void
_swrast_CopyColorSubTable( GLcontext *ctx,GLenum target, GLsizei start,
			   GLint x, GLint y, GLsizei width)
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   GLchan data[MAX_WIDTH][4];
   struct gl_buffer_object *bufferSave;

   if (!ctx->ReadBuffer->_ColorReadBuffer) {
      /* no readbuffer - OK */
      return;
   }

   if (width > MAX_WIDTH)
      width = MAX_WIDTH;

   RENDER_START( swrast, ctx );

   /* read the data from framebuffer */
   _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer,
                           width, x, y, CHAN_TYPE, data );

   RENDER_FINISH(swrast,ctx);

   /* save PBO binding */
   bufferSave = ctx->Unpack.BufferObj;
   ctx->Unpack.BufferObj = ctx->Array.NullBufferObj;

   _mesa_ColorSubTable(target, start, width, GL_RGBA, CHAN_TYPE, data);

   /* restore PBO binding */
   ctx->Unpack.BufferObj = bufferSave;
}
void
_swrast_CopyConvolutionFilter1D(GLcontext *ctx, GLenum target, 
				GLenum internalFormat, 
				GLint x, GLint y, GLsizei width)
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   GLchan rgba[MAX_CONVOLUTION_WIDTH][4];
   struct gl_buffer_object *bufferSave;

   if (!ctx->ReadBuffer->_ColorReadBuffer) {
      /* no readbuffer - OK */
      return;
   }

   RENDER_START( swrast, ctx );

   /* read the data from framebuffer */
   _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer,
                           width, x, y, CHAN_TYPE, rgba );
   
   RENDER_FINISH( swrast, ctx );

   /* save PBO binding */
   bufferSave = ctx->Unpack.BufferObj;
   ctx->Unpack.BufferObj = ctx->Array.NullBufferObj;

   /* store as convolution filter */
   _mesa_ConvolutionFilter1D(target, internalFormat, width,
                             GL_RGBA, CHAN_TYPE, rgba);

   /* restore PBO binding */
   ctx->Unpack.BufferObj = bufferSave;
}
示例#3
0
文件: s_logic.c 项目: Ionic/nx-libs
/**
 * Apply the current logic operator to a span of RGBA pixels.
 * We can handle horizontal runs of pixels (spans) or arrays of x/y
 * pixel coordinates.
 */
void
_swrast_logicop_rgba_span(GLcontext *ctx, struct gl_renderbuffer *rb,
                          const struct sw_span *span, GLchan rgba[][4])
{
   GLchan dest[MAX_WIDTH][4];

   ASSERT(span->end < MAX_WIDTH);
   ASSERT(span->arrayMask & SPAN_RGBA);
   ASSERT(rb->DataType == GL_UNSIGNED_BYTE);

   if (span->arrayMask & SPAN_XY) {
      _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y,
                         dest, 4 * sizeof(GLchan));
   }
   else {
      _swrast_read_rgba_span(ctx, rb, span->end, span->x, span->y, dest);
   }

   /* XXX make this a runtime test */
#if CHAN_TYPE == GL_UNSIGNED_BYTE
   /* treat 4*GLubyte as GLuint */
   logicop_uint(ctx, span->end, (GLuint *) rgba,
                (const GLuint *) dest, span->array->mask);
#elif CHAN_TYPE == GL_UNSIGNED_SHORT
   logicop_ushort(ctx, 4 * span->end, (GLushort *) rgba,
                  (const GLushort *) dest, span->array->mask);
#elif CHAN_TYPE == GL_FLOAT
   logicop_uint(ctx, 4 * span->end, (GLuint *) rgba,
                (const GLuint *) dest, span->array->mask);
#endif
   (void) logicop_ubyte;
   (void) logicop_ushort;
   (void) logicop_uint;
}
示例#4
0
/*
 * Apply the current logic operator to a span of RGBA pixels.
 * We can handle horizontal runs of pixels (spans) or arrays of x/y
 * pixel coordinates.
 */
void
_swrast_logicop_rgba_span( GLcontext *ctx, const struct sw_span *span,
                         GLchan rgba[][4] )
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   GLchan dest[MAX_WIDTH][4];

