/* f(z) = erf(z/sqrt(0.0002)*0.5 +1.5)*exp(-z), example provided by Silviu-Ioan Filip */ int f_erf_bent(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t t; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(t); acb_set_ui(t, 1250); acb_sqrt(t, t, prec); acb_mul(t, t, z, prec); acb_set_d(res, 1.5); acb_add(res, res, t, prec); acb_hypgeom_erf(res, res, prec); acb_neg(t, z); acb_exp(t, t, prec); acb_mul(res, res, t, prec); acb_clear(t); return 0; }
/* REAL: erf(x) = 2x/sqrt(pi) * exp(-x^2) 1F1(1, 3/2, x^2) */ void acb_hypgeom_erf_1f1b(acb_t res, const acb_t z, slong prec) { acb_t a, b, t, w; acb_init(a); acb_init(b); acb_init(t); acb_init(w); acb_set_ui(b, 3); acb_mul_2exp_si(b, b, -1); acb_mul(w, z, z, prec); acb_hypgeom_pfq_direct(t, a, 0, b, 1, w, -1, prec); acb_neg(w, w); acb_exp(w, w, prec); acb_mul(t, t, w, prec); acb_mul(t, t, z, prec); arb_const_sqrt_pi(acb_realref(w), prec); acb_div_arb(t, t, acb_realref(w), prec); acb_mul_2exp_si(res, t, 1); acb_clear(a); acb_clear(b); acb_clear(t); acb_clear(w); }
void _acb_hypgeom_const_li2_eval(arb_t s, long prec) { acb_t t; acb_init(t); acb_set_ui(t, 2); _acb_hypgeom_li(t, t, prec); arb_set(s, acb_realref(t)); acb_clear(t); }
void _acb_poly_compose_series_brent_kung(acb_ptr res, acb_srcptr poly1, long len1, acb_srcptr poly2, long len2, long n, long prec) { acb_mat_t A, B, C; acb_ptr t, h; long i, m; if (n == 1) { acb_set(res, poly1); return; } m = n_sqrt(n) + 1; acb_mat_init(A, m, n); acb_mat_init(B, m, m); acb_mat_init(C, m, n); h = _acb_vec_init(n); t = _acb_vec_init(n); /* Set rows of B to the segments of poly1 */ for (i = 0; i < len1 / m; i++) _acb_vec_set(B->rows[i], poly1 + i*m, m); _acb_vec_set(B->rows[i], poly1 + i*m, len1 % m); /* Set rows of A to powers of poly2 */ acb_set_ui(A->rows[0] + 0, 1UL); _acb_vec_set(A->rows[1], poly2, len2); for (i = 2; i < m; i++) _acb_poly_mullow(A->rows[i], A->rows[(i + 1) / 2], n, A->rows[i / 2], n, n, prec); acb_mat_mul(C, B, A, prec); /* Evaluate block composition using the Horner scheme */ _acb_vec_set(res, C->rows[m - 1], n); _acb_poly_mullow(h, A->rows[m - 1], n, poly2, len2, n, prec); for (i = m - 2; i >= 0; i--) { _acb_poly_mullow(t, res, n, h, n, n, prec); _acb_poly_add(res, t, n, C->rows[i], n, prec); } _acb_vec_clear(h, n); _acb_vec_clear(t, n); acb_mat_clear(A); acb_mat_clear(B); acb_mat_clear(C); }
int main() { slong iter; flint_rand_t state; flint_printf("cauchy_bound...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 100; iter++) { arb_t b, radius, ans; acb_t x; slong r, prec, maxdepth; arb_init(b); arb_init(radius); arb_init(ans); acb_init(x); acb_set_ui(x, 5); r = 1 + n_randint(state, 10); arb_set_ui(radius, r); prec = 2 + n_randint(state, 100); maxdepth = n_randint(state, 10); acb_calc_cauchy_bound(b, sin_x, NULL, x, radius, maxdepth, prec); arf_set_d(arb_midref(ans), answers[r-1]); mag_set_d(arb_radref(ans), 1e-8); if (!arb_overlaps(b, ans)) { flint_printf("FAIL\n"); flint_printf("r = %wd, prec = %wd, maxdepth = %wd\n\n", r, prec, maxdepth); arb_printd(b, 15); flint_printf("\n\n"); arb_printd(ans, 15); flint_printf("\n\n"); abort(); } arb_clear(b); arb_clear(radius); arb_clear(ans); acb_clear(x); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
