nis_result *) result->data);
  unsigned int domainlen
    = NISENTRYLEN (result->position, 4, (nis_result *) result->data);
  if (hostlen + userlen + domainlen + 6 > buflen)
    {
      *errnop = ERANGE;
      status = NSS_STATUS_TRYAGAIN;
    }
  else
    {
      char *cp = buffer;

      result->type = triple_val;

      if (hostlen == 0 ||
	  NISENTRYVAL (result->position, 2,
		       (nis_result *) result->data)[0] == '\0')
	result->val.triple.host = NULL;
      else
	{
	  result->val.triple.host = cp;
	  cp = __stpncpy (cp, NISENTRYVAL (result->position, 2,
					   (nis_result *) result->data),
			  hostlen);
	  *cp++ = '\0';
	}

      if (userlen == 0 ||
	  NISENTRYVAL (result->position, 3,
		       (nis_result *) result->data)[0] == '\0')
	result->val.triple.user = NULL;
      else
	{
	  result->val.triple.user = cp;
	  cp = __stpncpy (cp, NISENTRYVAL (result->position, 3,
					   (nis_result *) result->data),
			  userlen);
	  *cp++ = '\0';
	}

      if (domainlen == 0 ||
	  NISENTRYVAL (result->position, 4,
		       (nis_result *) result->data)[0] == '\0')
	result->val.triple.domain = NULL;
      else
	{
	  result->val.triple.domain = cp;
	  cp = __stpncpy (cp, NISENTRYVAL (result->position, 4,
					   (nis_result *) result->data),
			  domainlen);
	  *cp = '\0';
	}

      status = NSS_STATUS_SUCCESS;

      /* Remember where we stopped reading.  */
      ++result->position;

      result->first = 0;
    }

  return status;
}