示例#1
0
error_t
_hurd_ctty_output (io_t port, io_t ctty, error_t (*rpc) (io_t))
{
  if (ctty == MACH_PORT_NULL)
    return (*rpc) (port);
  else
    {
      struct hurd_sigstate *ss = _hurd_self_sigstate ();
      error_t err;

      do
	{
	  /* Don't use the ctty io port if we are blocking or ignoring
	     SIGTTOU.  We redo this check at the top of the loop in case
	     the signal handler changed the state.  */
	  __spin_lock (&ss->lock);
	  if (__sigismember (&ss->blocked, SIGTTOU) ||
	      ss->actions[SIGTTOU].sa_handler == SIG_IGN)
	    err = EIO;
	  else
	    err = 0;
	  __spin_unlock (&ss->lock);

	  if (err)
	    return (*rpc) (port);

	  err = (*rpc) (ctty);
	  if (err == EBACKGROUND)
	    {
	      if (_hurd_orphaned)
		/* Our process group is orphaned, so we never generate a
		   signal; we just fail.  */
		err = EIO;
	      else
		{
		  /* Send a SIGTTOU signal to our process group.

		     We must remember here not to clobber ERR, since
		     the loop condition below uses it to recall that
		  we should retry after a stop.  */

		  __USEPORT (CTTYID, _hurd_sig_post (0, SIGTTOU, port));
		  /* XXX what to do if error here? */

		  /* At this point we should have just run the handler for
		     SIGTTOU or resumed after being stopped.  Now this is
		     still a "system call", so check to see if we should
		  restart it.  */
		  __spin_lock (&ss->lock);
		  if (!(ss->actions[SIGTTOU].sa_flags & SA_RESTART))
		    err = EINTR;
		  __spin_unlock (&ss->lock);
		}
	    }
	  /* If the last RPC generated a SIGTTOU, loop to try it again.  */
	} while (err == EBACKGROUND);

      return err;
    }
}
示例#2
0
void
_hurdsig_longjmp_from_handler (void *data, jmp_buf env, int val)
{
  struct sigcontext *scp = data;
  struct hurd_sigstate *ss = _hurd_self_sigstate ();
  int onstack;
  inline void cleanup (void)
    {
      /* Destroy the MiG reply port used by the signal handler, and restore
	 the reply port in use by the thread when interrupted.  */
      mach_port_t *reply_port =
	(mach_port_t *) __hurd_threadvar_location (_HURD_THREADVAR_MIG_REPLY);
      if (*reply_port)
	{
	  mach_port_t port = *reply_port;
	  /* Assigning MACH_PORT_DEAD here tells libc's mig_get_reply_port
	     not to get another reply port, but avoids mig_dealloc_reply_port
	     trying to deallocate it after the receive fails (which it will,
	     because the reply port will be bogus, regardless).  */
	  *reply_port = MACH_PORT_DEAD;
	  __mach_port_destroy (__mach_task_self (), port);
	}
      if (scp->sc_reply_port)
	__mach_port_destroy (__mach_task_self (), scp->sc_reply_port);
    }
示例#3
0
error_t
_hurd_ctty_input (io_t port, io_t ctty, error_t (*rpc) (io_t))
{
  error_t err;

  if (ctty == MACH_PORT_NULL)
    return (*rpc) (port);

  do
    {
      err = (*rpc) (ctty);
      if (err == EBACKGROUND)
	{
	  /* We are a background job and tried to read from the tty.
	     We should probably get a SIGTTIN signal.  */
	  if (_hurd_orphaned)
	    /* Our process group is orphaned.  Don't stop; just fail.  */
	    err = EIO;
	  else
	    {
	      struct hurd_sigstate *ss = _hurd_self_sigstate ();
	      __spin_lock (&ss->lock);
	      if (__sigismember (&ss->blocked, SIGTTIN) ||
		  ss->actions[SIGTTIN].sa_handler == SIG_IGN)
		/* We are blocking or ignoring SIGTTIN.  Just fail.  */
		err = EIO;
	      __spin_unlock (&ss->lock);

	      if (err == EBACKGROUND)
		{
		  /* Send a SIGTTIN signal to our process group.