void acb_hypgeom_ci_2f3(acb_t res, const acb_t z, slong prec) { acb_t a, t, u; acb_struct b[3]; acb_init(a); acb_init(b); acb_init(b + 1); acb_init(b + 2); acb_init(t); acb_init(u); acb_one(a); acb_set_ui(b, 2); acb_set(b + 1, b); acb_set_ui(b + 2, 3); acb_mul_2exp_si(b + 2, b + 2, -1); acb_mul(t, z, z, prec); acb_mul_2exp_si(t, t, -2); acb_neg(t, t); acb_hypgeom_pfq_direct(u, a, 1, b, 3, t, -1, prec); acb_mul(u, u, t, prec); acb_log(t, z, prec); acb_add(u, u, t, prec); arb_const_euler(acb_realref(t), prec); arb_add(acb_realref(u), acb_realref(u), acb_realref(t), prec); acb_swap(res, u); acb_clear(a); acb_clear(b); acb_clear(b + 1); acb_clear(b + 2); acb_clear(t); acb_clear(u); }
void acb_dirichlet_l(acb_t res, const acb_t s, const acb_dirichlet_group_t G, ulong m, slong prec) { acb_t chi, t, u, a; ulong k; acb_init(chi); acb_init(t); acb_init(u); acb_init(a); acb_zero(t); for (k = 1; k <= G->q; k++) { acb_dirichlet_chi(chi, G, m, k, prec); if (!acb_is_zero(chi)) { acb_set_ui(a, k); acb_div_ui(a, a, G->q, prec); acb_hurwitz_zeta(u, s, a, prec); acb_addmul(t, chi, u, prec); } } acb_set_ui(u, G->q); acb_neg(a, s); acb_pow(u, u, a, prec); acb_mul(res, t, u, prec); acb_clear(chi); acb_clear(t); acb_clear(u); acb_clear(a); }
acb_t *fft_init(long n,long prec) { long i,halfn,*base; acb_t *x,*w; base = (long *)malloc(2*sizeof(long)+3*n/2*sizeof(acb_t)); if (!base) return (acb_t *)0; base[0] = n; base[1] = prec; x = (acb_t *)&base[2]; w = x+n; halfn = n>>1; for (i=0;i<n;i++) acb_init(x[i]); for (i=0;i<halfn;i++) { acb_init(w[i]); acb_set_ui(w[i],i); acb_div_ui(w[i],w[i],halfn,prec); acb_exp_pi_i(w[i],w[i],prec); } return x; }
/* IMAG: erf(z) = 2z/sqrt(pi) * 1F1(1/2, 3/2, -z^2) */ void acb_hypgeom_erf_1f1a(acb_t res, const acb_t z, slong prec) { acb_t a, t, w; acb_struct b[2]; acb_init(a); acb_init(b); acb_init(b + 1); acb_init(t); acb_init(w); acb_one(a); acb_mul_2exp_si(a, a, -1); acb_set_ui(b, 3); acb_mul_2exp_si(b, b, -1); acb_one(b + 1); acb_mul(w, z, z, prec); acb_neg(w, w); acb_hypgeom_pfq_direct(t, a, 1, b, 2, w, -1, prec); acb_const_pi(w, prec); acb_rsqrt(w, w, prec); acb_mul(t, t, w, prec); acb_mul(t, t, z, prec); acb_mul_2exp_si(res, t, 1); acb_clear(a); acb_clear(b); acb_clear(b + 1); acb_clear(t); acb_clear(w); }
void acb_dirichlet_hurwitz_precomp_init(acb_dirichlet_hurwitz_precomp_t pre, const acb_t s, int deflate, slong A, slong K, slong N, slong prec) { slong i, k; if (A < 1 || K < 1 || N < 1) abort(); pre->deflate = deflate; pre->A = A; pre->K = K; pre->N = N; pre->coeffs = _acb_vec_init(N * K); mag_init(&pre->err); acb_init(&pre->s); acb_set(&pre->s, s); acb_dirichlet_hurwitz_precomp_bound(&pre->err, s, A, K, N); if (mag_is_finite(&pre->err)) { acb_t t, a; acb_init(t); acb_init(a); /* (-1)^k (s)_k / k! */ acb_one(pre->coeffs + 0); for (k = 1; k < K; k++) { acb_add_ui(pre->coeffs + k, s, k - 1, prec); acb_mul(pre->coeffs + k, pre->coeffs + k, pre->coeffs + k - 1, prec); acb_div_ui(pre->coeffs + k, pre->coeffs + k, k, prec); acb_neg(pre->coeffs + k, pre->coeffs + k); } for (i = 1; i < N; i++) _acb_vec_set(pre->coeffs + i * K, pre->coeffs, K); /* zeta(s+k,a) where a = A + (2*i+1)/(2*N) */ for (i = 0; i < N; i++) { acb_set_ui(a, 2 * i + 1); acb_div_ui(a, a, 2 * N, prec); acb_add_ui(a, a, A, prec); for (k = 0; k < K; k++) { acb_add_ui(t, s, k, prec); if (deflate && k == 0) _acb_poly_zeta_cpx_series(t, t, a, 1, 1, prec); else acb_hurwitz_zeta(t, t, a, prec); acb_mul(pre->coeffs + i * K + k, pre->coeffs + i * K + k, t, prec); } } acb_clear(t); acb_clear(a); } }
