示例#1
0
/*
 *	_hash_freeovflpage() -
 *
 *	Remove this overflow page from its bucket's chain, and mark the page as
 *	free.  On entry, ovflbuf is write-locked; it is released before exiting.
 *
 *	Since this function is invoked in VACUUM, we provide an access strategy
 *	parameter that controls fetches of the bucket pages.
 *
 *	Returns the block number of the page that followed the given page
 *	in the bucket, or InvalidBlockNumber if no following page.
 *
 *	NB: caller must not hold lock on metapage, nor on either page that's
 *	adjacent in the bucket chain.  The caller had better hold exclusive lock
 *	on the bucket, too.
 */
BlockNumber
_hash_freeovflpage(Relation rel, Buffer ovflbuf,
				   BufferAccessStrategy bstrategy)
{
	HashMetaPage metap;
	Buffer		metabuf;
	Buffer		mapbuf;
	BlockNumber ovflblkno;
	BlockNumber prevblkno;
	BlockNumber blkno;
	BlockNumber nextblkno;
	HashPageOpaque ovflopaque;
	Page		ovflpage;
	Page		mappage;
	uint32	   *freep;
	uint32		ovflbitno;
	int32		bitmappage,
				bitmapbit;
	Bucket		bucket;

	/* Get information from the doomed page */
	_hash_checkpage(rel, ovflbuf, LH_OVERFLOW_PAGE);
	ovflblkno = BufferGetBlockNumber(ovflbuf);
	ovflpage = BufferGetPage(ovflbuf);
	ovflopaque = (HashPageOpaque) PageGetSpecialPointer(ovflpage);
	nextblkno = ovflopaque->hasho_nextblkno;
	prevblkno = ovflopaque->hasho_prevblkno;
	bucket = ovflopaque->hasho_bucket;

	/*
	 * Zero the page for debugging's sake; then write and release it. (Note:
	 * if we failed to zero the page here, we'd have problems with the Assert
	 * in _hash_pageinit() when the page is reused.)
	 */
	MemSet(ovflpage, 0, BufferGetPageSize(ovflbuf));
	_hash_wrtbuf(rel, ovflbuf);

	/*
	 * Fix up the bucket chain.  this is a doubly-linked list, so we must fix
	 * up the bucket chain members behind and ahead of the overflow page being
	 * deleted.  No concurrency issues since we hold exclusive lock on the
	 * entire bucket.
	 */
	if (BlockNumberIsValid(prevblkno))
	{
		Buffer		prevbuf = _hash_getbuf_with_strategy(rel,
														 prevblkno,
														 HASH_WRITE,
										   LH_BUCKET_PAGE | LH_OVERFLOW_PAGE,
														 bstrategy);
		Page		prevpage = BufferGetPage(prevbuf);
		HashPageOpaque prevopaque = (HashPageOpaque) PageGetSpecialPointer(prevpage);

		Assert(prevopaque->hasho_bucket == bucket);
		prevopaque->hasho_nextblkno = nextblkno;
		_hash_wrtbuf(rel, prevbuf);
	}
	if (BlockNumberIsValid(nextblkno))
	{
		Buffer		nextbuf = _hash_getbuf_with_strategy(rel,
														 nextblkno,
														 HASH_WRITE,
														 LH_OVERFLOW_PAGE,
														 bstrategy);
		Page		nextpage = BufferGetPage(nextbuf);
		HashPageOpaque nextopaque = (HashPageOpaque) PageGetSpecialPointer(nextpage);

		Assert(nextopaque->hasho_bucket == bucket);
		nextopaque->hasho_prevblkno = prevblkno;
		_hash_wrtbuf(rel, nextbuf);
	}

	/* Note: bstrategy is intentionally not used for metapage and bitmap */

	/* Read the metapage so we can determine which bitmap page to use */
	metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_READ, LH_META_PAGE);
	metap = HashPageGetMeta(BufferGetPage(metabuf));

	/* Identify which bit to set */
	ovflbitno = blkno_to_bitno(metap, ovflblkno);

	bitmappage = ovflbitno >> BMPG_SHIFT(metap);
	bitmapbit = ovflbitno & BMPG_MASK(metap);

	if (bitmappage >= metap->hashm_nmaps)
		elog(ERROR, "invalid overflow bit number %u", ovflbitno);
	blkno = metap->hashm_mapp[bitmappage];

	/* Release metapage lock while we access the bitmap page */
	_hash_chgbufaccess(rel, metabuf, HASH_READ, HASH_NOLOCK);

	/* Clear the bitmap bit to indicate that this overflow page is free */
	mapbuf = _hash_getbuf(rel, blkno, HASH_WRITE, LH_BITMAP_PAGE);
	mappage = BufferGetPage(mapbuf);
	freep = HashPageGetBitmap(mappage);
	Assert(ISSET(freep, bitmapbit));
	CLRBIT(freep, bitmapbit);
	_hash_wrtbuf(rel, mapbuf);

	/* Get write-lock on metapage to update firstfree */
	_hash_chgbufaccess(rel, metabuf, HASH_NOLOCK, HASH_WRITE);

	/* if this is now the first free page, update hashm_firstfree */
	if (ovflbitno < metap->hashm_firstfree)
	{
		metap->hashm_firstfree = ovflbitno;
		_hash_wrtbuf(rel, metabuf);
	}
	else
	{
		/* no need to change metapage */
		_hash_relbuf(rel, metabuf);
	}

	return nextblkno;
}
示例#2
0
文件: hash.c 项目: Hu1-Li/postgres
/*
 * Bulk deletion of all index entries pointing to a set of heap tuples.
 * The set of target tuples is specified via a callback routine that tells
 * whether any given heap tuple (identified by ItemPointer) is being deleted.
 *
 * Result: a palloc'd struct containing statistical info for VACUUM displays.
 */
IndexBulkDeleteResult *
hashbulkdelete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
			   IndexBulkDeleteCallback callback, void *callback_state)
{
	Relation	rel = info->index;
	double		tuples_removed;
	double		num_index_tuples;
	double		orig_ntuples;
	Bucket		orig_maxbucket;
	Bucket		cur_maxbucket;
	Bucket		cur_bucket;
	Buffer		metabuf;
	HashMetaPage metap;
	HashMetaPageData local_metapage;

	tuples_removed = 0;
	num_index_tuples = 0;

	/*
	 * Read the metapage to fetch original bucket and tuple counts.  Also, we
	 * keep a copy of the last-seen metapage so that we can use its
	 * hashm_spares[] values to compute bucket page addresses.  This is a bit
	 * hokey but perfectly safe, since the interesting entries in the spares
	 * array cannot change under us; and it beats rereading the metapage for
	 * each bucket.
	 */
	metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_READ, LH_META_PAGE);
	metap = HashPageGetMeta(BufferGetPage(metabuf, NULL, NULL,
										  BGP_NO_SNAPSHOT_TEST));
	orig_maxbucket = metap->hashm_maxbucket;
	orig_ntuples = metap->hashm_ntuples;
	memcpy(&local_metapage, metap, sizeof(local_metapage));
	_hash_relbuf(rel, metabuf);

	/* Scan the buckets that we know exist */
	cur_bucket = 0;
	cur_maxbucket = orig_maxbucket;

loop_top:
	while (cur_bucket <= cur_maxbucket)
	{
		BlockNumber bucket_blkno;
		BlockNumber blkno;
		bool		bucket_dirty = false;

		/* Get address of bucket's start page */
		bucket_blkno = BUCKET_TO_BLKNO(&local_metapage, cur_bucket);

		/* Exclusive-lock the bucket so we can shrink it */
		_hash_getlock(rel, bucket_blkno, HASH_EXCLUSIVE);

