bool
brw_meta_fast_clear(struct brw_context *brw, struct gl_framebuffer *fb,
                    GLbitfield buffers, bool partial_clear)
{
   struct gl_context *ctx = &brw->ctx;
   mesa_format format;
   enum { FAST_CLEAR, REP_CLEAR, PLAIN_CLEAR } clear_type;
   GLbitfield plain_clear_buffers, meta_save, rep_clear_buffers, fast_clear_buffers;
   struct rect fast_clear_rect, clear_rect;
   int layers;

   fast_clear_buffers = rep_clear_buffers = plain_clear_buffers = 0;

   /* First we loop through the color draw buffers and determine which ones
    * can be fast cleared, which ones can use the replicated write and which
    * ones have to fall back to regular color clear.
    */
   for (unsigned buf = 0; buf < fb->_NumColorDrawBuffers; buf++) {
      struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
      struct intel_renderbuffer *irb = intel_renderbuffer(rb);
      int index = fb->_ColorDrawBufferIndexes[buf];

      /* Only clear the buffers present in the provided mask */
      if (((1 << index) & buffers) == 0)
         continue;

      /* If this is an ES2 context or GL_ARB_ES2_compatibility is supported,
       * the framebuffer can be complete with some attachments missing.  In
       * this case the _ColorDrawBuffers pointer will be NULL.
       */
      if (rb == NULL)
         continue;

      clear_type = FAST_CLEAR;

      /* We don't have fast clear until gen7. */
      if (brw->gen < 7)
         clear_type = REP_CLEAR;

      if (irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_NO_MCS)
         clear_type = REP_CLEAR;

      /* We can't do scissored fast clears because of the restrictions on the
       * fast clear rectangle size.
       */
      if (partial_clear)
         clear_type = REP_CLEAR;

      /* Fast clear is only supported for colors where all components are
       * either 0 or 1.
       */
      format = _mesa_get_render_format(ctx, irb->mt->format);
      if (!is_color_fast_clear_compatible(brw, format, &ctx->Color.ClearColor))
         clear_type = REP_CLEAR;

      /* From the SNB PRM (Vol4_Part1):
       *
       *     "Replicated data (Message Type = 111) is only supported when
       *      accessing tiled memory.  Using this Message Type to access
       *      linear (untiled) memory is UNDEFINED."
       */
      if (irb->mt->tiling == I915_TILING_NONE) {
         perf_debug("falling back to plain clear because buffers are untiled\n");
         clear_type = PLAIN_CLEAR;
      }

      /* Constant color writes ignore everything in blend and color calculator
       * state.  This is not documented.
       */
      GLubyte *color_mask = ctx->Color.ColorMask[buf];
      for (int i = 0; i < 4; i++) {
         if (_mesa_format_has_color_component(irb->mt->format, i) &&
             !color_mask[i]) {
            perf_debug("falling back to plain clear because of color mask\n");
            clear_type = PLAIN_CLEAR;
         }
      }

      /* Allocate the MCS for non MSRT surfaces now if we're doing a fast
       * clear and we don't have the MCS yet.  On failure, fall back to
       * replicated clear.
       */
      if (clear_type == FAST_CLEAR && irb->mt->mcs_mt == NULL)
         if (!intel_miptree_alloc_non_msrt_mcs(brw, irb->mt))
            clear_type = REP_CLEAR;

      switch (clear_type) {
      case FAST_CLEAR:
         irb->mt->fast_clear_color_value =
            compute_fast_clear_color_bits(&ctx->Color.ClearColor);
         irb->need_downsample = true;

         /* If the buffer is already in INTEL_FAST_CLEAR_STATE_CLEAR, the
          * clear is redundant and can be skipped.  Only skip after we've
          * updated the fast clear color above though.
          */
         if (irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR)
            continue;

         /* Set fast_clear_state to RESOLVED so we don't try resolve them when
          * we draw, in case the mt is also bound as a texture.
          */
         irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
         irb->need_downsample = true;
         fast_clear_buffers |= 1 << index;
         get_fast_clear_rect(brw, fb, irb, &fast_clear_rect);
         break;

      case REP_CLEAR:
         rep_clear_buffers |= 1 << index;
         get_buffer_rect(brw, fb, irb, &clear_rect);
         break;

      case PLAIN_CLEAR:
         plain_clear_buffers |= 1 << index;
         get_buffer_rect(brw, fb, irb, &clear_rect);
         continue;
      }
   }

   if (!(fast_clear_buffers | rep_clear_buffers)) {
      if (plain_clear_buffers)
         /* If we only have plain clears, skip the meta save/restore. */
         goto out;
      else
         /* Nothing left to do.  This happens when we hit the redundant fast
          * clear case above and nothing else.
          */
         return true;
   }

   meta_save =
      MESA_META_ALPHA_TEST |
      MESA_META_BLEND |
      MESA_META_DEPTH_TEST |
      MESA_META_RASTERIZATION |
      MESA_META_SHADER |
      MESA_META_STENCIL_TEST |
      MESA_META_VERTEX |
      MESA_META_VIEWPORT |
      MESA_META_CLIP |
      MESA_META_CLAMP_FRAGMENT_COLOR |
      MESA_META_MULTISAMPLE |
      MESA_META_OCCLUSION_QUERY |
      MESA_META_DRAW_BUFFERS;

   _mesa_meta_begin(ctx, meta_save);

   if (!brw_fast_clear_init(brw)) {
      /* This is going to be hard to recover from, most likely out of memory.
       * Bail and let meta try and (probably) fail for us.
       */
      plain_clear_buffers = buffers;
      goto bail_to_meta;
   }

   /* Clears never have the color clamped. */
   if (ctx->Extensions.ARB_color_buffer_float)
      _mesa_ClampColor(GL_CLAMP_FRAGMENT_COLOR, GL_FALSE);

