static inline int16_t _mm256_hmax_epi16_rpl(__m256i a) {
    a = _mm256_max_epi16(a, _mm256_permute2x128_si256(a, a, _MM_SHUFFLE(0,0,0,0)));
    a = _mm256_max_epi16(a, _mm256_slli_si256(a, 8));
    a = _mm256_max_epi16(a, _mm256_slli_si256(a, 4));
    a = _mm256_max_epi16(a, _mm256_slli_si256(a, 2));
    return _mm256_extract_epi16_rpl(a, 15);
}
void av1_highbd_quantize_fp_avx2(
    const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
    const int16_t *round_ptr, const int16_t *quant_ptr,
    const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
    tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
    const int16_t *scan, const int16_t *iscan, int log_scale) {
  (void)scan;
  (void)zbin_ptr;
  (void)quant_shift_ptr;
  const unsigned int step = 8;
  __m256i qp[3], coeff;

  init_qp(round_ptr, quant_ptr, dequant_ptr, log_scale, qp);
  coeff = _mm256_loadu_si256((const __m256i *)coeff_ptr);

  __m256i eob = _mm256_setzero_si256();
  quantize(qp, &coeff, iscan, log_scale, qcoeff_ptr, dqcoeff_ptr, &eob);

  coeff_ptr += step;
  qcoeff_ptr += step;
  dqcoeff_ptr += step;
  iscan += step;
  n_coeffs -= step;

  update_qp(qp);
  while (n_coeffs > 0) {
    coeff = _mm256_loadu_si256((const __m256i *)coeff_ptr);
    quantize(qp, &coeff, iscan, log_scale, qcoeff_ptr, dqcoeff_ptr, &eob);

