示例#1
0
void _CkExit(void) 
{
  CmiAssert(CkMyPe() == 0);
  // Shuts down Converse handlers for the upper layers on this processor
  //
  CkNumberHandler(_charmHandlerIdx,(CmiHandler)_discardHandler);
  CkNumberHandler(_bocHandlerIdx, (CmiHandler)_discardHandler);
  DEBUGF(("[%d] CkExit - _exitStarted:%d %d\n", CkMyPe(), _exitStarted, _exitHandlerIdx));

  if(CkMyPe()==0) {
    if(_exitStarted)
      CsdScheduler(-1);
    envelope *env = _allocEnv(ReqStatMsg);
    env->setSrcPe(CkMyPe());
    CmiSetHandler(env, _exitHandlerIdx);
		/*FAULT_EVAC*/
    CmiSyncBroadcastAllAndFree(env->getTotalsize(), (char *)env);
  } else {
    envelope *env = _allocEnv(ExitMsg);
    env->setSrcPe(CkMyPe());
    CmiSetHandler(env, _exitHandlerIdx);
    CmiSyncSendAndFree(0, env->getTotalsize(), (char *)env);
  }
#if ! CMK_BIGSIM_THREAD
  _TRACE_END_EXECUTE();
  //Wait for stats, which will call ConverseExit when finished:
  CsdScheduler(-1);
#endif
}
示例#2
0
void LibCkExit(void)
{
	// always send to PE 0
	envelope *env = _allocEnv(StartExitMsg);
	env->setSrcPe(CkMyPe());
	CmiSetHandler(env, _libExitHandlerIdx);
	CmiSyncSendAndFree(0, env->getTotalsize(), (char *)env);
}
示例#3
0
void* CkAllocMsg(int msgIdx, int msgBytes, int prioBits)
{
  register envelope* env;
  env = _allocEnv(ForChareMsg, msgBytes, prioBits);
  setMemoryTypeMessage(env);

  env->setQueueing(_defaultQueueing);
  env->setMsgIdx(msgIdx);

  return EnvToUsr(env);
}
示例#4
0
void* CkAllocBuffer(void *msg, int bufsize)
{
  bufsize = CkMsgAlignLength(bufsize);
  register envelope *env = UsrToEnv(msg);
  register envelope *packbuf;
  packbuf = _allocEnv(env->getMsgtype(), bufsize, 
                      env->getPriobits());
  
  register int size = packbuf->getTotalsize();
  CmiMemcpy(packbuf, env, sizeof(envelope));
  packbuf->setTotalsize(size);
  packbuf->setPacked(!env->isPacked());
  CmiMemcpy(packbuf->getPrioPtr(), env->getPrioPtr(), packbuf->getPrioBytes());

  return EnvToUsr(packbuf);;
}
示例#5
0
static void bdcastRO(void){
	int i;
	//Determine the size of the RODataMessage
	PUP::sizer ps;
	for(i=0;i<_readonlyTable.size();i++) _readonlyTable[i]->pupData(ps);

	//Allocate and fill out the RODataMessage
	envelope *env = _allocEnv(RODataMsg, ps.size());
	PUP::toMem pp((char *)EnvToUsr(env));
	for(i=0;i<_readonlyTable.size();i++) _readonlyTable[i]->pupData(pp);
	
	env->setCount(++_numInitMsgs);
	env->setSrcPe(CkMyPe());
	CmiSetHandler(env, _roRestartHandlerIdx);
	CmiSyncBroadcastAndFree(env->getTotalsize(), (char *)env);
}
示例#6
0
void CkExit(void)
{
	/*FAULT_EVAC*/
  DEBUGF(("[%d] CkExit called \n",CkMyPe()));
    // always send to PE 0
  envelope *env = _allocEnv(StartExitMsg);
  env->setSrcPe(CkMyPe());
  CmiSetHandler(env, _exitHandlerIdx);
  CmiSyncSendAndFree(0, env->getTotalsize(), (char *)env);