		/* Shouldn't have any active scans locally, either */
		if (_hash_has_active_scan(rel, cur_bucket))
			elog(ERROR, "hash index has active scan during VACUUM");

		/* Scan each page in bucket */
		blkno = bucket_blkno;
		while (BlockNumberIsValid(blkno))
		{
			Buffer		buf;
			Page		page;
			HashPageOpaque opaque;
			OffsetNumber offno;
			OffsetNumber maxoffno;
			OffsetNumber deletable[MaxOffsetNumber];
			int			ndeletable = 0;

			vacuum_delay_point();

			buf = _hash_getbuf_with_strategy(rel, blkno, HASH_WRITE,
										   LH_BUCKET_PAGE | LH_OVERFLOW_PAGE,
											 info->strategy);
			page = BufferGetPage(buf, NULL, NULL, BGP_NO_SNAPSHOT_TEST);
			opaque = (HashPageOpaque) PageGetSpecialPointer(page);
			Assert(opaque->hasho_bucket == cur_bucket);

			/* Scan each tuple in page */
			maxoffno = PageGetMaxOffsetNumber(page);
			for (offno = FirstOffsetNumber;
				 offno <= maxoffno;
				 offno = OffsetNumberNext(offno))
			{
				IndexTuple	itup;
				ItemPointer htup;

				itup = (IndexTuple) PageGetItem(page,
												PageGetItemId(page, offno));
				htup = &(itup->t_tid);
				if (callback(htup, callback_state))
				{
					/* mark the item for deletion */
					deletable[ndeletable++] = offno;
					tuples_removed += 1;
				}
				else
					num_index_tuples += 1;
			}

			/*
			 * Apply deletions and write page if needed, advance to next page.
			 */
			blkno = opaque->hasho_nextblkno;

			if (ndeletable > 0)
			{
				PageIndexMultiDelete(page, deletable, ndeletable);
				_hash_wrtbuf(rel, buf);
				bucket_dirty = true;
			}
			else
				_hash_relbuf(rel, buf);
		}

		/* If we deleted anything, try to compact free space */
		if (bucket_dirty)
			_hash_squeezebucket(rel, cur_bucket, bucket_blkno,
								info->strategy);

		/* Release bucket lock */
		_hash_droplock(rel, bucket_blkno, HASH_EXCLUSIVE);

		/* Advance to next bucket */
		cur_bucket++;
	}

	/* Write-lock metapage and check for split since we started */
	metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_WRITE, LH_META_PAGE);
	metap = HashPageGetMeta(BufferGetPage(metabuf, NULL, NULL,
										  BGP_NO_SNAPSHOT_TEST));

	if (cur_maxbucket != metap->hashm_maxbucket)
	{
		/* There's been a split, so process the additional bucket(s) */
		cur_maxbucket = metap->hashm_maxbucket;
		memcpy(&local_metapage, metap, sizeof(local_metapage));
		_hash_relbuf(rel, metabuf);
		goto loop_top;
	}

	/* Okay, we're really done.  Update tuple count in metapage. */

	if (orig_maxbucket == metap->hashm_maxbucket &&
		orig_ntuples == metap->hashm_ntuples)
	{
		/*
		 * No one has split or inserted anything since start of scan, so
		 * believe our count as gospel.
		 */
		metap->hashm_ntuples = num_index_tuples;
	}
	else
	{
		/*
		 * Otherwise, our count is untrustworthy since we may have
		 * double-scanned tuples in split buckets.  Proceed by dead-reckoning.
		 * (Note: we still return estimated_count = false, because using this
		 * count is better than not updating reltuples at all.)
		 */
		if (metap->hashm_ntuples > tuples_removed)
			metap->hashm_ntuples -= tuples_removed;
		else
			metap->hashm_ntuples = 0;
		num_index_tuples = metap->hashm_ntuples;
	}

	_hash_wrtbuf(rel, metabuf);

	/* return statistics */
	if (stats == NULL)
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
	stats->estimated_count = false;
	stats->num_index_tuples = num_index_tuples;
	stats->tuples_removed += tuples_removed;
	/* hashvacuumcleanup will fill in num_pages */

	return stats;
}
示例#3
0
/*
 *	_hash_squeezebucket(rel, bucket)
 *
 *	Try to squeeze the tuples onto pages occurring earlier in the
 *	bucket chain in an attempt to free overflow pages. When we start
 *	the "squeezing", the page from which we start taking tuples (the
 *	"read" page) is the last bucket in the bucket chain and the page
 *	onto which we start squeezing tuples (the "write" page) is the
 *	first page in the bucket chain.  The read page works backward and
 *	the write page works forward; the procedure terminates when the
 *	read page and write page are the same page.
 *
 *	At completion of this procedure, it is guaranteed that all pages in
 *	the bucket are nonempty, unless the bucket is totally empty (in
 *	which case all overflow pages will be freed).  The original implementation
 *	required that to be true on entry as well, but it's a lot easier for
 *	callers to leave empty overflow pages and let this guy clean it up.
 *
 *	Caller must hold exclusive lock on the target bucket.  This allows
 *	us to safely lock multiple pages in the bucket.
 *
 *	Since this function is invoked in VACUUM, we provide an access strategy
 *	parameter that controls fetches of the bucket pages.
 */
void
_hash_squeezebucket(Relation rel,
					Bucket bucket,
					BlockNumber bucket_blkno,
					BufferAccessStrategy bstrategy)
{
	BlockNumber wblkno;
	BlockNumber rblkno;
	Buffer		wbuf;
	Buffer		rbuf;
	Page		wpage;
	Page		rpage;
	HashPageOpaque wopaque;
	HashPageOpaque ropaque;
	bool		wbuf_dirty;

	/*
	 * start squeezing into the base bucket page.
	 */
	wblkno = bucket_blkno;
	wbuf = _hash_getbuf_with_strategy(rel,
									  wblkno,
									  HASH_WRITE,
									  LH_BUCKET_PAGE,
									  bstrategy);
	wpage = BufferGetPage(wbuf);
	wopaque = (HashPageOpaque) PageGetSpecialPointer(wpage);

	/*
	 * if there aren't any overflow pages, there's nothing to squeeze.
	 */
	if (!BlockNumberIsValid(wopaque->hasho_nextblkno))
	{
		_hash_relbuf(rel, wbuf);
		return;
	}

	/*
	 * Find the last page in the bucket chain by starting at the base bucket
	 * page and working forward.  Note: we assume that a hash bucket chain is
	 * usually smaller than the buffer ring being used by VACUUM, else using
	 * the access strategy here would be counterproductive.
	 */
	rbuf = InvalidBuffer;
	ropaque = wopaque;
	do
	{
		rblkno = ropaque->hasho_nextblkno;
		if (rbuf != InvalidBuffer)
			_hash_relbuf(rel, rbuf);
		rbuf = _hash_getbuf_with_strategy(rel,
										  rblkno,
										  HASH_WRITE,
										  LH_OVERFLOW_PAGE,
										  bstrategy);
		rpage = BufferGetPage(rbuf);
		ropaque = (HashPageOpaque) PageGetSpecialPointer(rpage);
		Assert(ropaque->hasho_bucket == bucket);
	} while (BlockNumberIsValid(ropaque->hasho_nextblkno));

	/*
	 * squeeze the tuples.
	 */
	wbuf_dirty = false;
	for (;;)
	{
		OffsetNumber roffnum;
		OffsetNumber maxroffnum;
		OffsetNumber deletable[MaxOffsetNumber];
		int			ndeletable = 0;