   _mesa_set_enable(ctx, GL_DEPTH_TEST, GL_FALSE);
   _mesa_DepthMask(GL_FALSE);
   _mesa_set_enable(ctx, GL_STENCIL_TEST, GL_FALSE);

   use_rectlist(brw, true);

   layers = MAX2(1, fb->MaxNumLayers);
   if (fast_clear_buffers) {
      _mesa_meta_drawbuffers_from_bitfield(fast_clear_buffers);
      brw_bind_rep_write_shader(brw, (float *) fast_clear_color);
      set_fast_clear_op(brw, GEN7_PS_RENDER_TARGET_FAST_CLEAR_ENABLE);
      brw_draw_rectlist(ctx, &fast_clear_rect, layers);
      set_fast_clear_op(brw, 0);
   }

   if (rep_clear_buffers) {
      _mesa_meta_drawbuffers_from_bitfield(rep_clear_buffers);
      brw_bind_rep_write_shader(brw, ctx->Color.ClearColor.f);
      brw_draw_rectlist(ctx, &clear_rect, layers);
   }

   /* Now set the mts we cleared to INTEL_FAST_CLEAR_STATE_CLEAR so we'll
    * resolve them eventually.
    */
   for (unsigned buf = 0; buf < fb->_NumColorDrawBuffers; buf++) {
      struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
      struct intel_renderbuffer *irb = intel_renderbuffer(rb);
      int index = fb->_ColorDrawBufferIndexes[buf];

      if ((1 << index) & fast_clear_buffers)
         irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
   }

 bail_to_meta:
   /* Dirty _NEW_BUFFERS so we reemit SURFACE_STATE which sets the fast clear
    * color before resolve and sets irb->mt->fast_clear_state to UNRESOLVED if
    * we render to it.
    */
   brw->NewGLState |= _NEW_BUFFERS;


   /* Set the custom state back to normal and dirty the same bits as above */
   use_rectlist(brw, false);

   _mesa_meta_end(ctx);

   /* From BSpec: Render Target Fast Clear:
    *
    *     After Render target fast clear, pipe-control with color cache
    *     write-flush must be issued before sending any DRAW commands on that
    *     render target.
    */
   intel_batchbuffer_emit_mi_flush(brw);

   /* If we had to fall back to plain clear for any buffers, clear those now
    * by calling into meta.
    */
 out:
   if (plain_clear_buffers)
      _mesa_meta_glsl_Clear(&brw->ctx, plain_clear_buffers);

   return true;
}
示例#2
0
文件: meta.c 项目: GYGit/reactos
/**
 * Leave meta state.  This is like a light-weight version of glPopAttrib().
 */
void
_mesa_meta_end(struct gl_context *ctx)
{
   struct save_state *save = &ctx->Meta->Save[--ctx->Meta->SaveStackDepth];
   const GLbitfield state = save->SavedState;

   if (state & MESA_META_ALPHA_TEST) {
      if (ctx->Color.AlphaEnabled != save->AlphaEnabled)
         _mesa_set_enable(ctx, GL_ALPHA_TEST, save->AlphaEnabled);
      _mesa_AlphaFunc(save->AlphaFunc, save->AlphaRef);
   }

   if (state & MESA_META_BLEND) {
      if (ctx->Color.BlendEnabled != save->BlendEnabled) {
         _mesa_set_enable(ctx, GL_BLEND, (save->BlendEnabled & 1));
      }
      if (ctx->Color.ColorLogicOpEnabled != save->ColorLogicOpEnabled)
         _mesa_set_enable(ctx, GL_COLOR_LOGIC_OP, save->ColorLogicOpEnabled);
   }

   if (state & MESA_META_COLOR_MASK) {
      if (!TEST_EQ_4V(ctx->Color.ColorMask, save->ColorMask)) {
         _mesa_ColorMask(save->ColorMask[0], save->ColorMask[1],
                         save->ColorMask[2], save->ColorMask[3]);         
      }
   }

   if (state & MESA_META_DEPTH_TEST) {
      if (ctx->Depth.Test != save->Depth.Test)
         _mesa_set_enable(ctx, GL_DEPTH_TEST, save->Depth.Test);
      _mesa_DepthFunc(save->Depth.Func);
      _mesa_DepthMask(save->Depth.Mask);
   }

   if (state & MESA_META_FOG) {
      _mesa_set_enable(ctx, GL_FOG, save->Fog);
   }

   if (state & MESA_META_PIXEL_STORE) {
      ctx->Pack = save->Pack;
      ctx->Unpack = save->Unpack;
   }

   if (state & MESA_META_PIXEL_TRANSFER) {
      ctx->Pixel.RedScale = save->RedScale;
      ctx->Pixel.RedBias = save->RedBias;
      ctx->Pixel.GreenScale = save->GreenScale;
      ctx->Pixel.GreenBias = save->GreenBias;
      ctx->Pixel.BlueScale = save->BlueScale;
      ctx->Pixel.BlueBias = save->BlueBias;
      ctx->Pixel.AlphaScale = save->AlphaScale;
      ctx->Pixel.AlphaBias = save->AlphaBias;
      ctx->Pixel.MapColorFlag = save->MapColorFlag;
      /* XXX more state */
      ctx->NewState |=_NEW_PIXEL;
   }

   if (state & MESA_META_RASTERIZATION) {
      _mesa_PolygonMode(GL_FRONT, save->FrontPolygonMode);
      _mesa_PolygonMode(GL_BACK, save->BackPolygonMode);
      _mesa_set_enable(ctx, GL_POLYGON_STIPPLE, save->PolygonStipple);
      _mesa_set_enable(ctx, GL_POLYGON_OFFSET_FILL, save->PolygonOffset);
      _mesa_set_enable(ctx, GL_POLYGON_SMOOTH, save->PolygonSmooth);
      _mesa_set_enable(ctx, GL_CULL_FACE, save->PolygonCull);
   }

   if (state & MESA_META_SCISSOR) {
      _mesa_set_enable(ctx, GL_SCISSOR_TEST, save->Scissor.Enabled);
      _mesa_Scissor(save->Scissor.X, save->Scissor.Y,
                    save->Scissor.Width, save->Scissor.Height);
   }

   if (state & MESA_META_STENCIL_TEST) {
      const struct gl_stencil_attrib *stencil = &save->Stencil;

      _mesa_set_enable(ctx, GL_STENCIL_TEST, stencil->Enabled);
      _mesa_ClearStencil(stencil->Clear);
      _mesa_StencilFunc(stencil->Function,
                        stencil->Ref,
                        stencil->ValueMask);
      _mesa_StencilMask(stencil->WriteMask);
      _mesa_StencilOp(stencil->FailFunc, stencil->ZFailFunc, stencil->ZPassFunc);
   }

   if (state & MESA_META_TEXTURE) {
      GLuint tgt;