   ASSERT(span->end < MAX_WIDTH);
   ASSERT(span->arrayMask & SPAN_RGBA);

   if (span->arrayMask & SPAN_XY) {
      (*swrast->Driver.ReadRGBAPixels)(ctx, span->end,
                                       span->array->x, span->array->y,
                                       dest, span->array->mask);
      if (SWRAST_CONTEXT(ctx)->_RasterMask & ALPHABUF_BIT) {
         _swrast_read_alpha_pixels(ctx, span->end,
                                 span->array->x, span->array->y,
                                 dest, span->array->mask);
      }
   }
   else {
      _swrast_read_rgba_span(ctx, ctx->DrawBuffer, span->end,
                           span->x, span->y, dest);
   }

   if (sizeof(GLchan) * 4 == sizeof(GLuint)) {
      rgba_logicop_ui(ctx, span->end, span->array->mask,
                      (GLuint *) rgba, (const GLuint *) dest);
   }
   else {
      rgba_logicop_chan(ctx, 4 * span->end, span->array->mask,
                        (GLchan *) rgba, (const GLchan *) dest);
   }
}
void
_swrast_CopyConvolutionFilter2D(GLcontext *ctx, GLenum target, 
				GLenum internalFormat, 
				GLint x, GLint y, GLsizei width, GLsizei height)
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   struct gl_pixelstore_attrib packSave;
   GLchan rgba[MAX_CONVOLUTION_HEIGHT][MAX_CONVOLUTION_WIDTH][4];
   GLint i;
   struct gl_buffer_object *bufferSave;

   if (!ctx->ReadBuffer->_ColorReadBuffer) {
      /* no readbuffer - OK */
      return;
   }

   RENDER_START(swrast,ctx);
   
   /* read pixels from framebuffer */
   for (i = 0; i < height; i++) {
      _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer,
                              width, x, y + i, CHAN_TYPE, rgba[i] );
   }

   RENDER_FINISH(swrast,ctx);

   /*
    * HACK: save & restore context state so we can store this as a
    * convolution filter via the GL api.  Doesn't call any callbacks
    * hanging off ctx->Unpack statechanges.
    */

   packSave = ctx->Unpack;  /* save pixel packing params */

   ctx->Unpack.Alignment = 1;
   ctx->Unpack.RowLength = MAX_CONVOLUTION_WIDTH;
   ctx->Unpack.SkipPixels = 0;
   ctx->Unpack.SkipRows = 0;
   ctx->Unpack.ImageHeight = 0;
   ctx->Unpack.SkipImages = 0;
   ctx->Unpack.SwapBytes = GL_FALSE;
   ctx->Unpack.LsbFirst = GL_FALSE;
   ctx->Unpack.BufferObj = ctx->Array.NullBufferObj;
   ctx->NewState |= _NEW_PACKUNPACK;

   /* save PBO binding */
   bufferSave = ctx->Unpack.BufferObj;
   ctx->Unpack.BufferObj = ctx->Array.NullBufferObj;

   _mesa_ConvolutionFilter2D(target, internalFormat, width, height,
                             GL_RGBA, CHAN_TYPE, rgba);

   /* restore PBO binding */
   ctx->Unpack.BufferObj = bufferSave;

   ctx->Unpack = packSave;  /* restore pixel packing params */
   ctx->NewState |= _NEW_PACKUNPACK; 
}
static void
accum_load(GLcontext *ctx, GLfloat value,
           GLint xpos, GLint ypos, GLint width, GLint height )
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   struct gl_renderbuffer *rb
      = ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer;
   const GLboolean directAccess = (rb->GetPointer(ctx, rb, 0, 0) != NULL);

   assert(rb);

   if (!ctx->ReadBuffer->_ColorReadBuffer) {
      /* no read buffer - OK */
      return;
   }