		/* Scan each tuple in "read" page */
		maxroffnum = PageGetMaxOffsetNumber(rpage);
		for (roffnum = FirstOffsetNumber;
			 roffnum <= maxroffnum;
			 roffnum = OffsetNumberNext(roffnum))
		{
			IndexTuple	itup;
			Size		itemsz;

			itup = (IndexTuple) PageGetItem(rpage,
											PageGetItemId(rpage, roffnum));
			itemsz = IndexTupleDSize(*itup);
			itemsz = MAXALIGN(itemsz);

			/*
			 * Walk up the bucket chain, looking for a page big enough for
			 * this item.  Exit if we reach the read page.
			 */
			while (PageGetFreeSpace(wpage) < itemsz)
			{
				Assert(!PageIsEmpty(wpage));

				wblkno = wopaque->hasho_nextblkno;
				Assert(BlockNumberIsValid(wblkno));

				if (wbuf_dirty)
					_hash_wrtbuf(rel, wbuf);
				else
					_hash_relbuf(rel, wbuf);

				/* nothing more to do if we reached the read page */
				if (rblkno == wblkno)
				{
					if (ndeletable > 0)
					{
						/* Delete tuples we already moved off read page */
						PageIndexMultiDelete(rpage, deletable, ndeletable);
						_hash_wrtbuf(rel, rbuf);
					}
					else
						_hash_relbuf(rel, rbuf);
					return;
				}

				wbuf = _hash_getbuf_with_strategy(rel,
												  wblkno,
												  HASH_WRITE,
												  LH_OVERFLOW_PAGE,
												  bstrategy);
				wpage = BufferGetPage(wbuf);
				wopaque = (HashPageOpaque) PageGetSpecialPointer(wpage);
				Assert(wopaque->hasho_bucket == bucket);
				wbuf_dirty = false;
			}

			/*
			 * we have found room so insert on the "write" page, being careful
			 * to preserve hashkey ordering.  (If we insert many tuples into
			 * the same "write" page it would be worth qsort'ing instead of
			 * doing repeated _hash_pgaddtup.)
			 */
			(void) _hash_pgaddtup(rel, wbuf, itemsz, itup);
			wbuf_dirty = true;

			/* remember tuple for deletion from "read" page */
			deletable[ndeletable++] = roffnum;
		}

		/*
		 * If we reach here, there are no live tuples on the "read" page ---
		 * it was empty when we got to it, or we moved them all.  So we can
		 * just free the page without bothering with deleting tuples
		 * individually.  Then advance to the previous "read" page.
		 *
		 * Tricky point here: if our read and write pages are adjacent in the
		 * bucket chain, our write lock on wbuf will conflict with
		 * _hash_freeovflpage's attempt to update the sibling links of the
		 * removed page.  However, in that case we are done anyway, so we can
		 * simply drop the write lock before calling _hash_freeovflpage.
		 */
		rblkno = ropaque->hasho_prevblkno;
		Assert(BlockNumberIsValid(rblkno));

		/* are we freeing the page adjacent to wbuf? */
		if (rblkno == wblkno)
		{
			/* yes, so release wbuf lock first */
			if (wbuf_dirty)
				_hash_wrtbuf(rel, wbuf);
			else
				_hash_relbuf(rel, wbuf);
			/* free this overflow page (releases rbuf) */
			_hash_freeovflpage(rel, rbuf, bstrategy);
			/* done */
			return;
		}

		/* free this overflow page, then get the previous one */
		_hash_freeovflpage(rel, rbuf, bstrategy);

		rbuf = _hash_getbuf_with_strategy(rel,
										  rblkno,
										  HASH_WRITE,
										  LH_OVERFLOW_PAGE,
										  bstrategy);
		rpage = BufferGetPage(rbuf);
		ropaque = (HashPageOpaque) PageGetSpecialPointer(rpage);
		Assert(ropaque->hasho_bucket == bucket);
	}

	/* NOTREACHED */
}
示例#4
0
/*
 *	_hash_squeezebucket(rel, bucket)
 *
 *	Try to squeeze the tuples onto pages occurring earlier in the
 *	bucket chain in an attempt to free overflow pages. When we start
 *	the "squeezing", the page from which we start taking tuples (the
 *	"read" page) is the last bucket in the bucket chain and the page
 *	onto which we start squeezing tuples (the "write" page) is the
 *	first page in the bucket chain.  The read page works backward and
 *	the write page works forward; the procedure terminates when the
 *	read page and write page are the same page.
 *
 *	At completion of this procedure, it is guaranteed that all pages in
 *	the bucket are nonempty, unless the bucket is totally empty (in
 *	which case all overflow pages will be freed).  The original implementation
 *	required that to be true on entry as well, but it's a lot easier for
 *	callers to leave empty overflow pages and let this guy clean it up.
 *
 *	Caller must acquire cleanup lock on the primary page of the target
 *	bucket to exclude any scans that are in progress, which could easily
 *	be confused into returning the same tuple more than once or some tuples
 *	not at all by the rearrangement we are performing here.  To prevent
 *	any concurrent scan to cross the squeeze scan we use lock chaining
 *	similar to hasbucketcleanup.  Refer comments atop hashbucketcleanup.
 *
 *	We need to retain a pin on the primary bucket to ensure that no concurrent
 *	split can start.
 *
 *	Since this function is invoked in VACUUM, we provide an access strategy
 *	parameter that controls fetches of the bucket pages.
 */
void
_hash_squeezebucket(Relation rel,
					Bucket bucket,
					BlockNumber bucket_blkno,
					Buffer bucket_buf,
					BufferAccessStrategy bstrategy)
{
	BlockNumber wblkno;
	BlockNumber rblkno;
	Buffer		wbuf;
	Buffer		rbuf;
	Page		wpage;
	Page		rpage;
	HashPageOpaque wopaque;
	HashPageOpaque ropaque;

	/*
	 * start squeezing into the primary bucket page.
	 */
	wblkno = bucket_blkno;
	wbuf = bucket_buf;
	wpage = BufferGetPage(wbuf);
	wopaque = (HashPageOpaque) PageGetSpecialPointer(wpage);

	/*
	 * if there aren't any overflow pages, there's nothing to squeeze. caller
	 * is responsible for releasing the pin on primary bucket page.
	 */
	if (!BlockNumberIsValid(wopaque->hasho_nextblkno))
	{
		LockBuffer(wbuf, BUFFER_LOCK_UNLOCK);
		return;
	}

	/*
	 * Find the last page in the bucket chain by starting at the base bucket
	 * page and working forward.  Note: we assume that a hash bucket chain is
	 * usually smaller than the buffer ring being used by VACUUM, else using
	 * the access strategy here would be counterproductive.
	 */
	rbuf = InvalidBuffer;
	ropaque = wopaque;
	do
	{
		rblkno = ropaque->hasho_nextblkno;
		if (rbuf != InvalidBuffer)
			_hash_relbuf(rel, rbuf);
		rbuf = _hash_getbuf_with_strategy(rel,
										  rblkno,
										  HASH_WRITE,
										  LH_OVERFLOW_PAGE,
										  bstrategy);
		rpage = BufferGetPage(rbuf);
		ropaque = (HashPageOpaque) PageGetSpecialPointer(rpage);
		Assert(ropaque->hasho_bucket == bucket);
	} while (BlockNumberIsValid(ropaque->hasho_nextblkno));