		     We must remember here not to clobber ERR, since
		     the loop condition below uses it to recall that
		  we should retry after a stop.  */

		  __USEPORT (CTTYID, _hurd_sig_post (0, SIGTTIN, port));
		  /* XXX what to do if error here? */

		  /* At this point we should have just run the handler for
		     SIGTTIN or resumed after being stopped.  Now this is
		     still a "system call", so check to see if we should
		  restart it.  */
		  __spin_lock (&ss->lock);
		  if (!(ss->actions[SIGTTIN].sa_flags & SA_RESTART))
		    err = EINTR;
		  __spin_unlock (&ss->lock);
		}
	    }
	}
      /* If the last RPC generated a SIGTTIN, loop to try it again.  */
    } while (err == EBACKGROUND);

  return err;
}
示例#4
0
error_t
hurd_thread_cancel (thread_t thread)
{
    struct hurd_sigstate *ss = _hurd_thread_sigstate (thread);
    struct machine_thread_all_state state;
    int state_change;
    error_t err;

    if (! ss)
        return EINVAL;
    if (ss == _hurd_self_sigstate ())
    {
        /* We are cancelling ourselves, so it is easy to succeed
        quickly.  Since this function is not a cancellation point, we
         just leave the flag set pending the next cancellation point
         (hurd_check_cancel or RPC) and return success.  */
        ss->cancel = 1;
        return 0;
    }

    assert (! __spin_lock_locked (&ss->critical_section_lock));
    __spin_lock (&ss->critical_section_lock);
    __spin_lock (&ss->lock);
    err = __thread_suspend (thread);
    __spin_unlock (&ss->lock);

    if (! err)
    {
        /* Set the flag telling the thread its operation is being cancelled.  */
        ss->cancel = 1;

        /* Interrupt any interruptible RPC now in progress.  */
        state.set = 0;
        _hurdsig_abort_rpcs (ss, 0, 0, &state, &state_change, NULL, 0, 0);
        if (state_change)
            err = __thread_set_state (thread, MACHINE_THREAD_STATE_FLAVOR,
                                      (natural_t *) &state.basic,
                                      MACHINE_THREAD_STATE_COUNT);

        if (ss->cancel_hook)
            /* The code being cancelled has a special wakeup function.
               Calling this should make the thread wake up and check the
               cancellation flag.  */
            (*ss->cancel_hook) ();

        __thread_resume (thread);
    }

    _hurd_critical_section_unlock (ss);
    return err;
}
示例#5
0
int
hurd_check_cancel (void)
{
    struct hurd_sigstate *ss = _hurd_self_sigstate ();
    int cancel;

    __spin_lock (&ss->lock);
    assert (! __spin_lock_locked (&ss->critical_section_lock));
    cancel = ss->cancel;
    ss->cancel = 0;
    __spin_unlock (&ss->lock);

    return cancel;
}
示例#6
0
/* This is the code that the signal thread runs.  */
void
_hurd_msgport_receive (void)
{
  /* Get our own sigstate cached so we never again have to take a lock to
     fetch it.  There is much code in hurdsig.c that operates with some
     sigstate lock held, which will deadlock with _hurd_thread_sigstate.

     Furthermore, in the cthreads case this is the convenient spot
     to initialize _hurd_msgport_thread (see hurdsig.c:_hurdsig_init).  */

  _hurd_msgport_thread = _hurd_self_sigstate ()->thread;

  while (1)
    (void) __mach_msg_server (msgport_server, __vm_page_size, _hurd_msgport);
}
示例#7
0
void
_hurd_raise_signal (struct hurd_sigstate *ss,
		    int signo, int sigcode, int sigerror)
{
  if (ss == NULL)
    ss = _hurd_self_sigstate ();