   /* This is a change to go into optimized accum buffer mode */
   if (value > 0.0 && value <= 1.0) {
#if USE_OPTIMIZED_ACCUM
      swrast->_IntegerAccumMode = GL_TRUE;
#else
      swrast->_IntegerAccumMode = GL_FALSE;
#endif
      swrast->_IntegerAccumScaler = value;
   }
   else {
      swrast->_IntegerAccumMode = GL_FALSE;
      swrast->_IntegerAccumScaler = 0.0;
   }

   if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) {
      const GLfloat scale = value * ACCUM_SCALE16 / CHAN_MAXF;
      GLshort accumRow[4 * MAX_WIDTH];
      GLchan rgba[MAX_WIDTH][4];
      GLint i;

      for (i = 0; i < height; i++) {
         GLshort *acc;
         if (directAccess) {
            acc = (GLshort *) rb->GetPointer(ctx, rb, xpos, ypos + i);
         }
         else {
            rb->GetRow(ctx, rb, width, xpos, ypos + i, accumRow);
            acc = accumRow;
         }

         /* read colors from color buffer */
         _swrast_read_rgba_span(ctx, ctx->ReadBuffer->_ColorReadBuffer, width,
                                xpos, ypos + i, CHAN_TYPE, rgba);

         /* do load */
         if (swrast->_IntegerAccumMode) {
            /* just copy values in */
            GLint j;
            assert(swrast->_IntegerAccumScaler > 0.0);
            assert(swrast->_IntegerAccumScaler <= 1.0);
            for (j = 0; j < width; j++) {
               acc[j * 4 + 0] = rgba[j][RCOMP];
               acc[j * 4 + 1] = rgba[j][GCOMP];
               acc[j * 4 + 2] = rgba[j][BCOMP];
               acc[j * 4 + 3] = rgba[j][ACOMP];
            }
         }
         else {
            /* scaled integer (or float) accum buffer */
            GLint j;
            for (j = 0; j < width; j++) {
               acc[j * 4 + 0] = (GLshort) ((GLfloat) rgba[j][RCOMP] * scale);
               acc[j * 4 + 1] = (GLshort) ((GLfloat) rgba[j][GCOMP] * scale);
               acc[j * 4 + 2] = (GLshort) ((GLfloat) rgba[j][BCOMP] * scale);
               acc[j * 4 + 3] = (GLshort) ((GLfloat) rgba[j][ACOMP] * scale);
            }
         }

         if (!directAccess) {
            rb->PutRow(ctx, rb, width, xpos, ypos + i, accumRow, NULL);
         }
      }
   }
}
static void
accum_accum(GLcontext *ctx, GLfloat value,
            GLint xpos, GLint ypos, GLint width, GLint height )
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   struct gl_renderbuffer *rb
      = ctx->DrawBuffer->Attachment[BUFFER_ACCUM].Renderbuffer;
   const GLboolean directAccess = (rb->GetPointer(ctx, rb, 0, 0) != NULL);

   assert(rb);

   if (!ctx->ReadBuffer->_ColorReadBuffer) {
      /* no read buffer - OK */
      return;
   }

   /* May have to leave optimized accum buffer mode */
   if (swrast->_IntegerAccumScaler == 0.0 && value > 0.0 && value <= 1.0)
      swrast->_IntegerAccumScaler = value;
   if (swrast->_IntegerAccumMode && value != swrast->_IntegerAccumScaler)
      rescale_accum(ctx);

   if (rb->DataType == GL_SHORT || rb->DataType == GL_UNSIGNED_SHORT) {
      const GLfloat scale = value * ACCUM_SCALE16 / CHAN_MAXF;
      GLshort accumRow[4 * MAX_WIDTH];
      GLchan rgba[MAX_WIDTH][4];
      GLint i;

      for (i = 0; i < height; i++) {
         GLshort *acc;
         if (directAccess) {
            acc = (GLshort *) rb->GetPointer(ctx, rb, xpos, ypos + i);
         }
         else {
            rb->GetRow(ctx, rb, width, xpos, ypos + i, accumRow);
            acc = accumRow;
         }

         /* read colors from color buffer */
         _swrast_read_rgba_span(ctx, ctx->ReadBuffer->_ColorReadBuffer, width,
                                xpos, ypos + i, CHAN_TYPE, rgba);