	/*
	 * squeeze the tuples.
	 */
	for (;;)
	{
		OffsetNumber roffnum;
		OffsetNumber maxroffnum;
		OffsetNumber deletable[MaxOffsetNumber];
		IndexTuple	itups[MaxIndexTuplesPerPage];
		Size		tups_size[MaxIndexTuplesPerPage];
		OffsetNumber itup_offsets[MaxIndexTuplesPerPage];
		uint16		ndeletable = 0;
		uint16		nitups = 0;
		Size		all_tups_size = 0;
		int			i;
		bool		retain_pin = false;

readpage:
		/* Scan each tuple in "read" page */
		maxroffnum = PageGetMaxOffsetNumber(rpage);
		for (roffnum = FirstOffsetNumber;
			 roffnum <= maxroffnum;
			 roffnum = OffsetNumberNext(roffnum))
		{
			IndexTuple	itup;
			Size		itemsz;

			/* skip dead tuples */
			if (ItemIdIsDead(PageGetItemId(rpage, roffnum)))
				continue;

			itup = (IndexTuple) PageGetItem(rpage,
											PageGetItemId(rpage, roffnum));
			itemsz = IndexTupleDSize(*itup);
			itemsz = MAXALIGN(itemsz);

			/*
			 * Walk up the bucket chain, looking for a page big enough for
			 * this item and all other accumulated items.  Exit if we reach
			 * the read page.
			 */
			while (PageGetFreeSpaceForMultipleTuples(wpage, nitups + 1) < (all_tups_size + itemsz))
			{
				Buffer		next_wbuf = InvalidBuffer;
				bool		tups_moved = false;

				Assert(!PageIsEmpty(wpage));

				if (wblkno == bucket_blkno)
					retain_pin = true;

				wblkno = wopaque->hasho_nextblkno;
				Assert(BlockNumberIsValid(wblkno));

				/* don't need to move to next page if we reached the read page */
				if (wblkno != rblkno)
					next_wbuf = _hash_getbuf_with_strategy(rel,
														   wblkno,
														   HASH_WRITE,
														   LH_OVERFLOW_PAGE,
														   bstrategy);

				if (nitups > 0)
				{
					Assert(nitups == ndeletable);

					/*
					 * This operation needs to log multiple tuples, prepare
					 * WAL for that.
					 */
					if (RelationNeedsWAL(rel))
						XLogEnsureRecordSpace(0, 3 + nitups);

					START_CRIT_SECTION();

					/*
					 * we have to insert tuples on the "write" page, being
					 * careful to preserve hashkey ordering.  (If we insert
					 * many tuples into the same "write" page it would be
					 * worth qsort'ing them).
					 */
					_hash_pgaddmultitup(rel, wbuf, itups, itup_offsets, nitups);
					MarkBufferDirty(wbuf);

					/* Delete tuples we already moved off read page */
					PageIndexMultiDelete(rpage, deletable, ndeletable);
					MarkBufferDirty(rbuf);

					/* XLOG stuff */
					if (RelationNeedsWAL(rel))
					{
						XLogRecPtr	recptr;
						xl_hash_move_page_contents xlrec;

						xlrec.ntups = nitups;
						xlrec.is_prim_bucket_same_wrt = (wbuf == bucket_buf) ? true : false;

						XLogBeginInsert();
						XLogRegisterData((char *) &xlrec, SizeOfHashMovePageContents);

						/*
						 * bucket buffer needs to be registered to ensure that
						 * we can acquire a cleanup lock on it during replay.
						 */
						if (!xlrec.is_prim_bucket_same_wrt)
							XLogRegisterBuffer(0, bucket_buf, REGBUF_STANDARD | REGBUF_NO_IMAGE);

						XLogRegisterBuffer(1, wbuf, REGBUF_STANDARD);
						XLogRegisterBufData(1, (char *) itup_offsets,
											nitups * sizeof(OffsetNumber));
						for (i = 0; i < nitups; i++)
							XLogRegisterBufData(1, (char *) itups[i], tups_size[i]);

						XLogRegisterBuffer(2, rbuf, REGBUF_STANDARD);
						XLogRegisterBufData(2, (char *) deletable,
											ndeletable * sizeof(OffsetNumber));

						recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_MOVE_PAGE_CONTENTS);

						PageSetLSN(BufferGetPage(wbuf), recptr);
						PageSetLSN(BufferGetPage(rbuf), recptr);
					}

					END_CRIT_SECTION();

					tups_moved = true;
				}

				/*
				 * release the lock on previous page after acquiring the lock
				 * on next page
				 */
				if (retain_pin)
					LockBuffer(wbuf, BUFFER_LOCK_UNLOCK);
				else
					_hash_relbuf(rel, wbuf);

				/* nothing more to do if we reached the read page */
				if (rblkno == wblkno)
				{
					_hash_relbuf(rel, rbuf);
					return;
				}

				wbuf = next_wbuf;
				wpage = BufferGetPage(wbuf);
				wopaque = (HashPageOpaque) PageGetSpecialPointer(wpage);
				Assert(wopaque->hasho_bucket == bucket);
				retain_pin = false;

				/* be tidy */
				for (i = 0; i < nitups; i++)
					pfree(itups[i]);
				nitups = 0;
				all_tups_size = 0;
				ndeletable = 0;

				/*
				 * after moving the tuples, rpage would have been compacted,
				 * so we need to rescan it.
				 */
				if (tups_moved)
					goto readpage;
			}

			/* remember tuple for deletion from "read" page */
			deletable[ndeletable++] = roffnum;

			/*
			 * we need a copy of index tuples as they can be freed as part of
			 * overflow page, however we need them to write a WAL record in
			 * _hash_freeovflpage.
			 */
			itups[nitups] = CopyIndexTuple(itup);
			tups_size[nitups++] = itemsz;
			all_tups_size += itemsz;
		}

		/*
		 * If we reach here, there are no live tuples on the "read" page ---
		 * it was empty when we got to it, or we moved them all.  So we can
		 * just free the page without bothering with deleting tuples
		 * individually.  Then advance to the previous "read" page.
		 *
		 * Tricky point here: if our read and write pages are adjacent in the
		 * bucket chain, our write lock on wbuf will conflict with
		 * _hash_freeovflpage's attempt to update the sibling links of the
		 * removed page.  In that case, we don't need to lock it again.
		 */
		rblkno = ropaque->hasho_prevblkno;
		Assert(BlockNumberIsValid(rblkno));

		/* free this overflow page (releases rbuf) */
		_hash_freeovflpage(rel, bucket_buf, rbuf, wbuf, itups, itup_offsets,
						   tups_size, nitups, bstrategy);

		/* be tidy */
		for (i = 0; i < nitups; i++)
			pfree(itups[i]);

		/* are we freeing the page adjacent to wbuf? */
		if (rblkno == wblkno)
		{
			/* retain the pin on primary bucket page till end of bucket scan */
			if (wblkno == bucket_blkno)
				LockBuffer(wbuf, BUFFER_LOCK_UNLOCK);
			else
				_hash_relbuf(rel, wbuf);
			return;
		}

		rbuf = _hash_getbuf_with_strategy(rel,
										  rblkno,
										  HASH_WRITE,
										  LH_OVERFLOW_PAGE,
										  bstrategy);
		rpage = BufferGetPage(rbuf);
		ropaque = (HashPageOpaque) PageGetSpecialPointer(rpage);
		Assert(ropaque->hasho_bucket == bucket);
	}