  /* Mark SIGNO as pending to be delivered.  */
  __sigaddset (&ss->pending, signo);
  ss->pending_data[signo].code = sigcode;
  ss->pending_data[signo].error = sigerror;

  __mutex_unlock (&ss->lock);

  /* Send a message to the signal thread so it
     will wake up and check for pending signals.  */
  __sig_post (_hurd_msgport, 0, __mach_task_self ());
}
示例#8
0
/* XXX should be __sigpending ? */
int
sigpending (sigset_t *set)
{
  struct hurd_sigstate *ss;
  sigset_t pending;

  if (set == NULL)
    {
      errno = EINVAL;
      return -1;
    }

  ss = _hurd_self_sigstate ();
  __spin_lock (&ss->lock);
  pending = ss->pending;
  __spin_unlock (&ss->lock);

  *set = pending;
  return 0;
}
示例#9
0
/* Run signals handlers on the stack specified by SS (if not NULL).
   If OSS is not NULL, it is filled in with the old signal stack status.  */
int
__sigaltstack (const stack_t *argss, stack_t *oss)
{
  struct hurd_sigstate *s;
  stack_t ss, old;

  /* Fault before taking any locks.  */
  if (argss != NULL)
    ss = *argss;
  if (oss != NULL)
    *(volatile stack_t *) oss = *oss;

  s = _hurd_self_sigstate ();
  __spin_lock (&s->lock);

  if (argss != NULL
      && (ss.ss_flags & SS_DISABLE)
      && (s->sigaltstack.ss_flags & SS_ONSTACK))
    {
      /* Can't disable a stack that is in use.  */
      __spin_unlock (&s->lock);
      errno = EINVAL;
      return -1;
    }

  old = s->sigaltstack;

  if (argss != NULL)
    s->sigaltstack = ss;

  __spin_unlock (&s->lock);

  if (oss != NULL)
    *oss = old;

  return 0;
}
示例#10
0
void
_longjmp_unwind (jmp_buf env, int val)
{
  struct hurd_sigstate *ss = _hurd_self_sigstate ();
  struct hurd_userlink *link;

  /* All access to SS->active_resources must take place inside a critical
     section where signal handlers cannot run.  */
  __spin_lock (&ss->lock);
  assert (! __spin_lock_locked (&ss->critical_section_lock));
  __spin_lock (&ss->critical_section_lock);

  /* Remove local signal preemptors being unwound past.  */
  while (ss->preemptors &&
	 _JMPBUF_UNWINDS (env[0].__jmpbuf, ss->preemptors, demangle_ptr))
    ss->preemptors = ss->preemptors->next;

  __spin_unlock (&ss->lock);

  /* Iterate over the current thread's list of active resources.
     Process the head portion of the list whose links reside
     in stack frames being unwound by this jump.  */

  for (link = ss->active_resources;
       link && _JMPBUF_UNWINDS (env[0].__jmpbuf, link, demangle_ptr);
       link = link->thread.next)
    /* Remove this link from the resource's users list,
       since the frame using the resource is being unwound.
       This call returns nonzero if that was the last user.  */
    if (_hurd_userlink_unlink (link))
      /* One of the frames being unwound by the longjmp was the last user
	 of its resource.  Call the cleanup function to deallocate it.  */
      (*link->cleanup) (link->cleanup_data, env, val);

  _hurd_critical_section_unlock (ss);
}
示例#11
0
void
_hurd_raise_signal (struct hurd_sigstate *ss,
		    int signo, const struct hurd_signal_detail *detail)
{
  if (ss == NULL)
    {
      ss = _hurd_self_sigstate ();
      __spin_lock (&ss->lock);
    }

  /* Mark SIGNO as pending to be delivered.  */
  __sigaddset (&ss->pending, signo);
  ss->pending_data[signo] = *detail;