#if ! CMK_BIGSIM_THREAD
  _TRACE_END_EXECUTE();
  //Wait for stats, which will call ConverseExit when finished:
	if(!CharmLibInterOperate)
  CsdScheduler(-1);
#endif
}
示例#7
0
/**
 * This function is used to send other processors on the same node a signal so
 * they can check if their _initDone can be called: the reason for this is that
 * the check at the end of _initHandler can fail due to a missing message containing
 * a Nodegroup creation. When that message arrives only one processor will receive
 * it, and thus if no notification is sent to the other processors in the node, they
 * will never proceed.
 */
static void _sendTriggers(void)
{
  int i, num, first;
  CmiImmediateLock(CksvAccess(_nodeGroupTableImmLock));
  if (CksvAccess(_triggersSent) == 0)
  {
    CksvAccess(_triggersSent)++;
    num = CmiMyNodeSize();
    register envelope *env = _allocEnv(RODataMsg); // Notice that the type here is irrelevant
    env->setSrcPe(CkMyPe());
    CmiSetHandler(env, _triggerHandlerIdx);
    first = CmiNodeFirst(CmiMyNode());
    for (i=0; i < num; i++)
      if(first+i != CkMyPe())
	CmiSyncSend(first+i, env->getTotalsize(), (char *)env);
    CmiFree(env);
  }
  CmiImmediateUnlock(CksvAccess(_nodeGroupTableImmLock));
}
示例#8
0
/**
  This is the main charm setup routine.  It's called
  on all processors after Converse initialization.
  This routine gets passed to Converse from "main.C".
  
  The main purpose of this routine is to set up the objects
  and Ckpv's used during a regular Charm run.  See the comment
  at the top of the file for overall flow.
*/
void _initCharm(int unused_argc, char **argv)
{ 
	int inCommThread = (CmiMyRank() == CmiMyNodeSize());

	DEBUGF(("[%d,%.6lf ] _initCharm started\n",CmiMyPe(),CmiWallTimer()));

	CkpvInitialize(size_t *, _offsets);
	CkpvAccess(_offsets) = new size_t[32];
	CkpvInitialize(PtrQ*,_buffQ);
	CkpvInitialize(PtrVec*,_bocInitVec);
	CkpvInitialize(void*, _currentChare);
	CkpvInitialize(int,   _currentChareType);
	CkpvInitialize(CkGroupID, _currentGroup);
	CkpvInitialize(void *, _currentNodeGroupObj);
	CkpvInitialize(CkGroupID, _currentGroupRednMgr);
	CkpvInitialize(GroupTable*, _groupTable);
	CkpvInitialize(GroupIDTable*, _groupIDTable);
	CkpvInitialize(CmiImmediateLockType, _groupTableImmLock);
        CkpvInitialize(bool, _destroyingNodeGroup);
        CkpvAccess(_destroyingNodeGroup) = false;
	CkpvInitialize(UInt, _numGroups);
	CkpvInitialize(int, _numInitsRecd);
	CkpvInitialize(int, _initdone);
	CkpvInitialize(char**, Ck_argv); CkpvAccess(Ck_argv)=argv;
	CkpvInitialize(MsgPool*, _msgPool);
	CkpvInitialize(CkCoreState *, _coreState);
	/*
		Added for evacuation-sayantan
	*/
#ifndef __BIGSIM__
	CpvInitialize(char *,_validProcessors);
#endif
	CkpvInitialize(char ,startedEvac);
	CpvInitialize(int,serializer);

	_initChareTables();            // for checkpointable plain chares

	CksvInitialize(UInt, _numNodeGroups);
	CksvInitialize(GroupTable*, _nodeGroupTable);
	CksvInitialize(GroupIDTable, _nodeGroupIDTable);
	CksvInitialize(CmiImmediateLockType, _nodeGroupTableImmLock);
	CksvInitialize(CmiNodeLock, _nodeLock);
	CksvInitialize(PtrVec*,_nodeBocInitVec);
	CksvInitialize(UInt,_numInitNodeMsgs);
	CkpvInitialize(int,_charmEpoch);
	CkpvAccess(_charmEpoch)=0;
	CksvInitialize(int, _triggersSent);
	CksvAccess(_triggersSent) = 0;

	CkpvInitialize(_CkOutStream*, _ckout);
	CkpvInitialize(_CkErrStream*, _ckerr);
	CkpvInitialize(Stats*, _myStats);