	/* NOTREACHED */
}
示例#5
0
/*
 *	_hash_freeovflpage() -
 *
 *	Remove this overflow page from its bucket's chain, and mark the page as
 *	free.  On entry, ovflbuf is write-locked; it is released before exiting.
 *
 *	Add the tuples (itups) to wbuf in this function.  We could do that in the
 *	caller as well, but the advantage of doing it here is we can easily write
 *	the WAL for XLOG_HASH_SQUEEZE_PAGE operation.  Addition of tuples and
 *	removal of overflow page has to done as an atomic operation, otherwise
 *	during replay on standby users might find duplicate records.
 *
 *	Since this function is invoked in VACUUM, we provide an access strategy
 *	parameter that controls fetches of the bucket pages.
 *
 *	Returns the block number of the page that followed the given page
 *	in the bucket, or InvalidBlockNumber if no following page.
 *
 *	NB: caller must not hold lock on metapage, nor on page, that's next to
 *	ovflbuf in the bucket chain.  We don't acquire the lock on page that's
 *	prior to ovflbuf in chain if it is same as wbuf because the caller already
 *	has a lock on same.
 */
BlockNumber
_hash_freeovflpage(Relation rel, Buffer bucketbuf, Buffer ovflbuf,
				   Buffer wbuf, IndexTuple *itups, OffsetNumber *itup_offsets,
				   Size *tups_size, uint16 nitups,
				   BufferAccessStrategy bstrategy)
{
	HashMetaPage metap;
	Buffer		metabuf;
	Buffer		mapbuf;
	BlockNumber ovflblkno;
	BlockNumber prevblkno;
	BlockNumber blkno;
	BlockNumber nextblkno;
	BlockNumber writeblkno;
	HashPageOpaque ovflopaque;
	Page		ovflpage;
	Page		mappage;
	uint32	   *freep;
	uint32		ovflbitno;
	int32		bitmappage,
				bitmapbit;
	Bucket		bucket PG_USED_FOR_ASSERTS_ONLY;
	Buffer		prevbuf = InvalidBuffer;
	Buffer		nextbuf = InvalidBuffer;
	bool		update_metap = false;

	/* Get information from the doomed page */
	_hash_checkpage(rel, ovflbuf, LH_OVERFLOW_PAGE);
	ovflblkno = BufferGetBlockNumber(ovflbuf);
	ovflpage = BufferGetPage(ovflbuf);
	ovflopaque = (HashPageOpaque) PageGetSpecialPointer(ovflpage);
	nextblkno = ovflopaque->hasho_nextblkno;
	prevblkno = ovflopaque->hasho_prevblkno;
	writeblkno = BufferGetBlockNumber(wbuf);
	bucket = ovflopaque->hasho_bucket;

	/*
	 * Fix up the bucket chain.  this is a doubly-linked list, so we must fix
	 * up the bucket chain members behind and ahead of the overflow page being
	 * deleted.  Concurrency issues are avoided by using lock chaining as
	 * described atop hashbucketcleanup.
	 */
	if (BlockNumberIsValid(prevblkno))
	{
		if (prevblkno == writeblkno)
			prevbuf = wbuf;
		else
			prevbuf = _hash_getbuf_with_strategy(rel,
												 prevblkno,
												 HASH_WRITE,
												 LH_BUCKET_PAGE | LH_OVERFLOW_PAGE,
												 bstrategy);
	}
	if (BlockNumberIsValid(nextblkno))
		nextbuf = _hash_getbuf_with_strategy(rel,
											 nextblkno,
											 HASH_WRITE,
											 LH_OVERFLOW_PAGE,
											 bstrategy);

	/* Note: bstrategy is intentionally not used for metapage and bitmap */

	/* Read the metapage so we can determine which bitmap page to use */
	metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_READ, LH_META_PAGE);
	metap = HashPageGetMeta(BufferGetPage(metabuf));

	/* Identify which bit to set */
	ovflbitno = _hash_ovflblkno_to_bitno(metap, ovflblkno);

	bitmappage = ovflbitno >> BMPG_SHIFT(metap);
	bitmapbit = ovflbitno & BMPG_MASK(metap);

	if (bitmappage >= metap->hashm_nmaps)
		elog(ERROR, "invalid overflow bit number %u", ovflbitno);
	blkno = metap->hashm_mapp[bitmappage];

	/* Release metapage lock while we access the bitmap page */
	LockBuffer(metabuf, BUFFER_LOCK_UNLOCK);

	/* read the bitmap page to clear the bitmap bit */
	mapbuf = _hash_getbuf(rel, blkno, HASH_WRITE, LH_BITMAP_PAGE);
	mappage = BufferGetPage(mapbuf);
	freep = HashPageGetBitmap(mappage);
	Assert(ISSET(freep, bitmapbit));

	/* Get write-lock on metapage to update firstfree */
	LockBuffer(metabuf, BUFFER_LOCK_EXCLUSIVE);

	/* This operation needs to log multiple tuples, prepare WAL for that */
	if (RelationNeedsWAL(rel))
		XLogEnsureRecordSpace(HASH_XLOG_FREE_OVFL_BUFS, 4 + nitups);

	START_CRIT_SECTION();

	/*
	 * we have to insert tuples on the "write" page, being careful to preserve
	 * hashkey ordering.  (If we insert many tuples into the same "write" page
	 * it would be worth qsort'ing them).
	 */
	if (nitups > 0)
	{
		_hash_pgaddmultitup(rel, wbuf, itups, itup_offsets, nitups);
		MarkBufferDirty(wbuf);
	}

	/*
	 * Reinitialize the freed overflow page.  Just zeroing the page won't
	 * work, because WAL replay routines expect pages to be initialized. See
	 * explanation of RBM_NORMAL mode atop XLogReadBufferExtended.  We are
	 * careful to make the special space valid here so that tools like
	 * pageinspect won't get confused.
	 */
	_hash_pageinit(ovflpage, BufferGetPageSize(ovflbuf));

	ovflopaque = (HashPageOpaque) PageGetSpecialPointer(ovflpage);

	ovflopaque->hasho_prevblkno = InvalidBlockNumber;
	ovflopaque->hasho_nextblkno = InvalidBlockNumber;
	ovflopaque->hasho_bucket = -1;
	ovflopaque->hasho_flag = LH_UNUSED_PAGE;
	ovflopaque->hasho_page_id = HASHO_PAGE_ID;

	MarkBufferDirty(ovflbuf);

	if (BufferIsValid(prevbuf))
	{
		Page		prevpage = BufferGetPage(prevbuf);
		HashPageOpaque prevopaque = (HashPageOpaque) PageGetSpecialPointer(prevpage);

		Assert(prevopaque->hasho_bucket == bucket);
		prevopaque->hasho_nextblkno = nextblkno;
		MarkBufferDirty(prevbuf);
	}
	if (BufferIsValid(nextbuf))
	{
		Page		nextpage = BufferGetPage(nextbuf);
		HashPageOpaque nextopaque = (HashPageOpaque) PageGetSpecialPointer(nextpage);

		Assert(nextopaque->hasho_bucket == bucket);
		nextopaque->hasho_prevblkno = prevblkno;
		MarkBufferDirty(nextbuf);
	}

	/* Clear the bitmap bit to indicate that this overflow page is free */
	CLRBIT(freep, bitmapbit);
	MarkBufferDirty(mapbuf);

	/* if this is now the first free page, update hashm_firstfree */
	if (ovflbitno < metap->hashm_firstfree)
	{
		metap->hashm_firstfree = ovflbitno;
		update_metap = true;
		MarkBufferDirty(metabuf);
	}

	/* XLOG stuff */
	if (RelationNeedsWAL(rel))
	{
		xl_hash_squeeze_page xlrec;
		XLogRecPtr	recptr;
		int			i;

		xlrec.prevblkno = prevblkno;
		xlrec.nextblkno = nextblkno;
		xlrec.ntups = nitups;
		xlrec.is_prim_bucket_same_wrt = (wbuf == bucketbuf);
		xlrec.is_prev_bucket_same_wrt = (wbuf == prevbuf);

		XLogBeginInsert();
		XLogRegisterData((char *) &xlrec, SizeOfHashSqueezePage);