  __spin_unlock (&ss->lock);

  /* Send a message to the signal thread so it will wake up and check for
     pending signals.  This is a generic "poll request" message (SIGNO==0)
     rather than delivering this signal and its detail, because we have
     already marked the signal as pending for the particular thread we
     want.  Generating the signal with an RPC might deliver it to some
     other thread.  */
  __msg_sig_post (_hurd_msgport, 0, 0, __mach_task_self ());
}
示例#12
0
/* Overlay TASK, executing FILE with arguments ARGV and environment ENVP.
   If TASK == mach_task_self (), some ports are dealloc'd by the exec server.
   ARGV and ENVP are terminated by NULL pointers.  */
error_t
_hurd_exec (task_t task, file_t file,
	    char *const argv[], char *const envp[])
{
  error_t err;
  char *args, *env;
  size_t argslen, envlen;
  int ints[INIT_INT_MAX];
  mach_port_t ports[_hurd_nports];
  struct hurd_userlink ulink_ports[_hurd_nports];
  file_t *dtable;
  unsigned int dtablesize, i;
  struct hurd_port **dtable_cells;
  struct hurd_userlink *ulink_dtable;
  struct hurd_sigstate *ss;
  mach_port_t *please_dealloc, *pdp;

  /* XXX needs to be hurdmalloc XXX */
  if (err = __argz_create (argv, &args, &argslen))
    return err;
  if (err = __argz_create (envp, &env, &envlen))
    goto outargs;

  /* Load up the ports to give to the new program.  */
  for (i = 0; i < _hurd_nports; ++i)
    if (i == INIT_PORT_PROC && task != __mach_task_self ())
      {
	/* This is another task, so we need to ask the proc server
	   for the right proc server port for it.  */
	if (err = __USEPORT (PROC, __proc_task2proc (port, task, &ports[i])))
	  {
	    while (--i > 0)
	      _hurd_port_free (&_hurd_ports[i], &ulink_ports[i], ports[i]);
	    goto outenv;
	  }
      }
    else
      ports[i] = _hurd_port_get (&_hurd_ports[i], &ulink_ports[i]);


  /* Load up the ints to give the new program.  */
  for (i = 0; i < INIT_INT_MAX; ++i)
    switch (i)
      {
      case INIT_UMASK:
	ints[i] = _hurd_umask;
	break;

      case INIT_SIGMASK:
      case INIT_SIGIGN:
      case INIT_SIGPENDING:
	/* We will set these all below.  */
	break;

      case INIT_TRACEMASK:
	ints[i] = _hurdsig_traced;
	break;

      default:
	ints[i] = 0;
      }

  ss = _hurd_self_sigstate ();

  assert (! __spin_lock_locked (&ss->critical_section_lock));
  __spin_lock (&ss->critical_section_lock);

  __spin_lock (&ss->lock);
  ints[INIT_SIGMASK] = ss->blocked;
  ints[INIT_SIGPENDING] = ss->pending;
  ints[INIT_SIGIGN] = 0;
  for (i = 1; i < NSIG; ++i)
    if (ss->actions[i].sa_handler == SIG_IGN)
      ints[INIT_SIGIGN] |= __sigmask (i);

  /* We hold the sigstate lock until the exec has failed so that no signal
     can arrive between when we pack the blocked and ignored signals, and
     when the exec actually happens.  A signal handler could change what
     signals are blocked and ignored.  Either the change will be reflected
     in the exec, or the signal will never be delivered.  Setting the
     critical section flag avoids anything we call trying to acquire the
     sigstate lock.  */

  __spin_unlock (&ss->lock);

  /* Pack up the descriptor table to give the new program.  */
  __mutex_lock (&_hurd_dtable_lock);

  dtablesize = _hurd_dtable ? _hurd_dtablesize : _hurd_init_dtablesize;

  if (task == __mach_task_self ())
    /* Request the exec server to deallocate some ports from us if the exec
       succeeds.  The init ports and descriptor ports will arrive in the
       new program's exec_startup message.  If we failed to deallocate
       them, the new program would have duplicate user references for them.
       But we cannot deallocate them ourselves, because we must still have
       them after a failed exec call.  */
    please_dealloc = __alloca ((_hurd_nports + (2 * dtablesize))
				* sizeof (mach_port_t));
  else
    please_dealloc = NULL;
  pdp = please_dealloc;