      /* restore texenv for unit[0] */
      _mesa_TexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, save->EnvMode);

      /* restore texture objects for unit[0] only */
      for (tgt = 0; tgt < NUM_TEXTURE_TARGETS; tgt++) {
	 if (ctx->Texture.Unit.CurrentTex[tgt] != save->CurrentTexture[tgt]) {
	    FLUSH_VERTICES(ctx, _NEW_TEXTURE);
	    _mesa_reference_texobj(&ctx->Texture.Unit.CurrentTex[tgt],
				   save->CurrentTexture[tgt]);
	 }
         _mesa_reference_texobj(&save->CurrentTexture[tgt], NULL);
      }

      /* Restore fixed function texture enables, texgen */
	 if (ctx->Texture.Unit.Enabled != save->TexEnabled) {
	    FLUSH_VERTICES(ctx, _NEW_TEXTURE);
	    ctx->Texture.Unit.Enabled = save->TexEnabled;
	 }

	 if (ctx->Texture.Unit.TexGenEnabled != save->TexGenEnabled) {
	    FLUSH_VERTICES(ctx, _NEW_TEXTURE);
	    ctx->Texture.Unit.TexGenEnabled = save->TexGenEnabled;
	 }
   }

   if (state & MESA_META_TRANSFORM) {
      _mesa_MatrixMode(GL_TEXTURE);
      _mesa_LoadMatrixf(save->TextureMatrix);

      _mesa_MatrixMode(GL_MODELVIEW);
      _mesa_LoadMatrixf(save->ModelviewMatrix);

      _mesa_MatrixMode(GL_PROJECTION);
      _mesa_LoadMatrixf(save->ProjectionMatrix);

      _mesa_MatrixMode(save->MatrixMode);
   }

   if (state & MESA_META_CLIP) {
      if (save->ClipPlanesEnabled) {
         GLuint i;
         for (i = 0; i < ctx->Const.MaxClipPlanes; i++) {
            if (save->ClipPlanesEnabled & (1 << i)) {
               _mesa_set_enable(ctx, GL_CLIP_PLANE0 + i, GL_TRUE);
            }
         }
      }
   }

   if (state & MESA_META_VIEWPORT) {
      if (save->ViewportX != ctx->Viewport.X ||
          save->ViewportY != ctx->Viewport.Y ||
          save->ViewportW != ctx->Viewport.Width ||
          save->ViewportH != ctx->Viewport.Height) {
         _mesa_set_viewport(ctx, save->ViewportX, save->ViewportY,
                            save->ViewportW, save->ViewportH);
      }
      _mesa_DepthRange(save->DepthNear, save->DepthFar);
   }

   /* misc */
   if (save->Lighting) {
      _mesa_set_enable(ctx, GL_LIGHTING, GL_TRUE);
   }
   if (save->RasterDiscard) {
      _mesa_set_enable(ctx, GL_RASTERIZER_DISCARD, GL_TRUE);
   }
}
示例#3
0
/**
 * Perform glClear where mask contains only color, depth, and/or stencil.
 *
 * The implementation is based on calling into Mesa to set GL state and
 * performing normal triangle rendering.  The intent of this path is to
 * have as generic a path as possible, so that any driver could make use of
 * it.
 */
void
intel_clear_tris(GLcontext *ctx, GLbitfield mask)
{
   struct intel_context *intel = intel_context(ctx);
   GLfloat dst_z;
   struct gl_framebuffer *fb = ctx->DrawBuffer;
   int i;
   GLboolean saved_fp_enable = GL_FALSE, saved_vp_enable = GL_FALSE;
   GLuint saved_shader_program = 0;
   unsigned int saved_active_texture;
   struct gl_array_object *arraySave = NULL;

   if (!intel->clear.arrayObj)
      init_clear(ctx);

   assert((mask & ~(TRI_CLEAR_COLOR_BITS | BUFFER_BIT_DEPTH |
		    BUFFER_BIT_STENCIL)) == 0);

   _mesa_PushAttrib(GL_COLOR_BUFFER_BIT |
		    GL_CURRENT_BIT |
		    GL_DEPTH_BUFFER_BIT |
		    GL_ENABLE_BIT |
		    GL_POLYGON_BIT |
		    GL_STENCIL_BUFFER_BIT |
		    GL_TRANSFORM_BIT |
		    GL_CURRENT_BIT);
   saved_active_texture = ctx->Texture.CurrentUnit;

   /* Disable existing GL state we don't want to apply to a clear. */
   _mesa_Disable(GL_ALPHA_TEST);
   _mesa_Disable(GL_BLEND);
   _mesa_Disable(GL_CULL_FACE);
   _mesa_Disable(GL_FOG);
   _mesa_Disable(GL_POLYGON_SMOOTH);
   _mesa_Disable(GL_POLYGON_STIPPLE);
   _mesa_Disable(GL_POLYGON_OFFSET_FILL);
   _mesa_Disable(GL_LIGHTING);
   _mesa_Disable(GL_CLIP_PLANE0);
   _mesa_Disable(GL_CLIP_PLANE1);
   _mesa_Disable(GL_CLIP_PLANE2);
   _mesa_Disable(GL_CLIP_PLANE3);
   _mesa_Disable(GL_CLIP_PLANE4);
   _mesa_Disable(GL_CLIP_PLANE5);
   _mesa_PolygonMode(GL_FRONT_AND_BACK, GL_FILL);
   if (ctx->Extensions.ARB_fragment_program && ctx->FragmentProgram.Enabled) {
      saved_fp_enable = GL_TRUE;
      _mesa_Disable(GL_FRAGMENT_PROGRAM_ARB);
   }
   if (ctx->Extensions.ARB_vertex_program && ctx->VertexProgram.Enabled) {
      saved_vp_enable = GL_TRUE;
      _mesa_Disable(GL_VERTEX_PROGRAM_ARB);
   }
   if (ctx->Extensions.ARB_shader_objects && ctx->Shader.CurrentProgram) {
      saved_shader_program = ctx->Shader.CurrentProgram->Name;
      _mesa_UseProgramObjectARB(0);
   }