    coeff_ptr += step;
    qcoeff_ptr += step;
    dqcoeff_ptr += step;
    iscan += step;
    n_coeffs -= step;
  }
  {
    __m256i eob_s;
    eob_s = _mm256_shuffle_epi32(eob, 0xe);
    eob = _mm256_max_epi16(eob, eob_s);
    eob_s = _mm256_shufflelo_epi16(eob, 0xe);
    eob = _mm256_max_epi16(eob, eob_s);
    eob_s = _mm256_shufflelo_epi16(eob, 1);
    eob = _mm256_max_epi16(eob, eob_s);
    const __m128i final_eob = _mm_max_epi16(_mm256_castsi256_si128(eob),
                                            _mm256_extractf128_si256(eob, 1));
    *eob_ptr = _mm_extract_epi16(final_eob, 0);
  }
}
示例#3
0
void av1_build_compound_diffwtd_mask_highbd_avx2(
    uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint8_t *src0,
    int src0_stride, const uint8_t *src1, int src1_stride, int h, int w,
    int bd) {
  if (w < 16) {
    av1_build_compound_diffwtd_mask_highbd_ssse3(
        mask, mask_type, src0, src0_stride, src1, src1_stride, h, w, bd);
  } else {
    assert(mask_type == DIFFWTD_38 || mask_type == DIFFWTD_38_INV);
    assert(bd >= 8);
    assert((w % 16) == 0);
    const __m256i y0 = _mm256_setzero_si256();
    const __m256i yAOM_BLEND_A64_MAX_ALPHA =
        _mm256_set1_epi16(AOM_BLEND_A64_MAX_ALPHA);
    const int mask_base = 38;
    const __m256i ymask_base = _mm256_set1_epi16(mask_base);
    const uint16_t *ssrc0 = CONVERT_TO_SHORTPTR(src0);
    const uint16_t *ssrc1 = CONVERT_TO_SHORTPTR(src1);
    if (bd == 8) {
      if (mask_type == DIFFWTD_38_INV) {
        for (int i = 0; i < h; ++i) {
          for (int j = 0; j < w; j += 16) {
            __m256i s0 = _mm256_loadu_si256((const __m256i *)&ssrc0[j]);
            __m256i s1 = _mm256_loadu_si256((const __m256i *)&ssrc1[j]);
            __m256i diff = _mm256_srai_epi16(
                _mm256_abs_epi16(_mm256_sub_epi16(s0, s1)), DIFF_FACTOR_LOG2);
            __m256i m = _mm256_min_epi16(
                _mm256_max_epi16(y0, _mm256_add_epi16(diff, ymask_base)),
                yAOM_BLEND_A64_MAX_ALPHA);
            m = _mm256_sub_epi16(yAOM_BLEND_A64_MAX_ALPHA, m);
            m = _mm256_packus_epi16(m, m);
            m = _mm256_permute4x64_epi64(m, _MM_SHUFFLE(0, 0, 2, 0));
            __m128i m0 = _mm256_castsi256_si128(m);
            _mm_storeu_si128((__m128i *)&mask[j], m0);
          }
          ssrc0 += src0_stride;
          ssrc1 += src1_stride;
          mask += w;
        }
      } else {
        for (int i = 0; i < h; ++i) {
          for (int j = 0; j < w; j += 16) {
            __m256i s0 = _mm256_loadu_si256((const __m256i *)&ssrc0[j]);
            __m256i s1 = _mm256_loadu_si256((const __m256i *)&ssrc1[j]);
            __m256i diff = _mm256_srai_epi16(
                _mm256_abs_epi16(_mm256_sub_epi16(s0, s1)), DIFF_FACTOR_LOG2);
            __m256i m = _mm256_min_epi16(
                _mm256_max_epi16(y0, _mm256_add_epi16(diff, ymask_base)),
                yAOM_BLEND_A64_MAX_ALPHA);
            m = _mm256_packus_epi16(m, m);
            m = _mm256_permute4x64_epi64(m, _MM_SHUFFLE(0, 0, 2, 0));
            __m128i m0 = _mm256_castsi256_si128(m);
            _mm_storeu_si128((__m128i *)&mask[j], m0);
          }
          ssrc0 += src0_stride;
          ssrc1 += src1_stride;
          mask += w;
        }
      }
    } else {
      const __m128i xshift = xx_set1_64_from_32i(bd - 8 + DIFF_FACTOR_LOG2);
      if (mask_type == DIFFWTD_38_INV) {
        for (int i = 0; i < h; ++i) {
          for (int j = 0; j < w; j += 16) {
            __m256i s0 = _mm256_loadu_si256((const __m256i *)&ssrc0[j]);
            __m256i s1 = _mm256_loadu_si256((const __m256i *)&ssrc1[j]);
            __m256i diff = _mm256_sra_epi16(
                _mm256_abs_epi16(_mm256_sub_epi16(s0, s1)), xshift);
            __m256i m = _mm256_min_epi16(
                _mm256_max_epi16(y0, _mm256_add_epi16(diff, ymask_base)),
                yAOM_BLEND_A64_MAX_ALPHA);
            m = _mm256_sub_epi16(yAOM_BLEND_A64_MAX_ALPHA, m);
            m = _mm256_packus_epi16(m, m);
            m = _mm256_permute4x64_epi64(m, _MM_SHUFFLE(0, 0, 2, 0));
            __m128i m0 = _mm256_castsi256_si128(m);
            _mm_storeu_si128((__m128i *)&mask[j], m0);
          }
          ssrc0 += src0_stride;
          ssrc1 += src1_stride;
          mask += w;
        }
      } else {
        for (int i = 0; i < h; ++i) {
          for (int j = 0; j < w; j += 16) {
            __m256i s0 = _mm256_loadu_si256((const __m256i *)&ssrc0[j]);
            __m256i s1 = _mm256_loadu_si256((const __m256i *)&ssrc1[j]);
            __m256i diff = _mm256_sra_epi16(
                _mm256_abs_epi16(_mm256_sub_epi16(s0, s1)), xshift);
            __m256i m = _mm256_min_epi16(
                _mm256_max_epi16(y0, _mm256_add_epi16(diff, ymask_base)),
                yAOM_BLEND_A64_MAX_ALPHA);
            m = _mm256_packus_epi16(m, m);
            m = _mm256_permute4x64_epi64(m, _MM_SHUFFLE(0, 0, 2, 0));
            __m128i m0 = _mm256_castsi256_si128(m);
            _mm_storeu_si128((__m128i *)&mask[j], m0);
          }
          ssrc0 += src0_stride;
          ssrc1 += src1_stride;
          mask += w;
        }
      }
    }
  }
}
示例#4
0
__m256i test_mm256_max_epi16(__m256i a, __m256i b) {
  // CHECK: @llvm.x86.avx2.pmaxs.w
  return _mm256_max_epi16(a, b);
}
示例#5
0
__m256i test_mm256_max_epi16(__m256i a, __m256i b) {
  // CHECK-LABEL: test_mm256_max_epi16
  // CHECK:       [[CMP:%.*]] = icmp sgt <16 x i16> [[X:%.*]], [[Y:%.*]]
  // CHECK-NEXT:  select <16 x i1> [[CMP]], <16 x i16> [[X]], <16 x i16> [[Y]]
  return _mm256_max_epi16(a, b);
}
static void vpx_filter_block1d16_h8_avx2(const uint8_t *src_ptr,
                                         ptrdiff_t src_pixels_per_line,
                                         uint8_t *output_ptr,
                                         ptrdiff_t output_pitch,
                                         uint32_t output_height,
                                         const int16_t *filter) {
  __m128i filtersReg;
  __m256i addFilterReg64, filt1Reg, filt2Reg, filt3Reg, filt4Reg;
  __m256i firstFilters, secondFilters, thirdFilters, forthFilters;
  __m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3;
  __m256i srcReg32b1, srcReg32b2, filtersReg32;
  unsigned int i;
  ptrdiff_t src_stride, dst_stride;