	CkpvAccess(_groupIDTable) = new GroupIDTable(0);
	CkpvAccess(_groupTable) = new GroupTable;
	CkpvAccess(_groupTable)->init();
	CkpvAccess(_groupTableImmLock) = CmiCreateImmediateLock();
	CkpvAccess(_numGroups) = 1; // make 0 an invalid group number
	CkpvAccess(_buffQ) = new PtrQ();
	CkpvAccess(_bocInitVec) = new PtrVec();

	CkpvAccess(_currentNodeGroupObj) = NULL;

	if(CkMyRank()==0)
	{
	  	CksvAccess(_numNodeGroups) = 1; //make 0 an invalid group number
          	CksvAccess(_numInitNodeMsgs) = 0;
		CksvAccess(_nodeLock) = CmiCreateLock();
		CksvAccess(_nodeGroupTable) = new GroupTable();
		CksvAccess(_nodeGroupTable)->init();
		CksvAccess(_nodeGroupTableImmLock) = CmiCreateImmediateLock();
		CksvAccess(_nodeBocInitVec) = new PtrVec();
	}

	CkCallbackInit();
	
	CmiNodeAllBarrier();

#if ! CMK_BIGSIM_CHARM
	initQd(argv);         // bigsim calls it in ConverseCommonInit
#endif

	CkpvAccess(_coreState)=new CkCoreState();

	CkpvAccess(_numInitsRecd) = 0;
	CkpvAccess(_initdone) = 0;

	CkpvAccess(_ckout) = new _CkOutStream();
	CkpvAccess(_ckerr) = new _CkErrStream();

	_charmHandlerIdx = CkRegisterHandler((CmiHandler)_bufferHandler);
	_initHandlerIdx = CkRegisterHandler((CmiHandler)_initHandler);
	CkNumberHandlerEx(_initHandlerIdx, (CmiHandlerEx)_initHandler, CkpvAccess(_coreState));
	_roRestartHandlerIdx = CkRegisterHandler((CmiHandler)_roRestartHandler);
	_exitHandlerIdx = CkRegisterHandler((CmiHandler)_exitHandler);
	//added for interoperabilitY
	_libExitHandlerIdx = CkRegisterHandler((CmiHandler)_libExitHandler);
	_bocHandlerIdx = CkRegisterHandler((CmiHandler)_initHandler);
	CkNumberHandlerEx(_bocHandlerIdx, (CmiHandlerEx)_initHandler, CkpvAccess(_coreState));

#ifdef __BIGSIM__
	if(BgNodeRank()==0) 
#endif
	_infoIdx = CldRegisterInfoFn((CldInfoFn)_infoFn);

	_triggerHandlerIdx = CkRegisterHandler((CmiHandler)_triggerHandler);
	_ckModuleInit();

	CldRegisterEstimator((CldEstimator)_charmLoadEstimator);

	_futuresModuleInit(); // part of futures implementation is a converse module
	_loadbalancerInit();
        _metabalancerInit();
	
#if CMK_MEM_CHECKPOINT
        init_memcheckpt(argv);
#endif

	initCharmProjections();
#if CMK_TRACE_IN_CHARM
        // initialize trace module in ck
        traceCharmInit(argv);
#endif
 	
    CkpvInitialize(int, envelopeEventID);
    CkpvAccess(envelopeEventID) = 0;
	CkMessageWatcherInit(argv,CkpvAccess(_coreState));
	
	/**
	  The rank-0 processor of each node calls the 
	  translator-generated "_register" routines. 
	  
	  _register routines call the charm.h "CkRegister*" routines,
	  which record function pointers and class information for
	  all Charm entities, like Chares, Arrays, and readonlies.
	  