   if (ctx->Texture._EnabledUnits != 0) {
      int i;

      for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
	 _mesa_ActiveTextureARB(GL_TEXTURE0 + i);
	 _mesa_Disable(GL_TEXTURE_1D);
	 _mesa_Disable(GL_TEXTURE_2D);
	 _mesa_Disable(GL_TEXTURE_3D);
	 if (ctx->Extensions.ARB_texture_cube_map)
	    _mesa_Disable(GL_TEXTURE_CUBE_MAP_ARB);
	 if (ctx->Extensions.NV_texture_rectangle)
	    _mesa_Disable(GL_TEXTURE_RECTANGLE_NV);
	 if (ctx->Extensions.MESA_texture_array) {
	    _mesa_Disable(GL_TEXTURE_1D_ARRAY_EXT);
	    _mesa_Disable(GL_TEXTURE_2D_ARRAY_EXT);
	 }
      }
   }

   /* save current array object, bind our private one */
   _mesa_reference_array_object(ctx, &arraySave, ctx->Array.ArrayObj);
   _mesa_reference_array_object(ctx, &ctx->Array.ArrayObj, intel->clear.arrayObj);

   intel_meta_set_passthrough_transform(intel);

   for (i = 0; i < 4; i++) {
      COPY_4FV(intel->clear.color[i], ctx->Color.ClearColor);
   }

   /* convert clear Z from [0,1] to NDC coord in [-1,1] */
   dst_z = -1.0 + 2.0 * ctx->Depth.Clear;

   /* Prepare the vertices, which are the same regardless of which buffer we're
    * drawing to.
    */
   intel->clear.vertices[0][0] = fb->_Xmin;
   intel->clear.vertices[0][1] = fb->_Ymin;
   intel->clear.vertices[0][2] = dst_z;
   intel->clear.vertices[1][0] = fb->_Xmax;
   intel->clear.vertices[1][1] = fb->_Ymin;
   intel->clear.vertices[1][2] = dst_z;
   intel->clear.vertices[2][0] = fb->_Xmax;
   intel->clear.vertices[2][1] = fb->_Ymax;
   intel->clear.vertices[2][2] = dst_z;
   intel->clear.vertices[3][0] = fb->_Xmin;
   intel->clear.vertices[3][1] = fb->_Ymax;
   intel->clear.vertices[3][2] = dst_z;

   while (mask != 0) {
      GLuint this_mask = 0;
      GLuint color_bit;

      color_bit = _mesa_ffs(mask & TRI_CLEAR_COLOR_BITS);
      if (color_bit != 0)
	 this_mask |= (1 << (color_bit - 1));

      /* Clear depth/stencil in the same pass as color. */
      this_mask |= (mask & (BUFFER_BIT_DEPTH | BUFFER_BIT_STENCIL));

      /* Select the current color buffer and use the color write mask if
       * we have one, otherwise don't write any color channels.
       */
      if (this_mask & BUFFER_BIT_FRONT_LEFT)
	 _mesa_DrawBuffer(GL_FRONT_LEFT);
      else if (this_mask & BUFFER_BIT_BACK_LEFT)
	 _mesa_DrawBuffer(GL_BACK_LEFT);
      else if (color_bit != 0)
	 _mesa_DrawBuffer(GL_COLOR_ATTACHMENT0 +
			  (color_bit - BUFFER_COLOR0 - 1));
      else
	 _mesa_ColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);

      /* Control writing of the depth clear value to depth. */
      if (this_mask & BUFFER_BIT_DEPTH) {
	 _mesa_DepthFunc(GL_ALWAYS);
	 _mesa_Enable(GL_DEPTH_TEST);
      } else {
	 _mesa_Disable(GL_DEPTH_TEST);
	 _mesa_DepthMask(GL_FALSE);
      }

      /* Control writing of the stencil clear value to stencil. */
      if (this_mask & BUFFER_BIT_STENCIL) {
	 _mesa_Enable(GL_STENCIL_TEST);
	 _mesa_StencilOpSeparate(GL_FRONT_AND_BACK,
				 GL_REPLACE, GL_REPLACE, GL_REPLACE);
	 _mesa_StencilFuncSeparate(GL_FRONT_AND_BACK, GL_ALWAYS,
				   ctx->Stencil.Clear,
				   ctx->Stencil.WriteMask[0]);
      } else {
	 _mesa_Disable(GL_STENCIL_TEST);
      }

      _mesa_DrawArrays(GL_TRIANGLE_FAN, 0, 4);

      mask &= ~this_mask;
   }

   intel_meta_restore_transform(intel);

   _mesa_ActiveTextureARB(GL_TEXTURE0 + saved_active_texture);
   if (saved_fp_enable)
      _mesa_Enable(GL_FRAGMENT_PROGRAM_ARB);
   if (saved_vp_enable)
      _mesa_Enable(GL_VERTEX_PROGRAM_ARB);

   if (saved_shader_program)
      _mesa_UseProgramObjectARB(saved_shader_program);

   _mesa_PopAttrib();

   /* restore current array object */
   _mesa_reference_array_object(ctx, &ctx->Array.ArrayObj, arraySave);
   _mesa_reference_array_object(ctx, &arraySave, NULL);
}
/**
 * Try to do a color or depth glBlitFramebuffer using texturing.
 *
 * We can do this when the src renderbuffer is actually a texture, or when the
 * driver exposes BindRenderbufferTexImage().
 */
static bool
blitframebuffer_texture(struct gl_context *ctx,
                        const struct gl_framebuffer *readFb,
                        const struct gl_framebuffer *drawFb,
                        GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
                        GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
                        GLenum filter, GLint flipX, GLint flipY,
                        GLboolean glsl_version, GLboolean do_depth)
{
   int att_index = do_depth ? BUFFER_DEPTH : readFb->_ColorReadBufferIndex;
   const struct gl_renderbuffer_attachment *readAtt =
      &readFb->Attachment[att_index];
   struct blit_state *blit = &ctx->Meta->Blit;
   struct fb_tex_blit_state fb_tex_blit;
   const GLint dstX = MIN2(dstX0, dstX1);
   const GLint dstY = MIN2(dstY0, dstY1);
   const GLint dstW = abs(dstX1 - dstX0);
   const GLint dstH = abs(dstY1 - dstY0);
   const int srcW = abs(srcX1 - srcX0);
   const int srcH = abs(srcY1 - srcY0);
   bool scaled_blit = false;
   struct gl_texture_object *texObj;
   GLuint srcLevel;
   GLenum target;
   struct gl_renderbuffer *rb = readAtt->Renderbuffer;
   struct temp_texture *meta_temp_texture;

   if (rb->NumSamples && !ctx->Extensions.ARB_texture_multisample)
      return false;

