示例#1
0
int
_pthread_rwlock_init (pthread_rwlock_t *rwlock, const pthread_rwlockattr_t *attr)
{
	pthread_rwlock_t prwlock;
	int ret;

	/* allocate rwlock object */
	prwlock = (pthread_rwlock_t)malloc(sizeof(struct pthread_rwlock));

	if (prwlock == NULL)
		return(ENOMEM);

	/* initialize the lock */
	if ((ret = _pthread_mutex_init(&prwlock->lock, NULL)) != 0)
		free(prwlock);
	else {
		/* initialize the read condition signal */
		ret = _pthread_cond_init(&prwlock->read_signal, NULL);

		if (ret != 0) {
			_pthread_mutex_destroy(&prwlock->lock);
			free(prwlock);
		} else {
			/* initialize the write condition signal */
			ret = _pthread_cond_init(&prwlock->write_signal, NULL);

			if (ret != 0) {
				_pthread_cond_destroy(&prwlock->read_signal);
				_pthread_mutex_destroy(&prwlock->lock);
				free(prwlock);
			} else {
				/* success */
				prwlock->state = 0;
				prwlock->blocked_writers = 0;

				*rwlock = prwlock;
			}
		}
	}

	return (ret);
}
示例#2
0
文件: derby.c 项目: ariel19/Derby
void init_sync(pthread_mutex_t *mutex, pthread_cond_t *cond, pthread_mutex_t *mfinished, pthread_mutex_t *mbank,
				pthread_mutex_t *mcur_run, pthread_mutex_t *mhb, pthread_mutex_t *mnr) {
	// init synchronization info
	_pthread_mutex_init(mutex, NULL);
	_pthread_cond_init(cond, NULL);

	// service info
	_pthread_mutex_init(mfinished, NULL);
	_pthread_mutex_init(mbank, NULL);
	_pthread_mutex_init(mcur_run, NULL);
	_pthread_mutex_init(mhb, NULL);
	_pthread_mutex_init(mnr, NULL);
}
示例#3
0
int
pthread_cond_init(pthread_cond_t *ocond, const pthread_condattr_t *attr)
{
	int conforming;

#if __DARWIN_UNIX03
	conforming = 1;
#else /* __DARWIN_UNIX03 */
	conforming = 0;
#endif /* __DARWIN_UNIX03 */

	_pthread_cond *cond = (_pthread_cond *)ocond;
	LOCK_INIT(cond->lock);
	return _pthread_cond_init(cond, attr, conforming);
}
示例#4
0
static int
_pthread_cond_check_init(_pthread_cond *cond, bool *inited)
{
	int res = 0;
	if (cond->sig != _PTHREAD_COND_SIG) {
		res = EINVAL;
		if (cond->sig == _PTHREAD_COND_SIG_init) {
			LOCK(cond->lock);
			if (cond->sig == _PTHREAD_COND_SIG_init) {
				res = _pthread_cond_init(cond, NULL, 0);
				if (inited) {
					*inited = true;
				}
			} else if (cond->sig == _PTHREAD_COND_SIG) {
				res = 0;
			}
			UNLOCK(cond->lock);
		}
	}
	return res;
}
示例#5
0
static sem_t
sem_alloc(unsigned int value, semid_t semid, int system_sem)
{
	sem_t sem;

	if (value > SEM_VALUE_MAX) {
		errno = EINVAL;
		return (NULL);
	}

	sem = (sem_t)malloc(sizeof(struct sem));
	if (sem == NULL) {
		errno = ENOSPC;
		return (NULL);
	}

	/*
	 * Initialize the semaphore.
	 */
	if (_pthread_mutex_init(&sem->lock, NULL) != 0) {
		free(sem);
		errno = ENOSPC;
		return (NULL);
	}

	if (_pthread_cond_init(&sem->gtzero, NULL) != 0) {
		_pthread_mutex_destroy(&sem->lock);
		free(sem);
		errno = ENOSPC;
		return (NULL);
	}

	sem->count = (u_int32_t)value;
	sem->nwaiters = 0;
	sem->magic = SEM_MAGIC;
	sem->semid = semid;
	sem->syssem = system_sem;
	return (sem);
}
示例#6
0
int
_pthread_cond_broadcast(pthread_cond_t * cond)
{
	struct pthread	*curthread = _get_curthread();
	struct pthread	*pthread;
	struct kse_mailbox *kmbx;
	int		rval = 0;

	THR_ASSERT(curthread->locklevel == 0,
	    "cv_timedwait: locklevel is not zero!");
	if (cond == NULL)
		rval = EINVAL;
       /*
        * If the condition variable is statically initialized, perform dynamic
        * initialization.
        */
	else if (*cond != NULL || (rval = _pthread_cond_init(cond, NULL)) == 0) {
		/* Lock the condition variable structure: */
		THR_LOCK_ACQUIRE(curthread, &(*cond)->c_lock);