  if (_hurd_dtable != NULL)
    {
      dtable = __alloca (dtablesize * sizeof (dtable[0]));
      ulink_dtable = __alloca (dtablesize * sizeof (ulink_dtable[0]));
      dtable_cells = __alloca (dtablesize * sizeof (dtable_cells[0]));
      for (i = 0; i < dtablesize; ++i)
	{
	  struct hurd_fd *const d = _hurd_dtable[i];
	  if (d == NULL)
	    {
	      dtable[i] = MACH_PORT_NULL;
	      continue;
	    }
	  __spin_lock (&d->port.lock);
	  if (d->flags & FD_CLOEXEC)
	    {
	      /* This descriptor is marked to be closed on exec.
		 So don't pass it to the new program.  */
	      dtable[i] = MACH_PORT_NULL;
	      if (pdp && d->port.port != MACH_PORT_NULL)
		{
		  /* We still need to deallocate the ports.  */
		  *pdp++ = d->port.port;
		  if (d->ctty.port != MACH_PORT_NULL)
		    *pdp++ = d->ctty.port;
		}
	      __spin_unlock (&d->port.lock);
	    }
	  else
	    {
	      if (pdp && d->ctty.port != MACH_PORT_NULL)
		/* All the elements of DTABLE are added to PLEASE_DEALLOC
		   below, so we needn't add the port itself.
		   But we must deallocate the ctty port as well as
		   the normal port that got installed in DTABLE[I].  */
		*pdp++ = d->ctty.port;
	      dtable[i] = _hurd_port_locked_get (&d->port, &ulink_dtable[i]);
	      dtable_cells[i] = &d->port;
	    }
	}
    }
  else
    {
      dtable = _hurd_init_dtable;
      ulink_dtable = NULL;
      dtable_cells = NULL;
    }

  /* The information is all set up now.  Try to exec the file.  */

  {
    if (pdp)
      {
	/* Request the exec server to deallocate some ports from us if the exec
	   succeeds.  The init ports and descriptor ports will arrive in the
	   new program's exec_startup message.  If we failed to deallocate
	   them, the new program would have duplicate user references for them.
	   But we cannot deallocate them ourselves, because we must still have
	   them after a failed exec call.  */

	for (i = 0; i < _hurd_nports; ++i)
	  *pdp++ = ports[i];
	for (i = 0; i < dtablesize; ++i)
	  *pdp++ = dtable[i];
      }

    err = __file_exec (file, task, 0,
		       args, argslen, env, envlen,
		       dtable, MACH_MSG_TYPE_COPY_SEND, dtablesize,
		       ports, MACH_MSG_TYPE_COPY_SEND, _hurd_nports,
		       ints, INIT_INT_MAX,
		       please_dealloc, pdp - please_dealloc,
		       &_hurd_msgport, task == __mach_task_self () ? 1 : 0);
  }

  /* Release references to the standard ports.  */
  for (i = 0; i < _hurd_nports; ++i)
    if (i == INIT_PORT_PROC && task != __mach_task_self ())
      __mach_port_deallocate (__mach_task_self (), ports[i]);
    else
      _hurd_port_free (&_hurd_ports[i], &ulink_ports[i], ports[i]);

  if (ulink_dtable != NULL)
    /* Release references to the file descriptor ports.  */
    for (i = 0; i < dtablesize; ++i)
      if (dtable[i] != MACH_PORT_NULL)
	_hurd_port_free (dtable_cells[i], &ulink_dtable[i], dtable[i]);

  /* Release lock on the file descriptor table. */
  __mutex_unlock (&_hurd_dtable_lock);

  /* Safe to let signals happen now.  */
  _hurd_critical_section_unlock (ss);

 outargs:
  free (args);
 outenv:
  free (env);
  return err;
}