   _mesa_meta_fb_tex_blit_begin(ctx, &fb_tex_blit);

   if (readAtt->Texture &&
       (readAtt->Texture->Target == GL_TEXTURE_2D ||
        readAtt->Texture->Target == GL_TEXTURE_RECTANGLE ||
        readAtt->Texture->Target == GL_TEXTURE_2D_MULTISAMPLE ||
        readAtt->Texture->Target == GL_TEXTURE_2D_MULTISAMPLE_ARRAY)) {
      /* If there's a texture attached of a type we can handle, then just use
       * it directly.
       */
      srcLevel = readAtt->TextureLevel;
      texObj = readAtt->Texture;
      target = texObj->Target;
   } else if (!readAtt->Texture && ctx->Driver.BindRenderbufferTexImage) {
      if (!_mesa_meta_bind_rb_as_tex_image(ctx, rb, &fb_tex_blit.tempTex,
                                           &texObj, &target))
         return false;

      srcLevel = 0;
      if (_mesa_is_winsys_fbo(readFb)) {
         GLint temp = srcY0;
         srcY0 = rb->Height - srcY1;
         srcY1 = rb->Height - temp;
         flipY = -flipY;
      }
   } else {
      GLenum tex_base_format;
      /* Fall back to doing a CopyTexSubImage to get the destination
       * renderbuffer into a texture.
       */
      if (ctx->Meta->Blit.no_ctsi_fallback)
         return false;

      if (rb->NumSamples > 1)
         return false;

      if (do_depth) {
         meta_temp_texture = _mesa_meta_get_temp_depth_texture(ctx);
         tex_base_format = GL_DEPTH_COMPONENT;
      } else {
         meta_temp_texture = _mesa_meta_get_temp_texture(ctx);
         tex_base_format =
            _mesa_base_tex_format(ctx, rb->InternalFormat);
      }

      srcLevel = 0;
      target = meta_temp_texture->Target;
      texObj = _mesa_lookup_texture(ctx, meta_temp_texture->TexObj);
      if (texObj == NULL) {
         return false;
      }

      _mesa_meta_setup_copypix_texture(ctx, meta_temp_texture,
                                       srcX0, srcY0,
                                       srcW, srcH,
                                       tex_base_format,
                                       filter);


      srcX0 = 0;
      srcY0 = 0;
      srcX1 = srcW;
      srcY1 = srcH;
   }

   fb_tex_blit.baseLevelSave = texObj->BaseLevel;
   fb_tex_blit.maxLevelSave = texObj->MaxLevel;
   fb_tex_blit.stencilSamplingSave = texObj->StencilSampling;

   scaled_blit = dstW != srcW || dstH != srcH;

   if (glsl_version) {
      setup_glsl_blit_framebuffer(ctx, blit, drawFb, rb, target, filter, scaled_blit,
                                  do_depth);
   }
   else {
      _mesa_meta_setup_ff_tnl_for_blit(ctx,
                                       &ctx->Meta->Blit.VAO,
                                       &ctx->Meta->Blit.buf_obj,
                                       2);
   }

   /*
     printf("Blit from texture!\n");
     printf("  srcAtt %p  dstAtt %p\n", readAtt, drawAtt);
     printf("  srcTex %p  dstText %p\n", texObj, drawAtt->Texture);
   */

   fb_tex_blit.sampler = _mesa_meta_setup_sampler(ctx, texObj, target, filter,
                                                  srcLevel);

   /* Always do our blits with no net sRGB decode or encode.
    *
    * However, if both the src and dst can be srgb decode/encoded, enable them
    * so that we do any blending (from scaling or from MSAA resolves) in the
    * right colorspace.
    *
    * Our choice of not doing any net encode/decode is from the GL 3.0
    * specification:
    *
    *     "Blit operations bypass the fragment pipeline. The only fragment
    *      operations which affect a blit are the pixel ownership test and the
    *      scissor test."
    *
    * The GL 4.4 specification disagrees and says that the sRGB part of the
    * fragment pipeline applies, but this was found to break applications.
    */
   if (ctx->Extensions.EXT_texture_sRGB_decode) {
      if (_mesa_get_format_color_encoding(rb->Format) == GL_SRGB &&
          drawFb->Visual.sRGBCapable) {
         _mesa_SamplerParameteri(fb_tex_blit.sampler,
                                 GL_TEXTURE_SRGB_DECODE_EXT, GL_DECODE_EXT);
         _mesa_set_framebuffer_srgb(ctx, GL_TRUE);
      } else {
         _mesa_SamplerParameteri(fb_tex_blit.sampler,
                                 GL_TEXTURE_SRGB_DECODE_EXT,
                                 GL_SKIP_DECODE_EXT);
         /* set_framebuffer_srgb was set by _mesa_meta_begin(). */
      }
   }

   if (!glsl_version) {
      _mesa_TexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
      _mesa_set_enable(ctx, target, GL_TRUE);
   }

   /* Prepare vertex data (the VBO was previously created and bound) */
   {
      struct vertex verts[4];
      GLfloat s0, t0, s1, t1;

      if (target == GL_TEXTURE_2D) {
         const struct gl_texture_image *texImage
            = _mesa_select_tex_image(texObj, target, srcLevel);
         s0 = srcX0 / (float) texImage->Width;
         s1 = srcX1 / (float) texImage->Width;
         t0 = srcY0 / (float) texImage->Height;
         t1 = srcY1 / (float) texImage->Height;
      }
      else {
         assert(target == GL_TEXTURE_RECTANGLE_ARB ||
                target == GL_TEXTURE_2D_MULTISAMPLE ||
                target == GL_TEXTURE_2D_MULTISAMPLE_ARRAY);
         s0 = (float) srcX0;
         s1 = (float) srcX1;
         t0 = (float) srcY0;
         t1 = (float) srcY1;
      }