		/* Process according to condition variable type: */
		switch ((*cond)->c_type) {
		/* Fast condition variable: */
		case COND_TYPE_FAST:
			/* Increment the sequence number: */
			(*cond)->c_seqno++;

			/*
			 * Enter a loop to bring all threads off the
			 * condition queue:
			 */
			while ((pthread = TAILQ_FIRST(&(*cond)->c_queue))
			    != NULL) {
				THR_SCHED_LOCK(curthread, pthread);
				cond_queue_remove(*cond, pthread);
				pthread->sigbackout = NULL;
				if ((pthread->kseg == curthread->kseg) &&
				    (pthread->active_priority >
				    curthread->active_priority))
					curthread->critical_yield = 1;
				kmbx = _thr_setrunnable_unlocked(pthread);
				THR_SCHED_UNLOCK(curthread, pthread);
				if (kmbx != NULL)
					kse_wakeup(kmbx);
			}

			/* There are no more waiting threads: */
			(*cond)->c_mutex = NULL;
			break;

		/* Trap invalid condition variable types: */
		default:
			/* Return an invalid argument error: */
			rval = EINVAL;
			break;
		}

		/* Unlock the condition variable structure: */
		THR_LOCK_RELEASE(curthread, &(*cond)->c_lock);
	}

	/* Return the completion status: */
	return (rval);
}
示例#7
0
int
_pthread_cond_signal(pthread_cond_t * cond)
{
	struct pthread	*curthread = _get_curthread();
	struct pthread	*pthread;
	struct kse_mailbox *kmbx;
	int		rval = 0;

	THR_ASSERT(curthread->locklevel == 0,
	    "cv_timedwait: locklevel is not zero!");
	if (cond == NULL)
		rval = EINVAL;
       /*
        * If the condition variable is statically initialized, perform dynamic
        * initialization.
        */
	else if (*cond != NULL || (rval = _pthread_cond_init(cond, NULL)) == 0) {
		/* Lock the condition variable structure: */
		THR_LOCK_ACQUIRE(curthread, &(*cond)->c_lock);

		/* Process according to condition variable type: */
		switch ((*cond)->c_type) {
		/* Fast condition variable: */
		case COND_TYPE_FAST:
			/* Increment the sequence number: */
			(*cond)->c_seqno++;

			/*
			 * Wakeups have to be done with the CV lock held;
			 * otherwise there is a race condition where the
			 * thread can timeout, run on another KSE, and enter
			 * another blocking state (including blocking on a CV).
			 */
			if ((pthread = TAILQ_FIRST(&(*cond)->c_queue))
			    != NULL) {
				THR_SCHED_LOCK(curthread, pthread);
				cond_queue_remove(*cond, pthread);
				pthread->sigbackout = NULL;
				if ((pthread->kseg == curthread->kseg) &&
				    (pthread->active_priority >
				    curthread->active_priority))
					curthread->critical_yield = 1;
				kmbx = _thr_setrunnable_unlocked(pthread);
				THR_SCHED_UNLOCK(curthread, pthread);
				if (kmbx != NULL)
					kse_wakeup(kmbx);
			}
			/* Check for no more waiters: */
			if (TAILQ_EMPTY(&(*cond)->c_queue))
				(*cond)->c_mutex = NULL;
			break;

		/* Trap invalid condition variable types: */
		default:
			/* Return an invalid argument error: */
			rval = EINVAL;
			break;
		}

		/* Unlock the condition variable structure: */
		THR_LOCK_RELEASE(curthread, &(*cond)->c_lock);
	}

	/* Return the completion status: */
	return (rval);
}
示例#8
0
int
_pthread_cond_timedwait(pthread_cond_t * cond, pthread_mutex_t * mutex,
		       const struct timespec * abstime)
{
	struct pthread	*curthread = _get_curthread();
	int	rval = 0;
	int	done = 0;
	int	mutex_locked = 1;
	int	seqno;

	THR_ASSERT(curthread->locklevel == 0,
	    "cv_timedwait: locklevel is not zero!");

	if (abstime == NULL || abstime->tv_sec < 0 || abstime->tv_nsec < 0 ||
	    abstime->tv_nsec >= 1000000000)
		return (EINVAL);
	/*
	 * If the condition variable is statically initialized, perform dynamic
	 * initialization.
	 */
	if (*cond == NULL && (rval = _pthread_cond_init(cond, NULL)) != 0)
		return (rval);

	if (!_kse_isthreaded())
		_kse_setthreaded(1);

	/*
	 * Enter a loop waiting for a condition signal or broadcast
	 * to wake up this thread.  A loop is needed in case the waiting
	 * thread is interrupted by a signal to execute a signal handler.
	 * It is not (currently) possible to remain in the waiting queue
	 * while running a handler.  Instead, the thread is interrupted
	 * and backed out of the waiting queue prior to executing the
	 * signal handler.
	 */