  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
  addFilterReg64 = _mm256_set1_epi32((int)0x0400040u);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  // converting the 16 bit (short) to 8 bit (byte) and have the same data
  // in both lanes of 128 bit register.
  filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
  // have the same data in both lanes of a 256 bit register
  filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);

  // duplicate only the first 16 bits (first and second byte)
  // across 256 bit register
  firstFilters = _mm256_shuffle_epi8(filtersReg32,
                 _mm256_set1_epi16(0x100u));
  // duplicate only the second 16 bits (third and forth byte)
  // across 256 bit register
  secondFilters = _mm256_shuffle_epi8(filtersReg32,
                  _mm256_set1_epi16(0x302u));
  // duplicate only the third 16 bits (fifth and sixth byte)
  // across 256 bit register
  thirdFilters = _mm256_shuffle_epi8(filtersReg32,
                 _mm256_set1_epi16(0x504u));
  // duplicate only the forth 16 bits (seventh and eighth byte)
  // across 256 bit register
  forthFilters = _mm256_shuffle_epi8(filtersReg32,
                 _mm256_set1_epi16(0x706u));

  filt1Reg = _mm256_load_si256((__m256i const *)filt1_global_avx2);
  filt2Reg = _mm256_load_si256((__m256i const *)filt2_global_avx2);
  filt3Reg = _mm256_load_si256((__m256i const *)filt3_global_avx2);
  filt4Reg = _mm256_load_si256((__m256i const *)filt4_global_avx2);

  // multiple the size of the source and destination stride by two
  src_stride = src_pixels_per_line << 1;
  dst_stride = output_pitch << 1;
  for (i = output_height; i > 1; i-=2) {
    // load the 2 strides of source
    srcReg32b1 = _mm256_castsi128_si256(
                 _mm_loadu_si128((const __m128i *)(src_ptr - 3)));
    srcReg32b1 = _mm256_inserti128_si256(srcReg32b1,
                 _mm_loadu_si128((const __m128i *)
                 (src_ptr+src_pixels_per_line-3)), 1);