      /* Silence valgrind warnings about reading uninitialized stack. */
      memset(verts, 0, sizeof(verts));

      /* setup vertex positions */
      verts[0].x = -1.0F * flipX;
      verts[0].y = -1.0F * flipY;
      verts[1].x =  1.0F * flipX;
      verts[1].y = -1.0F * flipY;
      verts[2].x =  1.0F * flipX;
      verts[2].y =  1.0F * flipY;
      verts[3].x = -1.0F * flipX;
      verts[3].y =  1.0F * flipY;

      verts[0].tex[0] = s0;
      verts[0].tex[1] = t0;
      verts[0].tex[2] = readAtt->Zoffset;
      verts[1].tex[0] = s1;
      verts[1].tex[1] = t0;
      verts[1].tex[2] = readAtt->Zoffset;
      verts[2].tex[0] = s1;
      verts[2].tex[1] = t1;
      verts[2].tex[2] = readAtt->Zoffset;
      verts[3].tex[0] = s0;
      verts[3].tex[1] = t1;
      verts[3].tex[2] = readAtt->Zoffset;

      _mesa_buffer_sub_data(ctx, blit->buf_obj, 0, sizeof(verts), verts,
                            __func__);
   }

   /* setup viewport */
   _mesa_set_viewport(ctx, 0, dstX, dstY, dstW, dstH);
   _mesa_ColorMask(!do_depth, !do_depth, !do_depth, !do_depth);
   _mesa_set_enable(ctx, GL_DEPTH_TEST, do_depth);
   _mesa_DepthMask(do_depth);
   _mesa_DepthFunc(GL_ALWAYS);

   _mesa_DrawArrays(GL_TRIANGLE_FAN, 0, 4);
   _mesa_meta_fb_tex_blit_end(ctx, target, &fb_tex_blit);

   return true;
}
示例#5
0
/*
 * This function is kind of long just because we have to call a lot
 * of device driver functions to update device driver state.
 *
 * XXX As it is now, most of the pop-code calls immediate-mode Mesa functions
 * in order to restore GL state.  This isn't terribly efficient but it
 * ensures that dirty flags and any derived state gets updated correctly.
 * We could at least check if the value to restore equals the current value
 * and then skip the Mesa call.
 */
void
_mesa_PopAttrib(void)
{
   struct gl_attrib_node *attr, *next;
   GET_CURRENT_CONTEXT(ctx);
   ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx);

   if (ctx->AttribStackDepth == 0) {
      _mesa_error( ctx, GL_STACK_UNDERFLOW, "glPopAttrib" );
      return;
   }

   ctx->AttribStackDepth--;
   attr = ctx->AttribStack[ctx->AttribStackDepth];

   while (attr) {

      if (MESA_VERBOSE&VERBOSE_API) {
	 fprintf(stderr, "glPopAttrib %s\n",
                 _mesa_lookup_enum_by_nr(attr->kind));
      }

      switch (attr->kind) {
         case GL_ACCUM_BUFFER_BIT:
            {
               const struct gl_accum_attrib *accum;
               accum = (const struct gl_accum_attrib *) attr->data;
               _mesa_ClearAccum(accum->ClearColor[0],
                                accum->ClearColor[1],
                                accum->ClearColor[2],
                                accum->ClearColor[3]);
            }
            break;
         case GL_COLOR_BUFFER_BIT:
            {
               const struct gl_colorbuffer_attrib *color;
               color = (const struct gl_colorbuffer_attrib *) attr->data;
               _mesa_ClearIndex((GLfloat) color->ClearIndex);
               _mesa_ClearColor(CHAN_TO_FLOAT(color->ClearColor[0]),
                                CHAN_TO_FLOAT(color->ClearColor[1]),
                                CHAN_TO_FLOAT(color->ClearColor[2]),
                                CHAN_TO_FLOAT(color->ClearColor[3]));
               _mesa_IndexMask(color->IndexMask);
               _mesa_ColorMask((GLboolean) (color->ColorMask[0] != 0),
                               (GLboolean) (color->ColorMask[1] != 0),
                               (GLboolean) (color->ColorMask[2] != 0),
                               (GLboolean) (color->ColorMask[3] != 0));
               _mesa_DrawBuffer(color->DrawBuffer);
               _mesa_set_enable(ctx, GL_ALPHA_TEST, color->AlphaEnabled);
               _mesa_AlphaFunc(color->AlphaFunc,
                               CHAN_TO_FLOAT(color->AlphaRef));
               _mesa_set_enable(ctx, GL_BLEND, color->BlendEnabled);
               _mesa_BlendFuncSeparateEXT(color->BlendSrcRGB,
                                          color->BlendDstRGB,
                                          color->BlendSrcA,
                                          color->BlendDstA);
               _mesa_BlendEquation(color->BlendEquation);
               _mesa_BlendColor(color->BlendColor[0],
                                color->BlendColor[1],
                                color->BlendColor[2],
                                color->BlendColor[3]);
               _mesa_LogicOp(color->LogicOp);
               _mesa_set_enable(ctx, GL_COLOR_LOGIC_OP,
                                color->ColorLogicOpEnabled);
               _mesa_set_enable(ctx, GL_INDEX_LOGIC_OP,
                                color->IndexLogicOpEnabled);
               _mesa_set_enable(ctx, GL_DITHER, color->DitherFlag);
            }
            break;
         case GL_CURRENT_BIT:
	    FLUSH_CURRENT( ctx, 0 );
            MEMCPY( &ctx->Current, attr->data,
		    sizeof(struct gl_current_attrib) );
            break;
         case GL_DEPTH_BUFFER_BIT:
            {
               const struct gl_depthbuffer_attrib *depth;
               depth = (const struct gl_depthbuffer_attrib *) attr->data;
               _mesa_DepthFunc(depth->Func);
               _mesa_ClearDepth(depth->Clear);
               _mesa_set_enable(ctx, GL_DEPTH_TEST, depth->Test);
               _mesa_DepthMask(depth->Mask);
               if (ctx->Extensions.HP_occlusion_test)
                  _mesa_set_enable(ctx, GL_OCCLUSION_TEST_HP,
                                   depth->OcclusionTest);
            }
            break;
         case GL_ENABLE_BIT:
            {
               const struct gl_enable_attrib *enable;
               enable = (const struct gl_enable_attrib *) attr->data;
               pop_enable_group(ctx, enable);
	       ctx->NewState |= _NEW_ALL;
            }
            break;
         case GL_EVAL_BIT:
            MEMCPY( &ctx->Eval, attr->data, sizeof(struct gl_eval_attrib) );
	    ctx->NewState |= _NEW_EVAL;
            break;
         case GL_FOG_BIT:
            {
               const struct gl_fog_attrib *fog;
               fog = (const struct gl_fog_attrib *) attr->data;
               _mesa_set_enable(ctx, GL_FOG, fog->Enabled);
               _mesa_Fogfv(GL_FOG_COLOR, fog->Color);
               _mesa_Fogf(GL_FOG_DENSITY, fog->Density);
               _mesa_Fogf(GL_FOG_START, fog->Start);
               _mesa_Fogf(GL_FOG_END, fog->End);
               _mesa_Fogf(GL_FOG_INDEX, fog->Index);
               _mesa_Fogi(GL_FOG_MODE, fog->Mode);
            }
            break;
         case GL_HINT_BIT:
            {
               const struct gl_hint_attrib *hint;
               hint = (const struct gl_hint_attrib *) attr->data;
               _mesa_Hint(GL_PERSPECTIVE_CORRECTION_HINT,
                          hint->PerspectiveCorrection );
               _mesa_Hint(GL_POINT_SMOOTH_HINT, hint->PointSmooth);
               _mesa_Hint(GL_LINE_SMOOTH_HINT, hint->LineSmooth);
               _mesa_Hint(GL_POLYGON_SMOOTH_HINT, hint->PolygonSmooth);
               _mesa_Hint(GL_FOG_HINT, hint->Fog);
               _mesa_Hint(GL_CLIP_VOLUME_CLIPPING_HINT_EXT,
                          hint->ClipVolumeClipping);
               if (ctx->Extensions.ARB_texture_compression)
                  _mesa_Hint(GL_TEXTURE_COMPRESSION_HINT_ARB,
                             hint->TextureCompression);
            }
            break;
         case GL_LIGHTING_BIT:
            {
               GLuint i;
               const struct gl_light_attrib *light;
               light = (const struct gl_light_attrib *) attr->data;
               /* lighting enable */
               _mesa_set_enable(ctx, GL_LIGHTING, light->Enabled);
               /* per-light state */