		/*
		 * bucket buffer needs to be registered to ensure that we can acquire
		 * a cleanup lock on it during replay.
		 */
		if (!xlrec.is_prim_bucket_same_wrt)
			XLogRegisterBuffer(0, bucketbuf, REGBUF_STANDARD | REGBUF_NO_IMAGE);

		XLogRegisterBuffer(1, wbuf, REGBUF_STANDARD);
		if (xlrec.ntups > 0)
		{
			XLogRegisterBufData(1, (char *) itup_offsets,
								nitups * sizeof(OffsetNumber));
			for (i = 0; i < nitups; i++)
				XLogRegisterBufData(1, (char *) itups[i], tups_size[i]);
		}

		XLogRegisterBuffer(2, ovflbuf, REGBUF_STANDARD);

		/*
		 * If prevpage and the writepage (block in which we are moving tuples
		 * from overflow) are same, then no need to separately register
		 * prevpage.  During replay, we can directly update the nextblock in
		 * writepage.
		 */
		if (BufferIsValid(prevbuf) && !xlrec.is_prev_bucket_same_wrt)
			XLogRegisterBuffer(3, prevbuf, REGBUF_STANDARD);

		if (BufferIsValid(nextbuf))
			XLogRegisterBuffer(4, nextbuf, REGBUF_STANDARD);

		XLogRegisterBuffer(5, mapbuf, REGBUF_STANDARD);
		XLogRegisterBufData(5, (char *) &bitmapbit, sizeof(uint32));

		if (update_metap)
		{
			XLogRegisterBuffer(6, metabuf, REGBUF_STANDARD);
			XLogRegisterBufData(6, (char *) &metap->hashm_firstfree, sizeof(uint32));
		}

		recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_SQUEEZE_PAGE);

		PageSetLSN(BufferGetPage(wbuf), recptr);
		PageSetLSN(BufferGetPage(ovflbuf), recptr);

		if (BufferIsValid(prevbuf) && !xlrec.is_prev_bucket_same_wrt)
			PageSetLSN(BufferGetPage(prevbuf), recptr);
		if (BufferIsValid(nextbuf))
			PageSetLSN(BufferGetPage(nextbuf), recptr);

		PageSetLSN(BufferGetPage(mapbuf), recptr);

		if (update_metap)
			PageSetLSN(BufferGetPage(metabuf), recptr);
	}

	END_CRIT_SECTION();

	/* release previous bucket if it is not same as write bucket */
	if (BufferIsValid(prevbuf) && prevblkno != writeblkno)
		_hash_relbuf(rel, prevbuf);

	if (BufferIsValid(ovflbuf))
		_hash_relbuf(rel, ovflbuf);

	if (BufferIsValid(nextbuf))
		_hash_relbuf(rel, nextbuf);

	_hash_relbuf(rel, mapbuf);
	_hash_relbuf(rel, metabuf);

	return nextblkno;
}
示例#6
0
/*
 * Helper function to perform deletion of index entries from a bucket.
 *
 * This function expects that the caller has acquired a cleanup lock on the
 * primary bucket page, and will return with a write lock again held on the
 * primary bucket page.  The lock won't necessarily be held continuously,
 * though, because we'll release it when visiting overflow pages.
 *
 * It would be very bad if this function cleaned a page while some other
 * backend was in the midst of scanning it, because hashgettuple assumes
 * that the next valid TID will be greater than or equal to the current
 * valid TID.  There can't be any concurrent scans in progress when we first
 * enter this function because of the cleanup lock we hold on the primary
 * bucket page, but as soon as we release that lock, there might be.  We
 * handle that by conspiring to prevent those scans from passing our cleanup
 * scan.  To do that, we lock the next page in the bucket chain before
 * releasing the lock on the previous page.  (This type of lock chaining is
 * not ideal, so we might want to look for a better solution at some point.)
 *
 * We need to retain a pin on the primary bucket to ensure that no concurrent
 * split can start.
 */
void
hashbucketcleanup(Relation rel, Bucket cur_bucket, Buffer bucket_buf,
				  BlockNumber bucket_blkno, BufferAccessStrategy bstrategy,
				  uint32 maxbucket, uint32 highmask, uint32 lowmask,
				  double *tuples_removed, double *num_index_tuples,
				  bool split_cleanup,
				  IndexBulkDeleteCallback callback, void *callback_state)
{
	BlockNumber blkno;
	Buffer		buf;
	Bucket new_bucket PG_USED_FOR_ASSERTS_ONLY = InvalidBucket;
	bool		bucket_dirty = false;

	blkno = bucket_blkno;
	buf = bucket_buf;

	if (split_cleanup)
		new_bucket = _hash_get_newbucket_from_oldbucket(rel, cur_bucket,
														lowmask, maxbucket);

	/* Scan each page in bucket */
	for (;;)
	{
		HashPageOpaque opaque;
		OffsetNumber offno;
		OffsetNumber maxoffno;
		Buffer		next_buf;
		Page		page;
		OffsetNumber deletable[MaxOffsetNumber];
		int			ndeletable = 0;
		bool		retain_pin = false;
		bool		clear_dead_marking = false;

		vacuum_delay_point();

		page = BufferGetPage(buf);
		opaque = (HashPageOpaque) PageGetSpecialPointer(page);

		/* Scan each tuple in page */
		maxoffno = PageGetMaxOffsetNumber(page);
		for (offno = FirstOffsetNumber;
			 offno <= maxoffno;
			 offno = OffsetNumberNext(offno))
		{
			ItemPointer htup;
			IndexTuple	itup;
			Bucket		bucket;
			bool		kill_tuple = false;

			itup = (IndexTuple) PageGetItem(page,
											PageGetItemId(page, offno));
			htup = &(itup->t_tid);

			/*
			 * To remove the dead tuples, we strictly want to rely on results
			 * of callback function.  refer btvacuumpage for detailed reason.
			 */
			if (callback && callback(htup, callback_state))
			{
				kill_tuple = true;
				if (tuples_removed)
					*tuples_removed += 1;
			}
			else if (split_cleanup)
			{
				/* delete the tuples that are moved by split. */
				bucket = _hash_hashkey2bucket(_hash_get_indextuple_hashkey(itup),
											  maxbucket,
											  highmask,
											  lowmask);
				/* mark the item for deletion */
				if (bucket != cur_bucket)
				{
					/*
					 * We expect tuples to either belong to curent bucket or
					 * new_bucket.  This is ensured because we don't allow
					 * further splits from bucket that contains garbage. See
					 * comments in _hash_expandtable.
					 */
					Assert(bucket == new_bucket);
					kill_tuple = true;
				}
			}

			if (kill_tuple)
			{
				/* mark the item for deletion */
				deletable[ndeletable++] = offno;
			}
			else
			{
				/* we're keeping it, so count it */
				if (num_index_tuples)
					*num_index_tuples += 1;
			}
		}

		/* retain the pin on primary bucket page till end of bucket scan */
		if (blkno == bucket_blkno)
			retain_pin = true;
		else
			retain_pin = false;

		blkno = opaque->hasho_nextblkno;

		/*
		 * Apply deletions, advance to next page and write page if needed.
		 */
		if (ndeletable > 0)
		{
			/* No ereport(ERROR) until changes are logged */
			START_CRIT_SECTION();

			PageIndexMultiDelete(page, deletable, ndeletable);
			bucket_dirty = true;

			/*
			 * Let us mark the page as clean if vacuum removes the DEAD tuples
			 * from an index page. We do this by clearing LH_PAGE_HAS_DEAD_TUPLES
			 * flag.
			 */
			if (tuples_removed && *tuples_removed > 0 &&
				opaque->hasho_flag & LH_PAGE_HAS_DEAD_TUPLES)
			{
				opaque->hasho_flag &= ~LH_PAGE_HAS_DEAD_TUPLES;
				clear_dead_marking = true;
			}