	/* Lock the condition variable structure: */
	THR_LOCK_ACQUIRE(curthread, &(*cond)->c_lock);
	seqno = (*cond)->c_seqno;
	do {
		/*
		 * If the condvar was statically allocated, properly
		 * initialize the tail queue.
		 */
		if (((*cond)->c_flags & COND_FLAGS_INITED) == 0) {
			TAILQ_INIT(&(*cond)->c_queue);
			(*cond)->c_flags |= COND_FLAGS_INITED;
		}

		/* Process according to condition variable type: */
		switch ((*cond)->c_type) {
		/* Fast condition variable: */
		case COND_TYPE_FAST:
			if ((mutex == NULL) || (((*cond)->c_mutex != NULL) &&
			    ((*cond)->c_mutex != *mutex))) {
				/* Return invalid argument error: */
				rval = EINVAL;
			} else {
				/* Reset the timeout and interrupted flags: */
				curthread->timeout = 0;
				curthread->interrupted = 0;

				/*
				 * Queue the running thread for the condition
				 * variable:
				 */
				cond_queue_enq(*cond, curthread);

				/* Unlock the mutex: */
				if (mutex_locked &&
				   ((rval = _mutex_cv_unlock(mutex)) != 0)) {
					/*
					 * Cannot unlock the mutex; remove the
					 * running thread from the condition
					 * variable queue: 
					 */
					cond_queue_remove(*cond, curthread);
				} else {
					/* Remember the mutex: */
					(*cond)->c_mutex = *mutex;

					/*
					 * Don't unlock the mutex the next
					 * time through the loop (if the
					 * thread has to be requeued after
					 * handling a signal).
					 */
					mutex_locked = 0;

					/*
					 * This thread is active and is in a
					 * critical region (holding the cv
					 * lock); we should be able to safely
					 * set the state.
					 */
					THR_SCHED_LOCK(curthread, curthread);
					/* Set the wakeup time: */
					curthread->wakeup_time.tv_sec =
					    abstime->tv_sec;
					curthread->wakeup_time.tv_nsec =
					    abstime->tv_nsec;
					THR_SET_STATE(curthread, PS_COND_WAIT);

					/* Remember the CV: */
					curthread->data.cond = *cond;
					curthread->sigbackout = cond_wait_backout;
					THR_SCHED_UNLOCK(curthread, curthread);

					/* Unlock the CV structure: */
					THR_LOCK_RELEASE(curthread,
					    &(*cond)->c_lock);

					/* Schedule the next thread: */
					_thr_sched_switch(curthread);

					/*
					 * XXX - This really isn't a good check
					 * since there can be more than one
					 * thread waiting on the CV.  Signals
					 * sent to threads waiting on mutexes
					 * or CVs should really be deferred
					 * until the threads are no longer
					 * waiting, but POSIX says that signals
					 * should be sent "as soon as possible".
					 */
					done = (seqno != (*cond)->c_seqno);
					if (done && !THR_IN_CONDQ(curthread)) {
						/*
						 * The thread is dequeued, so
						 * it is safe to clear these.
						 */
						curthread->data.cond = NULL;
						curthread->sigbackout = NULL;
						check_continuation(curthread,
						    NULL, mutex);
						return (_mutex_cv_lock(mutex));
					}

					/* Relock the CV structure: */
					THR_LOCK_ACQUIRE(curthread,
					    &(*cond)->c_lock);

					/*
					 * Clear these after taking the lock to
					 * prevent a race condition where a
					 * signal can arrive before dequeueing
					 * the thread.
					 */
					curthread->data.cond = NULL;
					curthread->sigbackout = NULL;

					done = (seqno != (*cond)->c_seqno);

					if (THR_IN_CONDQ(curthread)) {
						cond_queue_remove(*cond,
						    curthread);

						/* Check for no more waiters: */
						if (TAILQ_EMPTY(&(*cond)->c_queue))
							(*cond)->c_mutex = NULL;
					}

					if (curthread->timeout != 0) {
						/* The wait timedout. */
						rval = ETIMEDOUT;
					}
				}
			}
			break;

		/* Trap invalid condition variable types: */
		default:
			/* Return an invalid argument error: */
			rval = EINVAL;
			break;
		}

		check_continuation(curthread, *cond,
		    mutex_locked ? NULL : mutex);
	} while ((done == 0) && (rval == 0));

	/* Unlock the condition variable structure: */
	THR_LOCK_RELEASE(curthread, &(*cond)->c_lock);

	if (mutex_locked == 0)
		_mutex_cv_lock(mutex);

	/* Return the completion status: */
	return (rval);
}