    // filter the source buffer
    srcRegFilt32b1_1= _mm256_shuffle_epi8(srcReg32b1, filt1Reg);
    srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt4Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);

    // add and saturate the results together
    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2);

    // filter the source buffer
    srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
    srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt3Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);

    // add and saturate the results together
    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1,
                       _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2));

    // reading 2 strides of the next 16 bytes
    // (part of it was being read by earlier read)
    srcReg32b2 = _mm256_castsi128_si256(
                 _mm_loadu_si128((const __m128i *)(src_ptr + 5)));
    srcReg32b2 = _mm256_inserti128_si256(srcReg32b2,
                 _mm_loadu_si128((const __m128i *)
                 (src_ptr+src_pixels_per_line+5)), 1);

    // add and saturate the results together
    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1,
                       _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2));

    // filter the source buffer
    srcRegFilt32b2_1 = _mm256_shuffle_epi8(srcReg32b2, filt1Reg);
    srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt4Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt32b2_1 = _mm256_maddubs_epi16(srcRegFilt32b2_1, firstFilters);
    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);

    // add and saturate the results together
    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, srcRegFilt32b2);

    // filter the source buffer
    srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b2, filt2Reg);
    srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b2, filt3Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);

    // add and saturate the results together
    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1,
                       _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2));
    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1,
                       _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2));


    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg64);

    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg64);

    // shift by 7 bit each 16 bit
    srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 7);
    srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 7);

    // shrink to 8 bit each 16 bits, the first lane contain the first
    // convolve result and the second lane contain the second convolve
    // result
    srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1,
                                           srcRegFilt32b2_1);

    src_ptr+=src_stride;

    // save 16 bytes
    _mm_store_si128((__m128i*)output_ptr,
    _mm256_castsi256_si128(srcRegFilt32b1_1));

    // save the next 16 bits
    _mm_store_si128((__m128i*)(output_ptr+output_pitch),
    _mm256_extractf128_si256(srcRegFilt32b1_1, 1));
    output_ptr+=dst_stride;
  }

  // if the number of strides is odd.
  // process only 16 bytes
  if (i > 0) {
    __m128i srcReg1, srcReg2, srcRegFilt1_1, srcRegFilt2_1;
    __m128i srcRegFilt2, srcRegFilt3;

    srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr - 3));

    // filter the source buffer
    srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1,
                    _mm256_castsi256_si128(filt1Reg));
    srcRegFilt2 = _mm_shuffle_epi8(srcReg1,
                  _mm256_castsi256_si128(filt4Reg));

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1,
                    _mm256_castsi256_si128(firstFilters));
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
                  _mm256_castsi256_si128(forthFilters));

    // add and saturate the results together
    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);

    // filter the source buffer
    srcRegFilt3= _mm_shuffle_epi8(srcReg1,
                 _mm256_castsi256_si128(filt2Reg));
    srcRegFilt2= _mm_shuffle_epi8(srcReg1,
                 _mm256_castsi256_si128(filt3Reg));

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3,
                  _mm256_castsi256_si128(secondFilters));
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
                  _mm256_castsi256_si128(thirdFilters));

    // add and saturate the results together
    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
                    _mm_min_epi16(srcRegFilt3, srcRegFilt2));

    // reading the next 16 bytes
    // (part of it was being read by earlier read)
    srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + 5));

    // add and saturate the results together
    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
                    _mm_max_epi16(srcRegFilt3, srcRegFilt2));

    // filter the source buffer
    srcRegFilt2_1 = _mm_shuffle_epi8(srcReg2,
                    _mm256_castsi256_si128(filt1Reg));
    srcRegFilt2 = _mm_shuffle_epi8(srcReg2,
                  _mm256_castsi256_si128(filt4Reg));