void acb_hypgeom_pfq_sum_fme(acb_t s, acb_t t, acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, slong n, slong prec) { acb_poly_t A, B, C; acb_ptr ks, As, Bs, Cs; acb_t u, v; acb_ptr * tree; slong i, k, m, w; /* we compute to n-1 instead of n to avoid dividing by 0 in the denominator when computing a hypergeometric polynomial that terminates right before a pole */ if (n > 4) { m = n_sqrt(n - 1) / 4; /* tuning parameter */ w = (n - 1) / FLINT_MAX(m, 1); } else { m = w = 0; } if (m < 1 || w < 1 || p > 3 || q > 3) { acb_hypgeom_pfq_sum_forward(s, t, a, p, b, q, z, n, prec); return; } acb_poly_init(A); acb_poly_init(B); acb_poly_init(C); acb_init(u); acb_init(v); ks = _acb_vec_init(w); As = _acb_vec_init(w); Bs = _acb_vec_init(w); Cs = _acb_vec_init(w); bsplit(A, B, C, a, p, b, q, z, 0, m, prec); for (i = 0; i < w; i++) acb_set_ui(ks + i, i * m); tree = _acb_poly_tree_alloc(w); _acb_poly_tree_build(tree, ks, w, prec); _acb_poly_evaluate_vec_fast_precomp(As, A->coeffs, A->length, tree, w, prec); _acb_poly_evaluate_vec_fast_precomp(Bs, B->coeffs, B->length, tree, w, prec); _acb_poly_evaluate_vec_fast_precomp(Cs, C->coeffs, C->length, tree, w, prec); _acb_poly_tree_free(tree, w); /* todo: use binary splitting here for improved numerical stability */ for (i = 1; i < w; i++) { acb_mul(Cs, Cs, Bs + i, prec); acb_addmul(Cs, As, Cs + i, prec); acb_mul(As, As, As + i, prec); acb_mul(Bs, Bs, Bs + i, prec); } acb_div(s, Cs, Bs, prec); acb_div(t, As, Bs, prec); for (k = w * m; k < n && !acb_is_zero(t); k++) { acb_add(s, s, t, prec); if (p > 0) { acb_add_ui(u, a, k, prec); for (i = 1; i < p; i++) { acb_add_ui(v, a + i, k, prec); acb_mul(u, u, v, prec); } acb_mul(t, t, u, prec); } if (q > 0) { acb_add_ui(u, b, k, prec); for (i = 1; i < q; i++) { acb_add_ui(v, b + i, k, prec); acb_mul(u, u, v, prec); } acb_div(t, t, u, prec); } acb_mul(t, t, z, prec); } acb_clear(u); acb_clear(v); _acb_vec_clear(ks, w); _acb_vec_clear(As, w); _acb_vec_clear(Bs, w); _acb_vec_clear(Cs, w); acb_poly_clear(A); acb_poly_clear(B); acb_poly_clear(C); }
void _acb_hypgeom_legendre_q_single(acb_t res, const acb_t n, const acb_t m, const acb_t z, slong prec) { acb_t a, b, c, z2, t, u; acb_init(a); acb_init(b); acb_init(c); acb_init(z2); acb_init(t); acb_init(u); /* invalid in (-1,0) */ if (!_acb_hypgeom_legendre_q_single_valid(z)) { acb_indeterminate(res); return; } acb_pow_si(z2, z, -2, prec); /* z2 = 1/z^2 */ /* t = 2F1r((m+n+1)/2, (m+n)/2+1, n+3/2, 1/z^2) */ acb_add(b, m, n, prec); acb_add_ui(a, b, 1, prec); acb_mul_2exp_si(a, a, -1); acb_mul_2exp_si(b, b, -1); acb_add_ui(b, b, 1, prec); acb_set_ui(c, 3); acb_mul_2exp_si(c, c, -1); acb_add(c, c, n, prec); acb_hypgeom_2f1(t, a, b, c, z2, 1, prec); /* prefactor sqrt(pi) 2^-n (z+1)^(m/2) (z-1)^(m/2) exp(i pi m) */ /* (1/2) gamma(m+n+1) z^(-m-n-1) */ if (!acb_is_zero(m)) { acb_add_ui(z2, z, 