	  There's one _register routine generated for each
	  .ci file.  _register routines *must* be called in the 
	  same order on every node, and *must not* be called by 
	  multiple threads simultaniously.
	*/
#ifdef __BIGSIM__
	if(BgNodeRank()==0) 
#else
	if(CkMyRank()==0)
#endif
	{
		SDAG::registerPUPables();
		CmiArgGroup("Charm++",NULL);
		_parseCommandLineOpts(argv);
		_registerInit();
		CkRegisterMsg("System", 0, 0, CkFreeMsg, sizeof(int));
		CkRegisterChareInCharm(CkRegisterChare("null", 0, TypeChare));
		CkIndex_Chare::__idx=CkRegisterChare("Chare", sizeof(Chare), TypeChare);
		CkRegisterChareInCharm(CkIndex_Chare::__idx);
		CkIndex_Group::__idx=CkRegisterChare("Group", sizeof(Group), TypeGroup);
                CkRegisterChareInCharm(CkIndex_Group::__idx);
		CkRegisterEp("null", (CkCallFnPtr)_nullFn, 0, 0, 0+CK_EP_INTRINSIC);
		
		/**
		  These _register calls are for the built-in
		  Charm .ci files, like arrays and load balancing.
		  If you add a .ci file to charm, you'll have to 
		  add a call to the _register routine here, or make
		  your library into a "-module".
		*/
		_registerCkFutures();
		_registerCkArray();
		_registerLBDatabase();
    _registerMetaBalancer();
		_registerCkCallback();
		_registertempo();
		_registerwaitqd();
		_registerCkCheckpoint();
#if CMK_MEM_CHECKPOINT
		_registerCkMemCheckpoint();
#endif


		/*
		  Setup Control Point Automatic Tuning Framework.

		  By default it is enabled as a part of charm, 
		  however it won't enable its tracing module 
		  unless a +CPEnableMeasurements command line argument
		  is specified. See trace-common.C for more info

		  Thus there should be no noticable overhead to 
		  always having the control point framework linked
		  in.
		  
		*/
#if CMK_WITH_CONTROLPOINT
		_registerPathHistory();
		_registerControlPoints();
		_registerTraceControlPoints();
#endif


		/**
		  CkRegisterMainModule is generated by the (unique)
		  "mainmodule" .ci file.  It will include calls to 
		  register all the .ci files.
		*/
		CkRegisterMainModule();

		/**
		  _registerExternalModules is actually generated by 
		  charmc at link time (as "moduleinit<pid>.C").  
		  
		  This generated routine calls the _register functions
		  for the .ci files of libraries linked using "-module".
		  This funny initialization is most useful for AMPI/FEM
		  programs, which don't have a .ci file and hence have
		  no other way to control the _register process.
		*/
		_registerExternalModules(argv);
		
		_registerDone();
	}
	/* The following will happen on every virtual processor in BigEmulator, not just on once per real processor */
	if (CkMyRank() == 0) {
	  CpdBreakPointInit();
	}
	CmiNodeAllBarrier();

	// Execute the initcalls registered in modules
	_initCallTable.enumerateInitCalls();

#if CMK_CHARMDEBUG
	CpdFinishInitialization();
#endif

	//CmiNodeAllBarrier();

	CkpvAccess(_myStats) = new Stats();
	CkpvAccess(_msgPool) = new MsgPool();

	CmiNodeAllBarrier();

#if !(__FAULT__)
	CmiBarrier();
	CmiBarrier();
	CmiBarrier();
#endif
#if CMK_SMP_TRACE_COMMTHREAD
	_TRACE_BEGIN_COMPUTATION();	
#else
 	if (!inCommThread) {
	  _TRACE_BEGIN_COMPUTATION();
	}
#endif

#ifdef ADAPT_SCHED_MEM
    if(CkMyRank()==0){
	memCriticalEntries = new int[numMemCriticalEntries];
	int memcnt=0;
	for(int i=0; i<_entryTable.size(); i++){
	    if(_entryTable[i]->isMemCritical){
		memCriticalEntries[memcnt++] = i;
	    }
	}
    }
#endif

#if (defined(_FAULT_MLOG_) || defined(_FAULT_CAUSAL_))
    _messageLoggingInit();
#endif