         /* do accumulation */
         if (swrast->_IntegerAccumMode) {
            /* simply add integer color values into accum buffer */
            GLint j;
            for (j = 0; j < width; j++) {
               acc[j * 4 + 0] += rgba[j][RCOMP];
               acc[j * 4 + 1] += rgba[j][GCOMP];
               acc[j * 4 + 2] += rgba[j][BCOMP];
               acc[j * 4 + 3] += rgba[j][ACOMP];
            }
         }
         else {
            /* scaled integer (or float) accum buffer */
            GLint j;
            for (j = 0; j < width; j++) {
               acc[j * 4 + 0] += (GLshort) ((GLfloat) rgba[j][RCOMP] * scale);
               acc[j * 4 + 1] += (GLshort) ((GLfloat) rgba[j][GCOMP] * scale);
               acc[j * 4 + 2] += (GLshort) ((GLfloat) rgba[j][BCOMP] * scale);
               acc[j * 4 + 3] += (GLshort) ((GLfloat) rgba[j][ACOMP] * scale);
            }
         }

         if (!directAccess) {
            rb->PutRow(ctx, rb, width, xpos, ypos + i, accumRow, NULL);
         }
      }
   }
   else {
      /* other types someday */
   }
}
示例#8
0
/*
 * RGBA copypixels
 */
static void
copy_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy,
                 GLint width, GLint height, GLint destx, GLint desty)
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   struct gl_renderbuffer *drawRb;
   GLchan *tmpImage,*p;
   GLboolean quick_draw;
   GLint sy, dy, stepy, j;
   const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F;
   GLint overlapping;
   const GLuint transferOps = ctx->_ImageTransferState;
   struct sw_span span;

   if (!ctx->ReadBuffer->_ColorReadBuffer) {
      /* no readbuffer - OK */
      return;
   }

   INIT_SPAN(span, GL_BITMAP, 0, 0, SPAN_RGBA);

   if (ctx->Pixel.Convolution2DEnabled || ctx->Pixel.Separable2DEnabled) {
      copy_conv_rgba_pixels(ctx, srcx, srcy, width, height, destx, desty);
      return;
   }

   /* Determine if copy should be done bottom-to-top or top-to-bottom */
   if (srcy < desty) {
      /* top-down  max-to-min */
      sy = srcy + height - 1;
      dy = desty + height - 1;
      stepy = -1;
   }
   else {
      /* bottom-up  min-to-max */
      sy = srcy;
      dy = desty;
      stepy = 1;
   }

   if (ctx->DrawBuffer == ctx->ReadBuffer) {
      overlapping = regions_overlap(srcx, srcy, destx, desty, width, height,
                                    ctx->Pixel.ZoomX, ctx->Pixel.ZoomY);
   }
   else {
      overlapping = GL_FALSE;
   }

   if (ctx->Depth.Test)
      _swrast_span_default_z(ctx, &span);
   if (swrast->_FogEnabled)
      _swrast_span_default_fog(ctx, &span);

   if (SWRAST_CONTEXT(ctx)->_RasterMask == 0
       && !zoom
       && destx >= 0
       && destx + width <= (GLint) ctx->DrawBuffer->Width) {
      quick_draw = GL_TRUE;
      drawRb = ctx->DrawBuffer->_ColorDrawBuffers[0][0];
   }
   else {
      quick_draw = GL_FALSE;
      drawRb = NULL;
   }

   if (overlapping) {
      GLint ssy = sy;
      tmpImage = (GLchan *) _mesa_malloc(width * height * sizeof(GLchan) * 4);
      if (!tmpImage) {
         _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" );
         return;
      }
      /* read the source image */
      p = tmpImage;
      for (j = 0; j < height; j++, ssy += stepy) {
         _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer,
                                 width, srcx, ssy, (GLchan (*)[4]) p );
         p += width * 4;
      }
      p = tmpImage;
   }
   else {
      tmpImage = NULL;  /* silence compiler warnings */
      p = NULL;
   }

