示例#1
0
void point_gradients(register int *ptr, KLT_TrackingContext tc, int *npoints, int nrows, int ncols, _KLT_FloatImage gradx, _KLT_FloatImage grady)
{
    register float gx, gy;
    register float gxx, gxy, gyy;
    register int xx, yy;
    int x, y, i;
    float val;
	int window_hw, window_hh;
    int borderx = tc->borderx;	/* Must not touch cols */
    int bordery = tc->bordery;	/* lost by convolution */
	
    unsigned int limit = 1;
	
    window_hw = tc->window_width/2; 
    window_hh = tc->window_height/2;
	
	if (borderx < window_hw)  borderx = window_hw;
    if (bordery < window_hh)  bordery = window_hh;

    // Find largest value of an int 
    for (i = 0 ; i < sizeof(int) ; i++)  limit *= 256;
    limit = limit/2 - 1;


  /* For most of the pixels in the image, do ... */
    for (y = bordery ; y < nrows - bordery ; y += tc->nSkippedPixels + 1)
      for (x = borderx ; x < ncols - borderx ; x += tc->nSkippedPixels + 1)  {

        /* Sum the gradients in the surrounding window */
        gxx = 0;  gxy = 0;  gyy = 0;
        for (yy = y-window_hh ; yy <= y+window_hh ; yy++){
          for (xx = x-window_hw ; xx <= x+window_hw ; xx++)  {
            gx = *(gradx->data + ncols*yy+xx);
            gy = *(grady->data + ncols*yy+xx);
            gxx += gx * gx;
            gxy += gx * gy;
            gyy += gy * gy;
          }
		}

        /* Store the trackability of the pixel as the minimum
           of the two eigenvalues */
        *ptr++ = x;
        *ptr++ = y;
        val = _minEigenvalue(gxx, gxy, gyy);
        if (val > limit)  {
          KLTWarning("(_KLTSelectGoodFeatures) minimum eigenvalue %f is "
                     "greater than the capacity of an int; setting "
                     "to maximum value", val);
          val = (float) limit;
        }
        *ptr++ = (int) val;
        *npoints = *npoints + 1;
      }
}
示例#2
0
void _KLTSelectGoodFeatures(
  KLT_TrackingContext tc,
  KLT_PixelType *img, 
  int ncols, 
  int nrows,
  KLT_FeatureList featurelist,
  selectionMode mode)
{
  _KLT_FloatImage floatimg, gradx, grady;
  int window_hw, window_hh;
  int *pointlist;
  int npoints = 0;
  KLT_BOOL overwriteAllFeatures = (mode == SELECTING_ALL) ?
    TRUE : FALSE;
  KLT_BOOL floatimages_created = FALSE;

  /* Check window size (and correct if necessary) */
  if (tc->window_width % 2 != 1) {
    tc->window_width = tc->window_width+1;
    KLTWarning("Tracking context's window width must be odd.  "
               "Changing to %d.\n", tc->window_width);
  }
  if (tc->window_height % 2 != 1) {
    tc->window_height = tc->window_height+1;
    KLTWarning("Tracking context's window height must be odd.  "
               "Changing to %d.\n", tc->window_height);
  }
  if (tc->window_width < 3) {
    tc->window_width = 3;
    KLTWarning("Tracking context's window width must be at least three.  \n"
               "Changing to %d.\n", tc->window_width);
  }
  if (tc->window_height < 3) {
    tc->window_height = 3;
    KLTWarning("Tracking context's window height must be at least three.  \n"
               "Changing to %d.\n", tc->window_height);
  }
  window_hw = tc->window_width/2; 
  window_hh = tc->window_height/2;
		
  /* Create pointlist, which is a simplified version of a featurelist, */
  /* for speed.  Contains only integer locations and values. */
  pointlist = (int *) malloc(ncols * nrows * 3 * sizeof(int));