#ifndef __BIGSIM__
	/*
		FAULT_EVAC
	*/
	CpvAccess(_validProcessors) = new char[CkNumPes()];
	for(int vProc=0;vProc<CkNumPes();vProc++){
		CpvAccess(_validProcessors)[vProc]=1;
	}
	_ckEvacBcastIdx = CkRegisterHandler((CmiHandler)_ckEvacBcast);
	_ckAckEvacIdx = CkRegisterHandler((CmiHandler)_ckAckEvac);
#endif
	CkpvAccess(startedEvac) = 0;
	CpvAccess(serializer) = 0;

	evacuate = 0;
	CcdCallOnCondition(CcdSIGUSR1,(CcdVoidFn)CkDecideEvacPe,0);
#if (defined(_FAULT_MLOG_) || defined(_FAULT_CAUSAL_)) 
    CcdCallOnCondition(CcdSIGUSR2,(CcdVoidFn)CkMlogRestart,0);
#endif

	if(_raiseEvac){
		processRaiseEvacFile(_raiseEvacFile);
		/*
		if(CkMyPe() == 2){
		//	CcdCallOnConditionKeep(CcdPERIODIC_10s,(CcdVoidFn)CkDecideEvacPe,0);
			CcdCallFnAfter((CcdVoidFn)CkDecideEvacPe, 0, 10000);
		}
		if(CkMyPe() == 3){
			CcdCallFnAfter((CcdVoidFn)CkDecideEvacPe, 0, 10000);
		}*/
	}	
    
    if (CkMyRank() == 0) {
      TopoManager_init();
    }
    CmiNodeAllBarrier();

    if (!_replaySystem) {
        CkFtFn  faultFunc_restart = CkRestartMain;
        if (faultFunc == NULL || faultFunc == faultFunc_restart) {         // this is not restart from memory
            // these two are blocking calls for non-bigsim
#if ! CMK_BIGSIM_CHARM
	  CmiInitCPUAffinity(argv);
          CmiInitMemAffinity(argv);
#endif
        }
        CmiInitCPUTopology(argv);
#if CMK_SHARED_VARS_POSIX_THREADS_SMP
        if (CmiCpuTopologyEnabled()) {
            int *pelist;
            int num;
            CmiGetPesOnPhysicalNode(0, &pelist, &num);
#if !CMK_MULTICORE && !CMK_SMP_NO_COMMTHD
            // Count communication threads, if present
            // XXX: Assuming uniformity of node size here
            num += num/CmiMyNodeSize();
#endif
            if (!_Cmi_forceSpinOnIdle && num > CmiNumCores())
            {
              if (CmiMyPe() == 0)
                CmiPrintf("\nCharm++> Warning: the number of SMP threads (%d) is greater than the number of physical cores (%d), so threads will sleep while idling. Use +CmiSpinOnIdle or +CmiSleepOnIdle to control this directly.\n\n", num, CmiNumCores());
              CmiLock(CksvAccess(_nodeLock));
              if (! _Cmi_sleepOnIdle) _Cmi_sleepOnIdle = 1;
              CmiUnlock(CksvAccess(_nodeLock));
            }
        }
#endif
    }

    if(CmiMyPe() == 0) {
        char *topoFilename;
        if(CmiGetArgStringDesc(argv,"+printTopo",&topoFilename,"topo file name")) 
        {
            std::stringstream sstm;
            sstm << topoFilename << "." << CmiMyPartition();
            std::string result = sstm.str();
            FILE *fp;
            fp = fopen(result.c_str(), "w");
            if (fp == NULL) {
              CkPrintf("Error opening %s file, writing to stdout\n", topoFilename);
              fp = stdout;
            }
	    TopoManager_printAllocation(fp);
            fclose(fp);
        }
    }

#if CMK_USE_PXSHM && ( CMK_CRAYXE || CMK_CRAYXC ) && CMK_SMP
      // for SMP on Cray XE6 (hopper) it seems pxshm has to be initialized
      // again after cpuaffinity is done
    if (CkMyRank() == 0) {
      CmiInitPxshm(argv);
    }
    CmiNodeAllBarrier();
#endif