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1,
                    _mm256_castsi256_si128(firstFilters));
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
                  _mm256_castsi256_si128(forthFilters));

    // add and saturate the results together
    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2);

    // filter the source buffer
    srcRegFilt3 = _mm_shuffle_epi8(srcReg2,
                  _mm256_castsi256_si128(filt2Reg));
    srcRegFilt2 = _mm_shuffle_epi8(srcReg2,
                  _mm256_castsi256_si128(filt3Reg));

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3,
                  _mm256_castsi256_si128(secondFilters));
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
                  _mm256_castsi256_si128(thirdFilters));

    // add and saturate the results together
    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
                    _mm_min_epi16(srcRegFilt3, srcRegFilt2));
    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
                    _mm_max_epi16(srcRegFilt3, srcRegFilt2));


    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
                    _mm256_castsi256_si128(addFilterReg64));

    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
                    _mm256_castsi256_si128(addFilterReg64));

    // shift by 7 bit each 16 bit
    srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7);
    srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7);

    // shrink to 8 bit each 16 bits, the first lane contain the first
    // convolve result and the second lane contain the second convolve
    // result
    srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1);

    // save 16 bytes
    _mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1);
  }
}
static void vpx_filter_block1d16_v8_avx2(const uint8_t *src_ptr,
                                         ptrdiff_t src_pitch,
                                         uint8_t *output_ptr,
                                         ptrdiff_t out_pitch,
                                         uint32_t output_height,
                                         const int16_t *filter) {
  __m128i filtersReg;
  __m256i addFilterReg64;
  __m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5;
  __m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10;
  __m256i srcReg32b11, srcReg32b12, filtersReg32;
  __m256i firstFilters, secondFilters, thirdFilters, forthFilters;
  unsigned int i;
  ptrdiff_t src_stride, dst_stride;

  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
  addFilterReg64 = _mm256_set1_epi32((int)0x0400040u);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  // converting the 16 bit (short) to  8 bit (byte) and have the
  // same data in both lanes of 128 bit register.
  filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
  // have the same data in both lanes of a 256 bit register
  filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);

  // duplicate only the first 16 bits (first and second byte)
  // across 256 bit register
  firstFilters = _mm256_shuffle_epi8(filtersReg32,
                 _mm256_set1_epi16(0x100u));
  // duplicate only the second 16 bits (third and forth byte)
  // across 256 bit register
  secondFilters = _mm256_shuffle_epi8(filtersReg32,
                  _mm256_set1_epi16(0x302u));
  // duplicate only the third 16 bits (fifth and sixth byte)
  // across 256 bit register
  thirdFilters = _mm256_shuffle_epi8(filtersReg32,
                 _mm256_set1_epi16(0x504u));
  // duplicate only the forth 16 bits (seventh and eighth byte)
  // across 256 bit register
  forthFilters = _mm256_shuffle_epi8(filtersReg32,
                 _mm256_set1_epi16(0x706u));

  // multiple the size of the source and destination stride by two
  src_stride = src_pitch << 1;
  dst_stride = out_pitch << 1;

  // load 16 bytes 7 times in stride of src_pitch
  srcReg32b1 = _mm256_castsi128_si256(
               _mm_loadu_si128((const __m128i *)(src_ptr)));
  srcReg32b2 = _mm256_castsi128_si256(
               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch)));
  srcReg32b3 = _mm256_castsi128_si256(
               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2)));
  srcReg32b4 = _mm256_castsi128_si256(
               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3)));
  srcReg32b5 = _mm256_castsi128_si256(
               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)));
  srcReg32b6 = _mm256_castsi128_si256(
               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)));
  srcReg32b7 = _mm256_castsi128_si256(
               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)));