			MarkBufferDirty(buf);

			/* XLOG stuff */
			if (RelationNeedsWAL(rel))
			{
				xl_hash_delete xlrec;
				XLogRecPtr	recptr;

				xlrec.clear_dead_marking = clear_dead_marking;
				xlrec.is_primary_bucket_page = (buf == bucket_buf) ? true : false;

				XLogBeginInsert();
				XLogRegisterData((char *) &xlrec, SizeOfHashDelete);

				/*
				 * bucket buffer needs to be registered to ensure that we can
				 * acquire a cleanup lock on it during replay.
				 */
				if (!xlrec.is_primary_bucket_page)
					XLogRegisterBuffer(0, bucket_buf, REGBUF_STANDARD | REGBUF_NO_IMAGE);

				XLogRegisterBuffer(1, buf, REGBUF_STANDARD);
				XLogRegisterBufData(1, (char *) deletable,
									ndeletable * sizeof(OffsetNumber));

				recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_DELETE);
				PageSetLSN(BufferGetPage(buf), recptr);
			}

			END_CRIT_SECTION();
		}

		/* bail out if there are no more pages to scan. */
		if (!BlockNumberIsValid(blkno))
			break;

		next_buf = _hash_getbuf_with_strategy(rel, blkno, HASH_WRITE,
											  LH_OVERFLOW_PAGE,
											  bstrategy);

		/*
		 * release the lock on previous page after acquiring the lock on next
		 * page
		 */
		if (retain_pin)
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		else
			_hash_relbuf(rel, buf);

		buf = next_buf;
	}

	/*
	 * lock the bucket page to clear the garbage flag and squeeze the bucket.
	 * if the current buffer is same as bucket buffer, then we already have
	 * lock on bucket page.
	 */
	if (buf != bucket_buf)
	{
		_hash_relbuf(rel, buf);
		LockBuffer(bucket_buf, BUFFER_LOCK_EXCLUSIVE);
	}

	/*
	 * Clear the garbage flag from bucket after deleting the tuples that are
	 * moved by split.  We purposefully clear the flag before squeeze bucket,
	 * so that after restart, vacuum shouldn't again try to delete the moved
	 * by split tuples.
	 */
	if (split_cleanup)
	{
		HashPageOpaque bucket_opaque;
		Page		page;

		page = BufferGetPage(bucket_buf);
		bucket_opaque = (HashPageOpaque) PageGetSpecialPointer(page);

		/* No ereport(ERROR) until changes are logged */
		START_CRIT_SECTION();

		bucket_opaque->hasho_flag &= ~LH_BUCKET_NEEDS_SPLIT_CLEANUP;
		MarkBufferDirty(bucket_buf);

		/* XLOG stuff */
		if (RelationNeedsWAL(rel))
		{
			XLogRecPtr	recptr;

			XLogBeginInsert();
			XLogRegisterBuffer(0, bucket_buf, REGBUF_STANDARD);

			recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_SPLIT_CLEANUP);
			PageSetLSN(page, recptr);
		}

		END_CRIT_SECTION();
	}

	/*
	 * If we have deleted anything, try to compact free space.  For squeezing
	 * the bucket, we must have a cleanup lock, else it can impact the
	 * ordering of tuples for a scan that has started before it.
	 */
	if (bucket_dirty && IsBufferCleanupOK(bucket_buf))
		_hash_squeezebucket(rel, cur_bucket, bucket_blkno, bucket_buf,
							bstrategy);
	else
		LockBuffer(bucket_buf, BUFFER_LOCK_UNLOCK);
}
示例#7
0
/*
 *	_hash_freeovflpage() -
 *
 *	Remove this overflow page from its bucket's chain, and mark the page as
 *	free.  On entry, ovflbuf is write-locked; it is released before exiting.
 *
 *	Since this function is invoked in VACUUM, we provide an access strategy
 *	parameter that controls fetches of the bucket pages.
 *
 *	Returns the block number of the page that followed the given page
 *	in the bucket, or InvalidBlockNumber if no following page.
 *
 *	NB: caller must not hold lock on metapage, nor on either page that's
 *	adjacent in the bucket chain.  The caller had better hold exclusive lock
 *	on the bucket, too.
 */
BlockNumber
_hash_freeovflpage(Relation rel, Buffer ovflbuf,
				   BufferAccessStrategy bstrategy)
{
	HashMetaPage metap;
	Buffer		metabuf;
	Buffer		mapbuf;
	BlockNumber ovflblkno;
	BlockNumber prevblkno;
	BlockNumber blkno;
	BlockNumber nextblkno;
	HashPageOpaque ovflopaque;
	Page		ovflpage;
	Page		mappage;
	uint32	   *freep;
	uint32		ovflbitno;
	int32		bitmappage,
				bitmapbit;
	/*CS3223*/
	int 			index;
	int 			bitIndexInElement;
	uint32 			ovflElement;
	uint32 			temp, temp2;
	int 			i;
	BlockNumber 	nextblkno_temp;
	HashPageOpaque	pageopaque;
	Page			page;
	uint32 			*tempPointer;
	
	Bucket bucket PG_USED_FOR_ASSERTS_ONLY;

	/* Get information from the doomed page */
	_hash_checkpage(rel, ovflbuf, LH_OVERFLOW_PAGE);
	ovflblkno = BufferGetBlockNumber(ovflbuf);
	ovflpage = BufferGetPage(ovflbuf);
	ovflopaque = (HashPageOpaque) PageGetSpecialPointer(ovflpage);
	nextblkno = ovflopaque->hasho_nextblkno;
	prevblkno = ovflopaque->hasho_prevblkno;
	bucket = ovflopaque->hasho_bucket;
	
	/*CS3223*/
	/* find the length of the bucket chain*/
	
	while (i>=0)
	{
		//nextblkno_temp;

		page = BufferGetPage(ovflbuf);
		pageopaque = (HashPageOpaque) PageGetSpecialPointer(page);
		nextblkno_temp = pageopaque->hasho_nextblkno;

		if (!BlockNumberIsValid(nextblkno_temp))
			break;

		/* we assume we do not need to write the unmodified page */
		_hash_relbuf(rel, ovflbuf);

		ovflbuf = _hash_getbuf(rel, nextblkno_temp, HASH_WRITE, LH_OVERFLOW_PAGE);
		/*CS3223*/
		i++;
	}

	/*
	 * Zero the page for debugging's sake; then write and release it. (Note:
	 * if we failed to zero the page here, we'd have problems with the Assert
	 * in _hash_pageinit() when the page is reused.)
	 */
	MemSet(ovflpage, 0, BufferGetPageSize(ovflbuf));
	_hash_wrtbuf(rel, ovflbuf);

	/*
	 * Fix up the bucket chain.  this is a doubly-linked list, so we must fix
	 * up the bucket chain members behind and ahead of the overflow page being
	 * deleted.  No concurrency issues since we hold exclusive lock on the
	 * entire bucket.
	 */
	if (BlockNumberIsValid(prevblkno))
	{
		Buffer		prevbuf = _hash_getbuf_with_strategy(rel,
														 prevblkno,
														 HASH_WRITE,
										   LH_BUCKET_PAGE | LH_OVERFLOW_PAGE,
														 bstrategy);
		Page		prevpage = BufferGetPage(prevbuf);
		HashPageOpaque prevopaque = (HashPageOpaque) PageGetSpecialPointer(prevpage);