   for (j = 0; j < height; j++, sy += stepy, dy += stepy) {
      /* Get source pixels */
      if (overlapping) {
         /* get from buffered image */
         ASSERT(width < MAX_WIDTH);
         _mesa_memcpy(span.array->rgba, p, width * sizeof(GLchan) * 4);
         p += width * 4;
      }
      else {
         /* get from framebuffer */
         ASSERT(width < MAX_WIDTH);
         _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer,
                                 width, srcx, sy, span.array->rgba );
      }

      if (transferOps) {
         GLfloat rgbaFloat[MAX_WIDTH][4];
         /* convert to float, transfer, convert back to chan */
         chan_span_to_float(width, (CONST GLchan (*)[4]) span.array->rgba,
                            rgbaFloat);
         _mesa_apply_rgba_transfer_ops(ctx, transferOps, width, rgbaFloat);
         float_span_to_chan(width, (CONST GLfloat (*)[4]) rgbaFloat,
                            span.array->rgba);
      }

      /* Write color span */
      if (quick_draw && dy >= 0 && dy < (GLint) ctx->DrawBuffer->Height) {
         drawRb->PutRow(ctx, drawRb, width, destx, dy, span.array->rgba, NULL);
      }
      else {
         span.x = destx;
         span.y = dy;
         span.end = width;
         if (zoom) {
            _swrast_write_zoomed_rgba_span(ctx, destx, desty, &span,
                                       (CONST GLchan (*)[4]) span.array->rgba);
         }
         else {
            _swrast_write_rgba_span(ctx, &span);
         }
      }
   }

   if (overlapping)
      _mesa_free(tmpImage);
}
示例#9
0
/*
 * RGBA copypixels with convolution.
 */
static void
copy_conv_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy,
                      GLint width, GLint height, GLint destx, GLint desty)
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   struct gl_renderbuffer *drawRb = NULL;
   GLboolean quick_draw;
   GLint row;
   const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F;
   const GLuint transferOps = ctx->_ImageTransferState;
   GLfloat *dest, *tmpImage, *convImage;
   struct sw_span span;

   INIT_SPAN(span, GL_BITMAP, 0, 0, SPAN_RGBA);

   if (ctx->Depth.Test)
      _swrast_span_default_z(ctx, &span);
   if (swrast->_FogEnabled)
      _swrast_span_default_fog(ctx, &span);


   if (SWRAST_CONTEXT(ctx)->_RasterMask == 0
       && !zoom
       && destx >= 0
       && destx + width <= (GLint) ctx->DrawBuffer->Width) {
      quick_draw = GL_TRUE;
      drawRb = ctx->DrawBuffer->_ColorDrawBuffers[0][0];
   }
   else {
      quick_draw = GL_FALSE;
   }

   /* allocate space for GLfloat image */
   tmpImage = (GLfloat *) _mesa_malloc(width * height * 4 * sizeof(GLfloat));
   if (!tmpImage) {
      _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels");
      return;
   }
   convImage = (GLfloat *) _mesa_malloc(width * height * 4 * sizeof(GLfloat));
   if (!convImage) {
      _mesa_free(tmpImage);
      _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels");
      return;
   }

   /* read source image */
   dest = tmpImage;
   for (row = 0; row < height; row++) {
      GLchan rgba[MAX_WIDTH][4];
      /* Read GLchan and convert to GLfloat */
      _swrast_read_rgba_span(ctx, ctx->ReadBuffer->_ColorReadBuffer,
                             width, srcx, srcy + row, rgba);
      chan_span_to_float(width, (CONST GLchan (*)[4]) rgba,
                         (GLfloat (*)[4]) dest);
      dest += 4 * width;
   }

   /* do the image transfer ops which preceed convolution */
   for (row = 0; row < height; row++) {
      GLfloat (*rgba)[4] = (GLfloat (*)[4]) (tmpImage + row * width * 4);
      _mesa_apply_rgba_transfer_ops(ctx,
                                    transferOps & IMAGE_PRE_CONVOLUTION_BITS,
                                    width, rgba);
   }