  // have each consecutive loads on the same 256 register
  srcReg32b1 = _mm256_inserti128_si256(srcReg32b1,
               _mm256_castsi256_si128(srcReg32b2), 1);
  srcReg32b2 = _mm256_inserti128_si256(srcReg32b2,
               _mm256_castsi256_si128(srcReg32b3), 1);
  srcReg32b3 = _mm256_inserti128_si256(srcReg32b3,
               _mm256_castsi256_si128(srcReg32b4), 1);
  srcReg32b4 = _mm256_inserti128_si256(srcReg32b4,
               _mm256_castsi256_si128(srcReg32b5), 1);
  srcReg32b5 = _mm256_inserti128_si256(srcReg32b5,
               _mm256_castsi256_si128(srcReg32b6), 1);
  srcReg32b6 = _mm256_inserti128_si256(srcReg32b6,
               _mm256_castsi256_si128(srcReg32b7), 1);

  // merge every two consecutive registers except the last one
  srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2);
  srcReg32b1 = _mm256_unpackhi_epi8(srcReg32b1, srcReg32b2);

  // save
  srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4);

  // save
  srcReg32b3 = _mm256_unpackhi_epi8(srcReg32b3, srcReg32b4);

  // save
  srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6);

  // save
  srcReg32b5 = _mm256_unpackhi_epi8(srcReg32b5, srcReg32b6);


  for (i = output_height; i > 1; i-=2) {
     // load the last 2 loads of 16 bytes and have every two
     // consecutive loads in the same 256 bit register
     srcReg32b8 = _mm256_castsi128_si256(
     _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)));
     srcReg32b7 = _mm256_inserti128_si256(srcReg32b7,
     _mm256_castsi256_si128(srcReg32b8), 1);
     srcReg32b9 = _mm256_castsi128_si256(
     _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 8)));
     srcReg32b8 = _mm256_inserti128_si256(srcReg32b8,
     _mm256_castsi256_si128(srcReg32b9), 1);

     // merge every two consecutive registers
     // save
     srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8);
     srcReg32b7 = _mm256_unpackhi_epi8(srcReg32b7, srcReg32b8);

     // multiply 2 adjacent elements with the filter and add the result
     srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters);
     srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters);

     // add and saturate the results together
     srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6);

     // multiply 2 adjacent elements with the filter and add the result
     srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters);
     srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters);

     // add and saturate the results together
     srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
                   _mm256_min_epi16(srcReg32b8, srcReg32b12));
     srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
                   _mm256_max_epi16(srcReg32b8, srcReg32b12));

     // multiply 2 adjacent elements with the filter and add the result
     srcReg32b1 = _mm256_maddubs_epi16(srcReg32b1, firstFilters);
     srcReg32b6 = _mm256_maddubs_epi16(srcReg32b7, forthFilters);

     srcReg32b1 = _mm256_adds_epi16(srcReg32b1, srcReg32b6);

     // multiply 2 adjacent elements with the filter and add the result
     srcReg32b8 = _mm256_maddubs_epi16(srcReg32b3, secondFilters);
     srcReg32b12 = _mm256_maddubs_epi16(srcReg32b5, thirdFilters);

     // add and saturate the results together
     srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
                  _mm256_min_epi16(srcReg32b8, srcReg32b12));
     srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
                  _mm256_max_epi16(srcReg32b8, srcReg32b12));

     srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg64);
     srcReg32b1 = _mm256_adds_epi16(srcReg32b1, addFilterReg64);

     // shift by 7 bit each 16 bit
     srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 7);
     srcReg32b1 = _mm256_srai_epi16(srcReg32b1, 7);

     // shrink to 8 bit each 16 bits, the first lane contain the first
     // convolve result and the second lane contain the second convolve
     // result
     srcReg32b1 = _mm256_packus_epi16(srcReg32b10, srcReg32b1);

     src_ptr+=src_stride;

     // save 16 bytes
     _mm_store_si128((__m128i*)output_ptr,
     _mm256_castsi256_si128(srcReg32b1));