		Assert(prevopaque->hasho_bucket == bucket);
		prevopaque->hasho_nextblkno = nextblkno;
		_hash_wrtbuf(rel, prevbuf);
	}
	if (BlockNumberIsValid(nextblkno))
	{
		Buffer		nextbuf = _hash_getbuf_with_strategy(rel,
														 nextblkno,
														 HASH_WRITE,
														 LH_OVERFLOW_PAGE,
														 bstrategy);
		Page		nextpage = BufferGetPage(nextbuf);
		HashPageOpaque nextopaque = (HashPageOpaque) PageGetSpecialPointer(nextpage);

		Assert(nextopaque->hasho_bucket == bucket);
		nextopaque->hasho_prevblkno = prevblkno;
		_hash_wrtbuf(rel, nextbuf);
	}
	
	/*CS3223*/
	if (i == 0) {		//length of the bucket chain is 0, no overflow bucket for that primary bucket
		index 			  = bucket / 32;
		bitIndexInElement = bucket % 32;
		ovflElement  	  = metap->ovflBkts[index];
		temp 			  = ovflElement >> bitIndexInElement;
		temp 			 -= 1;		//bit changed from 1 to 0
		temp2 			  = temp << bitIndexInElement;
		ovflElement 	  = ovflElement | temp2;
		tempPointer       = &(metap->ovflBkts[index]);
		*tempPointer      = ovflElement;
	}
示例#8
0
/*
 * Helper function to perform deletion of index entries from a bucket.
 *
 * This function expects that the caller has acquired a cleanup lock on the
 * primary bucket page, and will return with a write lock again held on the
 * primary bucket page.  The lock won't necessarily be held continuously,
 * though, because we'll release it when visiting overflow pages.
 *
 * It would be very bad if this function cleaned a page while some other
 * backend was in the midst of scanning it, because hashgettuple assumes
 * that the next valid TID will be greater than or equal to the current
 * valid TID.  There can't be any concurrent scans in progress when we first
 * enter this function because of the cleanup lock we hold on the primary
 * bucket page, but as soon as we release that lock, there might be.  We
 * handle that by conspiring to prevent those scans from passing our cleanup
 * scan.  To do that, we lock the next page in the bucket chain before
 * releasing the lock on the previous page.  (This type of lock chaining is
 * not ideal, so we might want to look for a better solution at some point.)
 *
 * We need to retain a pin on the primary bucket to ensure that no concurrent
 * split can start.
 */
void
hashbucketcleanup(Relation rel, Bucket cur_bucket, Buffer bucket_buf,
				  BlockNumber bucket_blkno, BufferAccessStrategy bstrategy,
				  uint32 maxbucket, uint32 highmask, uint32 lowmask,
				  double *tuples_removed, double *num_index_tuples,
				  bool split_cleanup,
				  IndexBulkDeleteCallback callback, void *callback_state)
{
	BlockNumber blkno;
	Buffer		buf;
	Bucket new_bucket PG_USED_FOR_ASSERTS_ONLY = InvalidBucket;
	bool		bucket_dirty = false;

	blkno = bucket_blkno;
	buf = bucket_buf;

	if (split_cleanup)
		new_bucket = _hash_get_newbucket_from_oldbucket(rel, cur_bucket,
														lowmask, maxbucket);

	/* Scan each page in bucket */
	for (;;)
	{
		HashPageOpaque opaque;
		OffsetNumber offno;
		OffsetNumber maxoffno;
		Buffer		next_buf;
		Page		page;
		OffsetNumber deletable[MaxOffsetNumber];
		int			ndeletable = 0;
		bool		retain_pin = false;

		vacuum_delay_point();

		page = BufferGetPage(buf);
		opaque = (HashPageOpaque) PageGetSpecialPointer(page);

		/* Scan each tuple in page */
		maxoffno = PageGetMaxOffsetNumber(page);
		for (offno = FirstOffsetNumber;
			 offno <= maxoffno;
			 offno = OffsetNumberNext(offno))
		{
			ItemPointer htup;
			IndexTuple	itup;
			Bucket		bucket;
			bool		kill_tuple = false;

			itup = (IndexTuple) PageGetItem(page,
											PageGetItemId(page, offno));
			htup = &(itup->t_tid);

			/*
			 * To remove the dead tuples, we strictly want to rely on results
			 * of callback function.  refer btvacuumpage for detailed reason.
			 */
			if (callback && callback(htup, callback_state))
			{
				kill_tuple = true;
				if (tuples_removed)
					*tuples_removed += 1;
			}
			else if (split_cleanup)
			{
				/* delete the tuples that are moved by split. */
				bucket = _hash_hashkey2bucket(_hash_get_indextuple_hashkey(itup),
											  maxbucket,
											  highmask,
											  lowmask);
				/* mark the item for deletion */
				if (bucket != cur_bucket)
				{
					/*
					 * We expect tuples to either belong to curent bucket or
					 * new_bucket.  This is ensured because we don't allow
					 * further splits from bucket that contains garbage. See
					 * comments in _hash_expandtable.
					 */
					Assert(bucket == new_bucket);
					kill_tuple = true;
				}
			}

			if (kill_tuple)
			{
				/* mark the item for deletion */
				deletable[ndeletable++] = offno;
			}
			else
			{
				/* we're keeping it, so count it */
				if (num_index_tuples)
					*num_index_tuples += 1;
			}
		}

		/* retain the pin on primary bucket page till end of bucket scan */
		if (blkno == bucket_blkno)
			retain_pin = true;
		else
			retain_pin = false;

		blkno = opaque->hasho_nextblkno;

		/*
		 * Apply deletions, advance to next page and write page if needed.
		 */
		if (ndeletable > 0)
		{
			PageIndexMultiDelete(page, deletable, ndeletable);
			bucket_dirty = true;
			MarkBufferDirty(buf);
		}

		/* bail out if there are no more pages to scan. */
		if (!BlockNumberIsValid(blkno))
			break;

		next_buf = _hash_getbuf_with_strategy(rel, blkno, HASH_WRITE,
											  LH_OVERFLOW_PAGE,
											  bstrategy);

		/*
		 * release the lock on previous page after acquiring the lock on next
		 * page
		 */
		if (retain_pin)
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		else
			_hash_relbuf(rel, buf);

		buf = next_buf;
	}

	/*
	 * lock the bucket page to clear the garbage flag and squeeze the bucket.
	 * if the current buffer is same as bucket buffer, then we already have
	 * lock on bucket page.
	 */
	if (buf != bucket_buf)
	{
		_hash_relbuf(rel, buf);
		LockBuffer(bucket_buf, BUFFER_LOCK_EXCLUSIVE);
	}

	/*
	 * Clear the garbage flag from bucket after deleting the tuples that are
	 * moved by split.  We purposefully clear the flag before squeeze bucket,
	 * so that after restart, vacuum shouldn't again try to delete the moved
	 * by split tuples.
	 */
	if (split_cleanup)
	{
		HashPageOpaque bucket_opaque;
		Page		page;

		page = BufferGetPage(bucket_buf);
		bucket_opaque = (HashPageOpaque) PageGetSpecialPointer(page);

		bucket_opaque->hasho_flag &= ~LH_BUCKET_NEEDS_SPLIT_CLEANUP;
		MarkBufferDirty(bucket_buf);
	}

	/*
	 * If we have deleted anything, try to compact free space.  For squeezing
	 * the bucket, we must have a cleanup lock, else it can impact the
	 * ordering of tuples for a scan that has started before it.
	 */
	if (bucket_dirty && IsBufferCleanupOK(bucket_buf))
		_hash_squeezebucket(rel, cur_bucket, bucket_blkno, bucket_buf,
							bstrategy);
	else
		LockBuffer(bucket_buf, BUFFER_LOCK_UNLOCK);
}