1, prec); acb_mul_2exp_si(c, m, -1); acb_pow(z2, z2, c, prec); acb_mul(t, t, z2, prec); acb_sub_ui(z2, z, 1, prec); acb_mul_2exp_si(c, m, -1); acb_pow(z2, z2, c, prec); acb_mul(t, t, z2, prec); acb_exp_pi_i(z2, m, prec); acb_mul(t, t, z2, prec); } acb_set_ui(z2, 2); acb_neg(c, n); acb_pow(z2, z2, c, prec); acb_mul(t, t, z2, prec); acb_add(c, m, n, prec); acb_add_ui(c, c, 1, prec); acb_gamma(z2, c, prec); acb_mul(t, t, z2, prec); acb_neg(c, c); acb_pow(z2, z, c, prec); acb_mul(t, t, z2, prec); acb_mul_2exp_si(t, t, -1); arb_const_sqrt_pi(acb_realref(u), prec); acb_mul_arb(t, t, acb_realref(u), prec); acb_set(res, t); acb_clear(a); acb_clear(b); acb_clear(c); acb_clear(z2); acb_clear(t); acb_clear(u); }
void acb_modular_theta_const_sum_basecase(acb_t theta2, acb_t theta3, acb_t theta4, const acb_t q, slong N, slong prec) { slong * tab; slong k, term_prec; double log2q_approx, log2term_approx; mag_t qmag; acb_ptr qpow; acb_t s1, s2, s3, t1, t2; if (N < 2) { acb_set_ui(theta2, 2 * (N > 0)); acb_set_ui(theta3, N > 0); acb_set(theta4, theta3); return; } if (N < 25) { acb_t q1, q2, q4, q8, q16; acb_init(q1); acb_init(q2); acb_init(q4); acb_init(q8); acb_init(q16); acb_set_round(q1, q, prec); if (N > 2) acb_mul(q2, q1, q1, prec); if (N > 4) acb_mul(q4, q2, q2, prec); if (N > 9) acb_mul(q8, q4, q4, prec); if (N > 16) acb_mul(q16, q8, q8, prec); /* theta2 = 2 + 2q^2 + 2q^4 [2q^2 + 2q^8 + 2q^16] */ if (N > 6) { if (N > 12) { acb_add(theta2, q2, q8, prec); if (N > 20) acb_add(theta2, theta2, q16, prec); acb_mul(theta2, theta2, q4, prec); } else { acb_mul(theta2, q2, q4, prec); } acb_add(theta2, theta2, q2, prec); acb_add_ui(theta2, theta2, 1, prec); } else if (N > 2) acb_add_ui(theta2, q2, 1, prec); else acb_one(theta2); acb_mul_2exp_si(theta2, theta2, 1); /* theta3 = [1 + 2q^4 + 2q^16] + [2q + 2q^9] */ /* theta4 = [1 + 2q^4 + 2q^16] - [2q + 2q^9] */ if (N > 4) { if (N > 16) acb_add(q4, q4, q16, prec); acb_mul_2exp_si(q4, q4, 1); acb_add_ui(q4, q4, 1, prec); if (N > 9) acb_addmul(q1, q1, q8, prec); acb_mul_2exp_si(q1, q1, 1); acb_add(theta3, q4, q1, prec); acb_sub(theta4, q4, q1, prec); } else { acb_mul_2exp_si(q1, q1, 1); acb_add_ui(theta3, q1, 1, prec); acb_sub_ui(theta4, q1, 1, prec); acb_neg(theta4, theta4); } acb_clear(q1); acb_clear(q2); acb_clear(q4); acb_clear(q8); acb_clear(q16); return; } mag_init(qmag); acb_init(s1); acb_init(s2); acb_init(s3); acb_init(t1); acb_init(t2); tab = flint_calloc(N, sizeof(slong)); qpow = _acb_vec_init(N); for (k = 0; k*(k+1) < N; k++) tab[k*(k+1)] = -1; for (k = 0; 4*k*k < N; k++) tab[4*k*k] = -1; for (k = 0; 4*k*(k+1) + 1 < N; k++) tab[4*k*(k+1)] = -1; if (N > 0) tab[0] = 0; if (N > 1) tab[1] = 1; acb_modular_fill_addseq(tab, N); acb_get_mag(qmag, q); log2q_approx = mag_get_log2_d_approx(qmag); for (k = 0; k < N; k++) { if (k == 0) { acb_one(qpow + k); } else if (k == 1) { acb_set_round(qpow + k, q, prec); } else if (tab[k] != 0) { log2term_approx = k * log2q_approx; term_prec = FLINT_MIN(FLINT_MAX(prec + log2term_approx + 16.0, 16.0), prec); acb_mul_approx(qpow + k, t1, t2, qpow + tab[k], qpow + k - tab[k], term_prec, prec); } } for (k = 0; k*(k+1) < N; k++) acb_add(s1, s1, qpow + k*(k+1), prec); for (k = 1; 4*k*k < N; k++) acb_add(s2, s2, qpow + 4*k*k, prec); for (k = 0; 4*k*(k+1) + 1 < N; k++) acb_add(s3, s3, qpow + 4*k*(k+1), prec); /* theta2 = 2 + 2q^2 + 2q^6 + 2q^12 + 2q^20 + 2q^30 + ... theta3 = 1 + 2 (q^4 + q^16 + ...) + 2q (1 + q^8 + q^24 + ...) theta4 = 1 + 2 (q^4 + q^16 + ...) - 2q (1 + q^8 + q^24 + ...) */ acb_mul(s3, s3, q, prec); acb_mul_2exp_si(s3, s3, 1); acb_mul_2exp_si(s2, s2, 1); acb_add(theta3, s2, s3, prec); acb_sub(theta4, s2, s3, prec); acb_add_ui(theta3, theta3, 1, prec); acb_add_ui(theta4, theta4, 1, prec); acb_mul_2exp_si(theta2, s1, 1); _acb_vec_clear(qpow, N); flint_free(tab); acb_clear(s1); acb_clear(s2); acb_clear(s3); acb_clear(t1); acb_clear(t2); mag_clear(qmag); }
int main() { slong iter; flint_rand_t state; flint_printf("l_euler_product...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 500 * arb_test_multiplier(); iter++) { acb_t s, t, u; dirichlet_group_t G; dirichlet_char_t chi; ulong q, k; slong prec; acb_init(s); acb_init(t); acb_init(u); q = 1 + n_randint(state, 50); prec = 2 + n_randint(state, 500); k = n_randint(state, n_euler_phi(q)); dirichlet_group_init(G, q); dirichlet_char_init(chi, G); dirichlet_char_index(chi, G, k); if (n_randint(state, 2)) { acb_set_ui(s, 2 + n_randint(state, prec + 50)); } else { acb_randtest(s, state, 2 + n_randint(state, 200), 2); arb_abs(acb_realref(s), acb_realref(s)); if (n_randint(state, 2)) acb_add_ui(s, s, n_randtest(state), prec); } if (n_randint(state, 2)) acb_dirichlet_l_hurwitz(t, s, NULL, G, chi, prec); else acb_dirichlet_l_euler_product(t, s, G, chi, prec * 1.5); acb_dirichlet_l_euler_product(u, s, G, chi, prec); if (!acb_overlaps(t, u)) { flint_printf("FAIL: overlap\n\n"); flint_printf("iter = %ld q = %lu k = %lu prec = %ld\n\n", iter, q, k, prec); flint_printf("s = "); acb_printn(s, 100, 0); flint_printf("\n\n"); flint_printf("t = "); acb_printn(t, 100, 0); flint_printf("\n\n"); flint_printf("u = "); acb_printn(u, 100, 0); flint_printf("\n\n"); abort(); } dirichlet_char_clear(chi); dirichlet_group_clear(G); acb_clear(s); acb_clear(t); acb_clear(u); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
void acb_hypgeom_legendre_q(acb_t res, const acb_t n, const acb_t m, const acb_t z, int type, slong prec) { if (type == 0) { /* http://functions.wolfram.com/07.11.26.0033.01 */ /* todo: simplify the gamma quotients and the sqrt pi factor... */ acb_t a, b, c, z2, mn, nm, t, u; acb_init(a); acb_init(b); acb_init(c); acb_init(z2); acb_init(mn); acb_init(nm); acb_init(t); acb_init(u); acb_add(mn, m, n, prec); /* mn = m + n */ acb_sub(nm, n, m, prec); /* nm = n - m */ acb_mul(z2, z, z, prec); /* z2 = z^2 */ /* t = 2F1((1-m-n)/2, (n-m)/2+1, 3/2, z^2) */ acb_sub_ui(a, mn, 1, prec); acb_neg(a, a); acb_mul_2exp_si(a, a, -1); acb_mul_2exp_si(b, nm, -1); acb_add_ui(b, b, 1, prec); acb_set_ui(c, 3); acb_mul_2exp_si(c, c, -1); acb_hypgeom_2f1(t, a, b, c, z2, 0, prec); /* u = 2F1(-(m+n)/2, (n-m+1)/2, 1/2, z^2) */ acb_neg(a, mn); acb_mul_2exp_si(a, a, -1); acb_add_ui(b, nm, 1, prec); acb_mul_2exp_si(b, b, -1); acb_one(c); acb_mul_2exp_si(c, c, -1); acb_hypgeom_2f1(u, a, b, c, z2, 0, prec); /* a = cospi((m+n)/2) gamma((m+n)/2+1) rgamma((n-m+1)/2) z */ /* b = sinpi((m+n)/2) gamma((m+n+1)/2) rgamma((n-m)/2+1) / 2 */ acb_mul_2exp_si(a, mn, -1); acb_sin_cos_pi(b, a, a, prec); acb_mul_2exp_si(c, mn, -1); acb_add_ui(c, c, 1, prec); acb_gamma(c, c, prec); acb_mul(a, a, c, prec); acb_add_ui(c, nm, 1, prec); acb_mul_2exp_si(c, c, -1); acb_rgamma(c, c, prec); acb_mul(a, a, c, prec); acb_mul(a, a, z, prec); acb_add_ui(c, mn, 1, prec); acb_mul_2exp_si(c, c, -1); acb_gamma(c, c, prec); acb_mul(b, b, c, prec); acb_mul_2exp_si(c, nm, -1); acb_add_ui(c, c, 1, prec); acb_rgamma(c, c, prec); acb_mul(b, b, c, prec); acb_mul_2exp_si(b, b, -1); /* at - bu */ acb_mul(t, t, a, prec); acb_mul(u, u, b, prec); acb_sub(t, t, u, prec); /* prefactor sqrt(pi) 2^m (1-z^2)^(-m/2) */ if (!acb_is_zero(m)) { acb_sub_ui(u, z2, 1, prec); acb_neg(u, u); acb_neg(c, m); acb_mul_2exp_si(c, c, -1); acb_pow(u, u, c, prec); acb_set_ui(c, 2); acb_pow(c, c, m, prec); acb_mul(u, u, c, prec); acb_mul(t, t, u, prec); } arb_const_sqrt_pi(acb_realref(u), prec); acb_mul_arb(t, t, acb_realref(u), prec); acb_set(res, t); acb_clear(a); acb_clear(b); acb_clear(c); acb_clear(z2); acb_clear(mn); acb_clear(nm); acb_clear(t); acb_clear(u); } else if (type == 1) { if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), -2) < 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), -2) < 0) || !_acb_hypgeom_legendre_q_single_valid(z)) { _acb_hypgeom_legendre_q_double(res, n, m, z, prec); } else { _acb_hypgeom_legendre_q_single(res, n, m, z, prec); } } else { flint_printf("unsupported 'type' %d for legendre q\n", type); abort(); } }
int main() { slong iter; flint_rand_t state; flint_printf("bernoulli_poly_ui...."); fflush(stdout); flint_randinit(state); /* test multiplication theorem */ for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++) { acb_t x, t, res1, res2; ulong n, m, k; slong prec; n = n_randint(state, 50); m = 1 + n_randint(state, 5); prec = 2 + n_randint(state, 200); acb_init(x); acb_init(t); acb_init(res1); acb_init(res2); acb_randtest(x, state, 2 + n_randint(state, 200), 20); acb_randtest(res1, state, 2 + n_randint(state, 200), 20); acb_mul_ui(t, x, m, prec); acb_bernoulli_poly_ui(res1, n, t, prec); acb_zero(res2); for (k = 0; k < m; k++) { acb_set_ui(t, k); acb_div_ui(t, t, m, prec); acb_add(t, t, x, prec); acb_bernoulli_poly_ui(t, n, t, prec); acb_add(res2, res2, t, prec); } if (n > 0) { arb_ui_pow_ui(acb_realref(t), m, n - 1, prec); acb_mul_arb(res2, res2, acb_realref(t), prec); } else { acb_div_ui(res2, res2, m, prec); } if (!acb_overlaps(res1, res2)) { flint_printf("FAIL: overlap\n\n"); flint_printf("n = %wu, m = %wu\n\n", n, m); flint_printf("x = "); acb_printd(x, 15); flint_printf("\n\n"); flint_printf("res1 = "); acb_printd(res1, 15); flint_printf("\n\n"); flint_printf("res2 = "); acb_printd(res2, 15); flint_printf("\n\n"); abort(); } acb_clear(x); acb_clear(t); acb_clear(res1); acb_clear(res2); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