     // save the next 16 bits
     _mm_store_si128((__m128i*)(output_ptr+out_pitch),
     _mm256_extractf128_si256(srcReg32b1, 1));

     output_ptr+=dst_stride;

     // save part of the registers for next strides
     srcReg32b10 = srcReg32b11;
     srcReg32b1 = srcReg32b3;
     srcReg32b11 = srcReg32b2;
     srcReg32b3 = srcReg32b5;
     srcReg32b2 = srcReg32b4;
     srcReg32b5 = srcReg32b7;
     srcReg32b7 = srcReg32b9;
  }
  if (i > 0) {
    __m128i srcRegFilt1, srcRegFilt3, srcRegFilt4, srcRegFilt5;
    __m128i srcRegFilt6, srcRegFilt7, srcRegFilt8;
    // load the last 16 bytes
    srcRegFilt8 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7));

    // merge the last 2 results together
    srcRegFilt4 = _mm_unpacklo_epi8(
                  _mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
    srcRegFilt7 = _mm_unpackhi_epi8(
                  _mm256_castsi256_si128(srcReg32b7), srcRegFilt8);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10),
                  _mm256_castsi256_si128(firstFilters));
    srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4,
                  _mm256_castsi256_si128(forthFilters));
    srcRegFilt3 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b1),
                  _mm256_castsi256_si128(firstFilters));
    srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7,
                  _mm256_castsi256_si128(forthFilters));

    // add and saturate the results together
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, srcRegFilt7);


    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11),
                  _mm256_castsi256_si128(secondFilters));
    srcRegFilt5 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b3),
                  _mm256_castsi256_si128(secondFilters));

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2),
                  _mm256_castsi256_si128(thirdFilters));
    srcRegFilt7 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b5),
                  _mm256_castsi256_si128(thirdFilters));

    // add and saturate the results together
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
                  _mm_min_epi16(srcRegFilt4, srcRegFilt6));
    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
                  _mm_min_epi16(srcRegFilt5, srcRegFilt7));

    // add and saturate the results together
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
                  _mm_max_epi16(srcRegFilt4, srcRegFilt6));
    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
                  _mm_max_epi16(srcRegFilt5, srcRegFilt7));


    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
                  _mm256_castsi256_si128(addFilterReg64));
    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
                  _mm256_castsi256_si128(addFilterReg64));

    // shift by 7 bit each 16 bit
    srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
    srcRegFilt3 = _mm_srai_epi16(srcRegFilt3, 7);

    // shrink to 8 bit each 16 bits, the first lane contain the first
    // convolve result and the second lane contain the second convolve
    // result
    srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt3);

    // save 16 bytes
    _mm_store_si128((__m128i*)output_ptr, srcRegFilt1);
  }
}
示例#8
0
void extern
avx2_test (void)
{
  x = _mm256_max_epi16 (x, x);
}
uns cache_block_over_inputs(const u8 *w, const u8 *inputs, const u8 *outputs, const uns w_len, const uns outputs_len) {
	assert(outputs_len > 0);
	assert(outputs_len % AVX_U8_VEC_LEN == 0);
	assert(w_len % AVX_U8_VEC_LEN == 0);

	__m256i part_results[CACHE_BLOCKING_LEN];

	const uns cache_blocking_len = MIN(outputs_len, cache_blocking_len);

	for (uns index = 0; index < w_len; index += cache_blocking_len) {
		const uns jndex_end = MIN(w_len, index + cache_blocking_len);

		for (uns cb_index = 0; cb_index < cache_blocking_len; ++cb_index) {
			for (uns jndex = index; jndex < jndex_end; jndex += AVX_U8_VEC_LEN) {
				const __m256i *weight = (__m256i*) &w[jndex + cb_index*w_len];
				const __m256i *input = (__m256i*) &input[jndex];
				const __m256i sum = _mm256_maddubs_epi16(*weight, *input);
				__m256i *bigsum = &part_results[cb_index];
				// FIXME: When to do bit shifts?
				*bigsum = _mm256_adds_epi16(*bigsum, sum);
			}
		}
	}