    //CldCallback();
#if CMK_BIGSIM_CHARM && CMK_CHARMDEBUG
      // Register the BG handler for CCS. Notice that this is put into a variable shared by
      // the whole real processor. This because converse needs to find it. We check that all
      // virtual processors register the same index for this handler.
    CpdBgInit();
#endif

	if (faultFunc) {
#if CMK_WITH_STATS
		if (CkMyPe()==0) _allStats = new Stats*[CkNumPes()];
#endif
		if (!inCommThread) {
                  CkArgMsg *msg = (CkArgMsg *)CkAllocMsg(0, sizeof(CkArgMsg), 0);
                  msg->argc = CmiGetArgc(argv);
                  msg->argv = argv;
                  faultFunc(_restartDir, msg);
                  CkFreeMsg(msg);
                }
	}else if(CkMyPe()==0){
#if CMK_WITH_STATS
		_allStats = new Stats*[CkNumPes()];
#endif
		register size_t i, nMains=_mainTable.size();
		for(i=0;i<nMains;i++)  /* Create all mainchares */
		{
			register int size = _chareTable[_mainTable[i]->chareIdx]->size;
			register void *obj = malloc(size);
			_MEMCHECK(obj);
			_mainTable[i]->setObj(obj);
			CkpvAccess(_currentChare) = obj;
			CkpvAccess(_currentChareType) = _mainTable[i]->chareIdx;
			register CkArgMsg *msg = (CkArgMsg *)CkAllocMsg(0, sizeof(CkArgMsg), 0);
			msg->argc = CmiGetArgc(argv);
			msg->argv = argv;
			_entryTable[_mainTable[i]->entryIdx]->call(msg, obj);
#if (defined(_FAULT_MLOG_) || defined(_FAULT_CAUSAL_))
            CpvAccess(_currentObj) = (Chare *)obj;
#endif
		}
                _mainDone = 1;

		_STATS_RECORD_CREATE_CHARE_N(nMains);
		_STATS_RECORD_PROCESS_CHARE_N(nMains);




		for(i=0;i<_readonlyMsgs.size();i++) /* Send out readonly messages */
		{
			register void *roMsg = (void *) *((char **)(_readonlyMsgs[i]->pMsg));
			if(roMsg==0)
				continue;
			//Pack the message and send it to all other processors
			register envelope *env = UsrToEnv(roMsg);
			env->setSrcPe(CkMyPe());
			env->setMsgtype(ROMsgMsg);
			env->setRoIdx(i);
			CmiSetHandler(env, _initHandlerIdx);
			CkPackMessage(&env);
			CmiSyncBroadcast(env->getTotalsize(), (char *)env);
			CpvAccess(_qd)->create(CkNumPes()-1);

			//For processor 0, unpack and re-set the global
			CkUnpackMessage(&env);
			_processROMsgMsg(env);
			_numInitMsgs++;
		}

		//Determine the size of the RODataMessage
		PUP::sizer ps;
		for(i=0;i<_readonlyTable.size();i++) _readonlyTable[i]->pupData(ps);

		//Allocate and fill out the RODataMessage
		envelope *env = _allocEnv(RODataMsg, ps.size());
		PUP::toMem pp((char *)EnvToUsr(env));
		for(i=0;i<_readonlyTable.size();i++) _readonlyTable[i]->pupData(pp);

		env->setCount(++_numInitMsgs);
		env->setSrcPe(CkMyPe());
		CmiSetHandler(env, _initHandlerIdx);
		DEBUGF(("[%d,%.6lf] RODataMsg being sent of size %d \n",CmiMyPe(),CmiWallTimer(),env->getTotalsize()));
		CmiSyncBroadcastAndFree(env->getTotalsize(), (char *)env);
		CpvAccess(_qd)->create(CkNumPes()-1);
		_initDone();
	}

	DEBUGF(("[%d,%d%.6lf] inCommThread %d\n",CmiMyPe(),CmiMyRank(),CmiWallTimer(),inCommThread));
	// when I am a communication thread, I don't participate initDone.
        if (inCommThread) {
                CkNumberHandlerEx(_bocHandlerIdx,(CmiHandlerEx)_processHandler,
                                        CkpvAccess(_coreState));
                CkNumberHandlerEx(_charmHandlerIdx,(CmiHandlerEx)_processHandler
,
                                        CkpvAccess(_coreState));
                _processBufferedMsgs();
        }

#if CMK_CHARMDEBUG
        // Should not use CpdFreeze inside a thread (since this processor is really a user-level thread)
       if (CpvAccess(cpdSuspendStartup))
       { 
          //CmiPrintf("In Parallel Debugging mode .....\n");
          CpdFreeze();
       }
#endif


#if __FAULT__
	if(killFlag){                                                  
                readKillFile();                                        
        }
#endif

}