	       if (ctx->ModelView.flags & MAT_DIRTY_INVERSE) 
		  _math_matrix_analyse( &ctx->ModelView );
	       
               for (i = 0; i < MAX_LIGHTS; i++) {
                  GLenum lgt = (GLenum) (GL_LIGHT0 + i);
		  const struct gl_light *l = &light->Light[i];
		  GLfloat tmp[4];
                  _mesa_set_enable(ctx, lgt, l->Enabled);
		  _mesa_Lightfv( lgt, GL_AMBIENT, l->Ambient );
		  _mesa_Lightfv( lgt, GL_DIFFUSE, l->Diffuse );
		  _mesa_Lightfv( lgt, GL_SPECULAR, l->Specular );
		  TRANSFORM_POINT( tmp, ctx->ModelView.inv, l->EyePosition );
		  _mesa_Lightfv( lgt, GL_POSITION, tmp );
		  TRANSFORM_POINT( tmp, ctx->ModelView.m, l->EyeDirection );
		  _mesa_Lightfv( lgt, GL_SPOT_DIRECTION, tmp );
		  _mesa_Lightfv( lgt, GL_SPOT_EXPONENT, &l->SpotExponent );
		  _mesa_Lightfv( lgt, GL_SPOT_CUTOFF, &l->SpotCutoff );
		  _mesa_Lightfv( lgt, GL_CONSTANT_ATTENUATION, 
				 &l->ConstantAttenuation );
		  _mesa_Lightfv( lgt, GL_LINEAR_ATTENUATION, 
				 &l->LinearAttenuation );
		  _mesa_Lightfv( lgt, GL_QUADRATIC_ATTENUATION, 
				 &l->QuadraticAttenuation );
               }
               /* light model */
               _mesa_LightModelfv(GL_LIGHT_MODEL_AMBIENT,
                                  light->Model.Ambient);
               _mesa_LightModelf(GL_LIGHT_MODEL_LOCAL_VIEWER,
                                 (GLfloat) light->Model.LocalViewer);
               _mesa_LightModelf(GL_LIGHT_MODEL_TWO_SIDE,
                                 (GLfloat) light->Model.TwoSide);
               _mesa_LightModelf(GL_LIGHT_MODEL_COLOR_CONTROL,
                                 (GLfloat) light->Model.ColorControl);
               /* materials */
               MEMCPY(ctx->Light.Material, light->Material,
                      2 * sizeof(struct gl_material));
               /* shade model */
               _mesa_ShadeModel(light->ShadeModel);
               /* color material */
               _mesa_ColorMaterial(light->ColorMaterialFace,
                                   light->ColorMaterialMode);
               _mesa_set_enable(ctx, GL_COLOR_MATERIAL,
                                light->ColorMaterialEnabled);
            }
            break;
         case GL_LINE_BIT:
            {
               const struct gl_line_attrib *line;
               line = (const struct gl_line_attrib *) attr->data;
               _mesa_set_enable(ctx, GL_LINE_SMOOTH, line->SmoothFlag);
               _mesa_set_enable(ctx, GL_LINE_STIPPLE, line->StippleFlag);
               _mesa_LineStipple(line->StippleFactor, line->StipplePattern);
               _mesa_LineWidth(line->Width);
            }
            break;
         case GL_LIST_BIT:
            MEMCPY( &ctx->List, attr->data, sizeof(struct gl_list_attrib) );
            break;
         case GL_PIXEL_MODE_BIT:
            MEMCPY( &ctx->Pixel, attr->data, sizeof(struct gl_pixel_attrib) );
	    ctx->NewState |= _NEW_PIXEL;
            break;
         case GL_POINT_BIT:
            {
               const struct gl_point_attrib *point;
               point = (const struct gl_point_attrib *) attr->data;
               _mesa_PointSize(point->Size);
               _mesa_set_enable(ctx, GL_POINT_SMOOTH, point->SmoothFlag);
               if (ctx->Extensions.EXT_point_parameters) {
                  _mesa_PointParameterfvEXT(GL_DISTANCE_ATTENUATION_EXT,
                                            point->Params);
                  _mesa_PointParameterfEXT(GL_POINT_SIZE_MIN_EXT,
                                           point->MinSize);
                  _mesa_PointParameterfEXT(GL_POINT_SIZE_MAX_EXT,
                                           point->MaxSize);
                  _mesa_PointParameterfEXT(GL_POINT_FADE_THRESHOLD_SIZE_EXT,
                                           point->Threshold);
               }
            }
            break;
         case GL_POLYGON_BIT:
            {
               const struct gl_polygon_attrib *polygon;
               polygon = (const struct gl_polygon_attrib *) attr->data;
               _mesa_CullFace(polygon->CullFaceMode);
               _mesa_FrontFace(polygon->FrontFace);
               _mesa_PolygonMode(GL_FRONT, polygon->FrontMode);
               _mesa_PolygonMode(GL_BACK, polygon->BackMode);
               _mesa_PolygonOffset(polygon->OffsetFactor,
                                   polygon->OffsetUnits);
               _mesa_set_enable(ctx, GL_POLYGON_SMOOTH, polygon->SmoothFlag);
               _mesa_set_enable(ctx, GL_POLYGON_STIPPLE, polygon->StippleFlag);