	for (uns cb_index = 0; cb_index < cache_blocking_len; cb_index += cache_blocking_len) {
		// _mm256_permute2x128_si256: http://www.felixcloutier.com/x86/VPERM2I128.html
		// _mm256_shuffle_epi8: https://software.intel.com/en-us/node/582929
		// _mm256_hadds_epi16: https://software.intel.com/en-us/node/582799, http://www.felixcloutier.com/x86/PHADDSW.html
		// _mm256_blendv_epi8: https://software.intel.com/en-us/node/582820
		// _mm256_shuffle_epi8: https://software.intel.com/en-us/node/582929
		// _mm256_srli_epi16: https://software.intel.com/en-us/node/582887
		// _mm256_srai_epi16: https://software.intel.com/en-us/node/582815
		// _mm256_setr_epi64x: https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_setr_epi64x&expand=4649

		// Create 2 128bit parts with 16bit integers.
#define SUM_2x128(X, Y) \
	const __m256i x##X = part_results[cb_index + X]; \
	const __m256i x##Y = part_results[cb_index + Y]; \
	__m256i sum##X = _mm256_adds_epi16( _mm256_permute2x128_si256(x##X, x##Y, 0x20), _mm256_permute2x128_si256(x##X, x##Y, 0x31) )	
		SUM_2x128(0, 1);
		SUM_2x128(2, 3);
		SUM_2x128(4, 5);
		SUM_2x128(6, 7);
		SUM_2x128(8, 9);
		SUM_2x128(10, 11);
		SUM_2x128(12, 13);
		SUM_2x128(14, 15);
#undef SUM_2x128

		// Create 4 64bit parts with 16bit integers.
#define SUM_4x64(X, Y) \
	sum##X = _mm256_adds_epi16(_mm256_permute2x128_si256(_mm256_permute4x64_epi64(sum##X, 0x20), _mm256_permute4x64_epi64(sum##Y, 0x20), 0x20), \
				_mm256_permute2x128_si256(_mm256_permute4x64_epi64(sum##X, 0x31), _mm256_permute4x64_epi64(sum##Y, 0x31), 0x20))
		SUM_4x64(0, 2);
		SUM_4x64(4, 6);
		SUM_4x64(8, 10);
		SUM_4x64(12, 14);
#undef SUM_4x64

		// Create 8 32bit parts with 16bit integers.
#define SUM_8x32(X, Y) \
	sum##X = _mm256_adds_epi16(_mm256_permute2x128_si256(_mm256_permutevar8x32_epi32(x##X, _mm256_setr_epi32(0, 0, 0, 0, 6, 4, 2, 0)), \
							     _mm256_permutevar8x32_epi32(x##Y, _mm256_setr_epi32(0, 0, 0, 0, 6, 4, 2, 0)), 0x20), \
				   _mm256_permute2x128_si256(_mm256_permutevar8x32_epi32(x##X, _mm256_setr_epi32(0, 0, 0, 0, 7, 5, 3, 1)), \
					   		     _mm256_permutevar8x32_epi32(x##Y, _mm256_setr_epi32(0, 0, 0, 0, 7, 5, 3, 1)), 0x20))
		SUM_8x32(0, 4);
		SUM_8x32(8, 12);
#undef SUM_8x32

		// Create 16 parts with 16bit integers.
		sum0 = _mm256_hadds_epi16(sum0, sum8);

		// Final operations.
		sum0 = _mm256_max_epi16(sum0, _mm256_setzero_si256());
		sum0 = _mm256_srai_epi16(sum0, 8);

		// FIXME: Add last conversion of 16bit integers to 8bit integers.
		// stream store, type conversions seem ugly...
		_mm_stream_ps((float*)&outputs[cb_index], (__m128)_mm256_castsi256_si128(sum0));
	}

	return cache_blocking_len;
}