   /* do convolution */
   if (ctx->Pixel.Convolution2DEnabled) {
      _mesa_convolve_2d_image(ctx, &width, &height, tmpImage, convImage);
   }
   else {
      ASSERT(ctx->Pixel.Separable2DEnabled);
      _mesa_convolve_sep_image(ctx, &width, &height, tmpImage, convImage);
   }
   _mesa_free(tmpImage);

   /* do remaining post-convolution image transfer ops */
   for (row = 0; row < height; row++) {
      GLfloat (*rgba)[4] = (GLfloat (*)[4]) (convImage + row * width * 4);
      _mesa_apply_rgba_transfer_ops(ctx,
                                    transferOps & IMAGE_POST_CONVOLUTION_BITS,
                                    width, rgba);
   }

   /* write the new image */
   for (row = 0; row < height; row++) {
      const GLfloat *src = convImage + row * width * 4;
      GLint dy;

      /* convert floats back to chan */
      float_span_to_chan(width, (const GLfloat (*)[4]) src, span.array->rgba);

      /* write row to framebuffer */
      dy = desty + row;
      if (quick_draw && dy >= 0 && dy < (GLint) ctx->DrawBuffer->Height) {
         drawRb->PutRow(ctx, drawRb, width, destx, dy, span.array->rgba, NULL);
      }
      else {
         span.x = destx;
         span.y = dy;
         span.end = width;
         if (zoom) {
            _swrast_write_zoomed_rgba_span(ctx, destx, desty, &span, 
                                        (CONST GLchan (*)[4])span.array->rgba);
         }
         else {
            _swrast_write_rgba_span(ctx, &span);
         }
      }
   }

   _mesa_free(convImage);
}
示例#10
0
文件: s_copypix.c 项目: beligit/psx4m
/**
 * RGBA copypixels with convolution.
 */
static void
copy_conv_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy,
                      GLint width, GLint height, GLint destx, GLint desty)
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   GLint row;
   const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F;
   const GLbitfield transferOps = ctx->_ImageTransferState;
   const GLboolean sink = (ctx->Pixel.MinMaxEnabled && ctx->MinMax.Sink)
      || (ctx->Pixel.HistogramEnabled && ctx->Histogram.Sink);
   GLfloat *dest, *tmpImage, *convImage;
   SWspan span;

   INIT_SPAN(span, GL_BITMAP, 0, 0, SPAN_RGBA);

   if (ctx->Depth.Test)
      _swrast_span_default_z(ctx, &span);
   if (swrast->_FogEnabled)
      _swrast_span_default_fog(ctx, &span);
   _swrast_span_default_secondary_color(ctx, &span);

   /* allocate space for GLfloat image */
   tmpImage = (GLfloat *) _mesa_malloc(width * height * 4 * sizeof(GLfloat));
   if (!tmpImage) {
      _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels");
      return;
   }
   convImage = (GLfloat *) _mesa_malloc(width * height * 4 * sizeof(GLfloat));
   if (!convImage) {
      _mesa_free(tmpImage);
      _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels");
      return;
   }

   /* read source image as float/RGBA */
   dest = tmpImage;
   for (row = 0; row < height; row++) {
      _swrast_read_rgba_span(ctx, ctx->ReadBuffer->_ColorReadBuffer,
                             width, srcx, srcy + row, GL_FLOAT, dest);
      dest += 4 * width;
   }

   /* do the image transfer ops which preceed convolution */
   for (row = 0; row < height; row++) {
      GLfloat (*rgba)[4] = (GLfloat (*)[4]) (tmpImage + row * width * 4);
      _mesa_apply_rgba_transfer_ops(ctx,
                                    transferOps & IMAGE_PRE_CONVOLUTION_BITS,
                                    width, rgba);
   }

   /* do convolution */
   if (ctx->Pixel.Convolution2DEnabled) {
      _mesa_convolve_2d_image(ctx, &width, &height, tmpImage, convImage);
   }
   else {
      ASSERT(ctx->Pixel.Separable2DEnabled);
      _mesa_convolve_sep_image(ctx, &width, &height, tmpImage, convImage);
   }
   _mesa_free(tmpImage);