               _mesa_set_enable(ctx, GL_CULL_FACE, polygon->CullFlag);
               _mesa_set_enable(ctx, GL_POLYGON_OFFSET_POINT,
                                polygon->OffsetPoint);
               _mesa_set_enable(ctx, GL_POLYGON_OFFSET_LINE,
                                polygon->OffsetLine);
               _mesa_set_enable(ctx, GL_POLYGON_OFFSET_FILL,
                                polygon->OffsetFill);
            }
            break;
	 case GL_POLYGON_STIPPLE_BIT:
	    MEMCPY( ctx->PolygonStipple, attr->data, 32*sizeof(GLuint) );
	    ctx->NewState |= _NEW_POLYGONSTIPPLE;
	    if (ctx->Driver.PolygonStipple)
	       ctx->Driver.PolygonStipple( ctx, (const GLubyte *) attr->data );
	    break;
         case GL_SCISSOR_BIT:
            {
               const struct gl_scissor_attrib *scissor;
               scissor = (const struct gl_scissor_attrib *) attr->data;
               _mesa_Scissor(scissor->X, scissor->Y,
                             scissor->Width, scissor->Height);
               _mesa_set_enable(ctx, GL_SCISSOR_TEST, scissor->Enabled);
            }
            break;
         case GL_STENCIL_BUFFER_BIT:
            {
               const struct gl_stencil_attrib *stencil;
               stencil = (const struct gl_stencil_attrib *) attr->data;
               _mesa_set_enable(ctx, GL_STENCIL_TEST, stencil->Enabled);
               _mesa_ClearStencil(stencil->Clear);
               _mesa_StencilFunc(stencil->Function, stencil->Ref,
                                 stencil->ValueMask);
               _mesa_StencilMask(stencil->WriteMask);
               _mesa_StencilOp(stencil->FailFunc, stencil->ZFailFunc,
                               stencil->ZPassFunc);
            }
            break;
         case GL_TRANSFORM_BIT:
            {
               GLuint i;
               const struct gl_transform_attrib *xform;
               xform = (const struct gl_transform_attrib *) attr->data;
               _mesa_MatrixMode(xform->MatrixMode);

               if (ctx->ProjectionMatrix.flags & MAT_DIRTY)
                  _math_matrix_analyse( &ctx->ProjectionMatrix );

               /* restore clip planes */
               for (i = 0; i < MAX_CLIP_PLANES; i++) {
                  const GLfloat *eyePlane = xform->EyeUserPlane[i];
                  COPY_4V(ctx->Transform.EyeUserPlane[i], eyePlane);
                  if (xform->ClipEnabled[i]) {
                     _mesa_transform_vector( ctx->Transform._ClipUserPlane[i],
                                             eyePlane,
                                             ctx->ProjectionMatrix.inv );
                     _mesa_set_enable(ctx, GL_CLIP_PLANE0 + i, GL_TRUE );
                  }
                  else {
                     _mesa_set_enable(ctx, GL_CLIP_PLANE0 + i, GL_FALSE );
                  }
                  if (ctx->Driver.ClipPlane)
                     ctx->Driver.ClipPlane( ctx, GL_CLIP_PLANE0 + i, eyePlane );
               }

               /* normalize/rescale */
               _mesa_set_enable(ctx, GL_NORMALIZE, ctx->Transform.Normalize);
               _mesa_set_enable(ctx, GL_RESCALE_NORMAL_EXT,
                                ctx->Transform.RescaleNormals);
            }
            break;
         case GL_TEXTURE_BIT:
            /* Take care of texture object reference counters */
            {
               const struct gl_texture_attrib *texture;
               texture = (const struct gl_texture_attrib *) attr->data;
               pop_texture_group(ctx, texture);
	       ctx->NewState |= _NEW_TEXTURE;
            }
            break;
         case GL_VIEWPORT_BIT:
            {
               const struct gl_viewport_attrib *vp;
               vp = (const struct gl_viewport_attrib *) attr->data;
               _mesa_Viewport(vp->X, vp->Y, vp->Width, vp->Height);
               _mesa_DepthRange(vp->Near, vp->Far);
            }
            break;
         case GL_MULTISAMPLE_BIT_ARB:
            {
               const struct gl_multisample_attrib *ms;
               ms = (const struct gl_multisample_attrib *) attr->data;
               _mesa_SampleCoverageARB(ms->SampleCoverageValue,
                                       ms->SampleCoverageInvert);
            }
            break;

         default:
            _mesa_problem( ctx, "Bad attrib flag in PopAttrib");
            break;
      }

      next = attr->next;
      FREE( attr->data );
      FREE( attr );
      attr = next;
   }
}