  /* Create temporary images, etc. */
  if (mode == REPLACING_SOME && 
      tc->sequentialMode && tc->pyramid_last != NULL)  {
    floatimg = ((_KLT_Pyramid) tc->pyramid_last)->img[0];
    gradx = ((_KLT_Pyramid) tc->pyramid_last_gradx)->img[0];
    grady = ((_KLT_Pyramid) tc->pyramid_last_grady)->img[0];
    assert(gradx != NULL);
    assert(grady != NULL);
  } else  {
    floatimages_created = TRUE;
    floatimg = _KLTCreateFloatImage(ncols, nrows);
    gradx    = _KLTCreateFloatImage(ncols, nrows);
    grady    = _KLTCreateFloatImage(ncols, nrows);
    if (tc->smoothBeforeSelecting)  {
      _KLT_FloatImage tmpimg;
      tmpimg = _KLTCreateFloatImage(ncols, nrows);
      _KLTToFloatImage(img, ncols, nrows, tmpimg);
      _KLTComputeSmoothedImage(tmpimg, _KLTComputeSmoothSigma(tc), floatimg);
      _KLTFreeFloatImage(tmpimg);
    } else _KLTToFloatImage(img, ncols, nrows, floatimg);
 
    /* Compute gradient of image in x and y direction */
    _KLTComputeGradients(floatimg, tc->grad_sigma, gradx, grady);
  }
	
  /* Write internal images */
  if (tc->writeInternalImages)  {
    _KLTWriteFloatImageToPGM(floatimg, "kltimg_sgfrlf.pgm");
    _KLTWriteFloatImageToPGM(gradx, "kltimg_sgfrlf_gx.pgm");
    _KLTWriteFloatImageToPGM(grady, "kltimg_sgfrlf_gy.pgm");
  }

  /* Compute trackability of each image pixel as the minimum
     of the two eigenvalues of the Z matrix */
  {
    register float gx, gy;
    register float gxx, gxy, gyy;
    register int xx, yy;
    register int *ptr;
    float val;
    unsigned int limit = 1;
    int borderx = tc->borderx;	/* Must not touch cols */
    int bordery = tc->bordery;	/* lost by convolution */
    int x, y;
    int i;
	
    if (borderx < window_hw)  borderx = window_hw;
    if (bordery < window_hh)  bordery = window_hh;

    /* Find largest value of an int */
    for (i = 0 ; i < sizeof(int) ; i++)  limit *= 256;
    limit = limit/2 - 1;
		
    /* For most of the pixels in the image, do ... */
    ptr = pointlist;
    for (y = bordery ; y < nrows - bordery ; y += tc->nSkippedPixels + 1)
      for (x = borderx ; x < ncols - borderx ; x += tc->nSkippedPixels + 1)  {

        /* Sum the gradients in the surrounding window */
        gxx = 0;  gxy = 0;  gyy = 0;
        for (yy = y-window_hh ; yy <= y+window_hh ; yy++)
          for (xx = x-window_hw ; xx <= x+window_hw ; xx++)  {
            gx = *(gradx->data + ncols*yy+xx);
            gy = *(grady->data + ncols*yy+xx);
            gxx += gx * gx;
            gxy += gx * gy;
            gyy += gy * gy;
          }

        /* Store the trackability of the pixel as the minimum
           of the two eigenvalues */
        *ptr++ = x;
        *ptr++ = y;
        val = _minEigenvalue(gxx, gxy, gyy);
        if (val > limit)  {
          KLTWarning("(_KLTSelectGoodFeatures) minimum eigenvalue %f is "
                     "greater than the capacity of an int; setting "
                     "to maximum value", val);
          val = limit;
        }
        *ptr++ = (int) val;
        npoints++;
      }
  }
			
  /* Sort the features  */
  _sortPointList(pointlist, npoints);

  /* Check tc->mindist */
  if (tc->mindist < 0)  {
    KLTWarning("(_KLTSelectGoodFeatures) Tracking context field tc->mindist "
               "is negative (%d); setting to zero", tc->mindist);
    tc->mindist = 0;
  }

  /* Enforce minimum distance between features */
  _enforceMinimumDistance(
    pointlist,
    npoints,
    featurelist,
    ncols, nrows,
    tc->mindist,
    tc->min_eigenvalue,
    overwriteAllFeatures);

  /* Free memory */
  free(pointlist);
  if (floatimages_created)  {
    _KLTFreeFloatImage(floatimg);
    _KLTFreeFloatImage(gradx);
    _KLTFreeFloatImage(grady);
  }
}