   /* do remaining post-convolution image transfer ops */
   for (row = 0; row < height; row++) {
      GLfloat (*rgba)[4] = (GLfloat (*)[4]) (convImage + row * width * 4);
      _mesa_apply_rgba_transfer_ops(ctx,
                                    transferOps & IMAGE_POST_CONVOLUTION_BITS,
                                    width, rgba);
   }

   if (!sink) {
      /* write the new image */
      for (row = 0; row < height; row++) {
         const GLfloat *src = convImage + row * width * 4;
         GLvoid *rgba = (GLvoid *) span.array->attribs[FRAG_ATTRIB_COL0];

         /* copy convolved colors into span array */
         _mesa_memcpy(rgba, src, width * 4 * sizeof(GLfloat));

         /* write span */
         span.x = destx;
         span.y = desty + row;
         span.end = width;
         span.array->ChanType = GL_FLOAT;
         if (zoom) {
            _swrast_write_zoomed_rgba_span(ctx, destx, desty, &span, rgba);
         }
         else {
            _swrast_write_rgba_span(ctx, &span);
         }
      }
      /* restore this */
      span.array->ChanType = CHAN_TYPE;
   }

   _mesa_free(convImage);
}
示例#11
0
文件: s_copypix.c 项目: beligit/psx4m
/**
 * RGBA copypixels
 */
static void
copy_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy,
                 GLint width, GLint height, GLint destx, GLint desty)
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   GLfloat *tmpImage, *p;
   GLint sy, dy, stepy, row;
   const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F;
   GLint overlapping;
   GLuint transferOps = ctx->_ImageTransferState;
   SWspan span;

   if (!ctx->ReadBuffer->_ColorReadBuffer) {
      /* no readbuffer - OK */
      return;
   }

   if (ctx->Pixel.Convolution2DEnabled || ctx->Pixel.Separable2DEnabled) {
      copy_conv_rgba_pixels(ctx, srcx, srcy, width, height, destx, desty);
      return;
   }
   else if (ctx->Pixel.Convolution1DEnabled) {
      /* make sure we don't apply 1D convolution */
      transferOps &= ~(IMAGE_CONVOLUTION_BIT |
                       IMAGE_POST_CONVOLUTION_SCALE_BIAS);
   }

   if (ctx->DrawBuffer == ctx->ReadBuffer) {
      overlapping = regions_overlap(srcx, srcy, destx, desty, width, height,
                                    ctx->Pixel.ZoomX, ctx->Pixel.ZoomY);
   }
   else {
      overlapping = GL_FALSE;
   }

   /* Determine if copy should be done bottom-to-top or top-to-bottom */
   if (!overlapping && srcy < desty) {
      /* top-down  max-to-min */
      sy = srcy + height - 1;
      dy = desty + height - 1;
      stepy = -1;
   }
   else {
      /* bottom-up  min-to-max */
      sy = srcy;
      dy = desty;
      stepy = 1;
   }

   INIT_SPAN(span, GL_BITMAP, 0, 0, SPAN_RGBA);
   if (ctx->Depth.Test)
      _swrast_span_default_z(ctx, &span);
   if (swrast->_FogEnabled)
      _swrast_span_default_fog(ctx, &span);
   _swrast_span_default_secondary_color(ctx, &span);

   if (overlapping) {
      tmpImage = (GLfloat *) _mesa_malloc(width * height * sizeof(GLfloat) * 4);
      if (!tmpImage) {
         _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" );
         return;
      }
      /* read the source image as RGBA/float */
      p = tmpImage;
      for (row = 0; row < height; row++) {
         _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer,
                                 width, srcx, sy + row, GL_FLOAT, p );
         p += width * 4;
      }
      p = tmpImage;
   }
   else {
      tmpImage = NULL;  /* silence compiler warnings */
      p = NULL;
   }

   ASSERT(width < MAX_WIDTH);

   for (row = 0; row < height; row++, sy += stepy, dy += stepy) {
      GLvoid *rgba = span.array->attribs[FRAG_ATTRIB_COL0];

      /* Get row/span of source pixels */
      if (overlapping) {
         /* get from buffered image */
         _mesa_memcpy(rgba, p, width * sizeof(GLfloat) * 4);
         p += width * 4;
      }
      else {
         /* get from framebuffer */
         _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer,
                                 width, srcx, sy, GL_FLOAT, rgba );
      }

      if (transferOps) {
         _mesa_apply_rgba_transfer_ops(ctx, transferOps, width,
                                       (GLfloat (*)[4]) rgba);
      }

      /* Write color span */
      span.x = destx;
      span.y = dy;
      span.end = width;
      span.array->ChanType = GL_FLOAT;
      if (zoom) {
         _swrast_write_zoomed_rgba_span(ctx, destx, desty, &span, rgba);
      }
      else {
         _swrast_write_rgba_span(ctx, &span);
      }
   }

   span.array->ChanType = CHAN_TYPE; /* restore */

   if (overlapping)
      _mesa_free(tmpImage);
}
示例#12
0
/**
 * RGBA copypixels
 */
static void
copy_rgba_pixels(struct gl_context *ctx, GLint srcx, GLint srcy,
                 GLint width, GLint height, GLint destx, GLint desty)
{
    GLfloat *tmpImage, *p;
    GLint sy, dy, stepy, row;
    const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F;
    GLint overlapping;
    GLuint transferOps = ctx->_ImageTransferState;
    SWspan span;

    if (!ctx->ReadBuffer->_ColorReadBuffer) {
        /* no readbuffer - OK */
        return;
    }

    if (ctx->DrawBuffer == ctx->ReadBuffer) {
        overlapping = regions_overlap(srcx, srcy, destx, desty, width, height,
                                      ctx->Pixel.ZoomX, ctx->Pixel.ZoomY);
    }
    else {
        overlapping = GL_FALSE;
    }

    /* Determine if copy should be done bottom-to-top or top-to-bottom */
    if (!overlapping && srcy < desty) {
        /* top-down  max-to-min */
        sy = srcy + height - 1;
        dy = desty + height - 1;
        stepy = -1;
    }
    else {
        /* bottom-up  min-to-max */
        sy = srcy;
        dy = desty;
        stepy = 1;
    }

    INIT_SPAN(span, GL_BITMAP);
    _swrast_span_default_attribs(ctx, &span);
    span.arrayMask = SPAN_RGBA;
    span.arrayAttribs = VARYING_BIT_COL0; /* we'll fill in COL0 attrib values */

    if (overlapping) {
        tmpImage = malloc(width * height * sizeof(GLfloat) * 4);
        if (!tmpImage) {
            _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" );
            return;
        }
        /* read the source image as RGBA/float */
        p = tmpImage;
        for (row = 0; row < height; row++) {
            _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer,
                                    width, srcx, sy + row, p );
            p += width * 4;
        }
        p = tmpImage;
    }
    else {
        tmpImage = NULL;  /* silence compiler warnings */
        p = NULL;
    }

    ASSERT(width < SWRAST_MAX_WIDTH);

    for (row = 0; row < height; row++, sy += stepy, dy += stepy) {
        GLvoid *rgba = span.array->attribs[VARYING_SLOT_COL0];

        /* Get row/span of source pixels */
        if (overlapping) {
            /* get from buffered image */
            memcpy(rgba, p, width * sizeof(GLfloat) * 4);
            p += width * 4;
        }
        else {
            /* get from framebuffer */
            _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer,
                                    width, srcx, sy, rgba );
        }

        if (transferOps) {
            _mesa_apply_rgba_transfer_ops(ctx, transferOps, width,
                                          (GLfloat (*)[4]) rgba);
        }

        /* Write color span */
        span.x = destx;
        span.y = dy;
        span.end = width;
        span.array->ChanType = GL_FLOAT;
        if (zoom) {
            _swrast_write_zoomed_rgba_span(ctx, destx, desty, &span, rgba);
        }
        else {
            _swrast_write_rgba_span(ctx, &span);
        }
    }

    span.array->ChanType = CHAN_TYPE; /* restore */

    if (overlapping)
        free(tmpImage);
}