int main(int argc, char *argv[]) { acb_t s, t, a, b; mag_t tol; slong prec, goal; slong N; ulong k; int integral, ifrom, ito; int i, twice, havegoal, havetol; acb_calc_integrate_opt_t options; ifrom = ito = -1; for (i = 1; i < argc; i++) { if (!strcmp(argv[i], "-i")) { if (!strcmp(argv[i+1], "all")) { ifrom = 0; ito = NUM_INTEGRALS - 1; } else { ifrom = ito = atol(argv[i+1]); if (ito < 0 || ito >= NUM_INTEGRALS) flint_abort(); } } } if (ifrom == -1) { flint_printf("Compute integrals using acb_calc_integrate.\n"); flint_printf("Usage: integrals -i n [-prec p] [-tol eps] [-twice] [...]\n\n"); flint_printf("-i n - compute integral n (0 <= n <= %d), or \"-i all\"\n", NUM_INTEGRALS - 1); flint_printf("-prec p - precision in bits (default p = 64)\n"); flint_printf("-goal p - approximate relative accuracy goal (default p)\n"); flint_printf("-tol eps - approximate absolute error goal (default 2^-p)\n"); flint_printf("-twice - run twice (to see overhead of computing nodes)\n"); flint_printf("-heap - use heap for subinterval queue\n"); flint_printf("-verbose - show information\n"); flint_printf("-verbose2 - show more information\n"); flint_printf("-deg n - use quadrature degree up to n\n"); flint_printf("-eval n - limit number of function evaluations to n\n"); flint_printf("-depth n - limit subinterval queue size to n\n\n"); flint_printf("Implemented integrals:\n"); for (integral = 0; integral < NUM_INTEGRALS; integral++) flint_printf("I%d = %s\n", integral, descr[integral]); flint_printf("\n"); return 1; } acb_calc_integrate_opt_init(options); prec = 64; twice = 0; goal = 0; havetol = havegoal = 0; acb_init(a); acb_init(b); acb_init(s); acb_init(t); mag_init(tol); for (i = 1; i < argc; i++) { if (!strcmp(argv[i], "-prec")) { prec = atol(argv[i+1]); } else if (!strcmp(argv[i], "-twice")) { twice = 1; } else if (!strcmp(argv[i], "-goal")) { goal = atol(argv[i+1]); if (goal < 0) { flint_printf("expected goal >= 0\n"); return 1; } havegoal = 1; } else if (!strcmp(argv[i], "-tol")) { arb_t x; arb_init(x); arb_set_str(x, argv[i+1], 10); arb_get_mag(tol, x); arb_clear(x); havetol = 1; } else if (!strcmp(argv[i], "-deg")) { options->deg_limit = atol(argv[i+1]); } else if (!strcmp(argv[i], "-eval")) { options->eval_limit = atol(argv[i+1]); } else if (!strcmp(argv[i], "-depth")) { options->depth_limit = atol(argv[i+1]); } else if (!strcmp(argv[i], "-verbose")) { options->verbose = 1; } else if (!strcmp(argv[i], "-verbose2")) { options->verbose = 2; } else if (!strcmp(argv[i], "-heap")) { options->use_heap = 1; } } if (!havegoal) goal = prec; if (!havetol) mag_set_ui_2exp_si(tol, 1, -prec); for (integral = ifrom; integral <= ito; integral++) { flint_printf("I%d = %s ...\n", integral, descr[integral]); for (i = 0; i < 1 + twice; i++) { TIMEIT_ONCE_START switch (integral) { case 0: acb_set_d(a, 0); acb_set_d(b, 100); acb_calc_integrate(s, f_sin, NULL, a, b, goal, tol, options, prec); break; case 1: acb_set_d(a, 0); acb_set_d(b, 1); acb_calc_integrate(s, f_atanderiv, NULL, a, b, goal, tol, options, prec); acb_mul_2exp_si(s, s, 2); break; case 2: acb_set_d(a, 0); acb_one(b); acb_mul_2exp_si(b, b, goal); acb_calc_integrate(s, f_atanderiv, NULL, a, b, goal, tol, options, prec); arb_add_error_2exp_si(acb_realref(s), -goal); acb_mul_2exp_si(s, s, 1); break; case 3: acb_set_d(a, 0); acb_set_d(b, 1); acb_calc_integrate(s, f_circle, NULL, a, b, goal, tol, options, prec); acb_mul_2exp_si(s, s, 2); break; case 4: acb_set_d(a, 0); acb_set_d(b, 8); acb_calc_integrate(s, f_rump, NULL, a, b, goal, tol, options, prec); break; case 5: acb_set_d(a, 1); acb_set_d(b, 101); acb_calc_integrate(s, f_floor, NULL, a, b, goal, tol, options, prec); break; case 6: acb_set_d(a, 0); acb_set_d(b, 1); acb_calc_integrate(s, f_helfgott, NULL, a, b, goal, tol, options, prec); break; case 7: acb_zero(s); acb_set_d_d(a, -1.0, -1.0); acb_set_d_d(b, 2.0, -1.0); acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, 2.0, -1.0); acb_set_d_d(b, 2.0, 1.0); acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, 2.0, 1.0); acb_set_d_d(b, -1.0, 1.0); acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, -1.0, 1.0); acb_set_d_d(b, -1.0, -1.0); acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_const_pi(t, prec); acb_div(s, s, t, prec); acb_mul_2exp_si(s, s, -1); acb_div_onei(s, s); break; case 8: acb_set_d(a, 0); acb_set_d(b, 1); acb_calc_integrate(s, f_essing, NULL, a, b, goal, tol, options, prec); break; case 9: acb_set_d(a, 0); acb_set_d(b, 1); acb_calc_integrate(s, f_essing2, NULL, a, b, goal, tol, options, prec); break; case 10: acb_set_d(a, 0); acb_set_d(b, 10000); acb_calc_integrate(s, f_factorial1000, NULL, a, b, goal, tol, options, prec); break; case 11: acb_set_d_d(a, 1.0, 0.0); acb_set_d_d(b, 1.0, 1000.0); acb_calc_integrate(s, f_gamma, NULL, a, b, goal, tol, options, prec); break; case 12: acb_set_d(a, -10.0); acb_set_d(b, 10.0); acb_calc_integrate(s, f_sin_plus_small, NULL, a, b, goal, tol, options, prec); break; case 13: acb_set_d(a, -1020.0); acb_set_d(b, -1010.0); acb_calc_integrate(s, f_exp, NULL, a, b, goal, tol, options, prec); break; case 14: acb_set_d(a, 0); acb_set_d(b, ceil(sqrt(goal * 0.693147181) + 1.0)); acb_calc_integrate(s, f_gaussian, NULL, a, b, goal, tol, options, prec); acb_mul(b, b, b, prec); acb_neg(b, b); acb_exp(b, b, prec); arb_add_error(acb_realref(s), acb_realref(b)); break; case 15: acb_set_d(a, 0.0); acb_set_d(b, 1.0); acb_calc_integrate(s, f_spike, NULL, a, b, goal, tol, options, prec); break; case 16: acb_set_d(a, 0.0); acb_set_d(b, 8.0); acb_calc_integrate(s, f_monster, NULL, a, b, goal, tol, options, prec); break; case 17: acb_set_d(a, 0); acb_set_d(b, ceil(goal * 0.693147181 + 1.0)); acb_calc_integrate(s, f_sech, NULL, a, b, goal, tol, options, prec); acb_neg(b, b); acb_exp(b, b, prec); acb_mul_2exp_si(b, b, 1); arb_add_error(acb_realref(s), acb_realref(b)); break; case 18: acb_set_d(a, 0); acb_set_d(b, ceil(goal * 0.693147181 / 3.0 + 2.0)); acb_calc_integrate(s, f_sech3, NULL, a, b, goal, tol, options, prec); acb_neg(b, b); acb_mul_ui(b, b, 3, prec); acb_exp(b, b, prec); acb_mul_2exp_si(b, b, 3); acb_div_ui(b, b, 3, prec); arb_add_error(acb_realref(s), acb_realref(b)); break; case 19: if (goal < 0) abort(); /* error bound 2^-N (1+N) when truncated at 2^-N */ N = goal + FLINT_BIT_COUNT(goal); acb_one(a); acb_mul_2exp_si(a, a, -N); acb_one(b); acb_calc_integrate(s, f_log_div1p, NULL, a, b, goal, tol, options, prec); acb_set_ui(b, N + 1); acb_mul_2exp_si(b, b, -N); arb_add_error(acb_realref(s), acb_realref(b)); break; case 20: if (goal < 0) abort(); /* error bound (N+1) exp(-N) when truncated at N */ N = goal + FLINT_BIT_COUNT(goal); acb_zero(a); acb_set_ui(b, N); acb_calc_integrate(s, f_log_div1p_transformed, NULL, a, b, goal, tol, options, prec); acb_neg(b, b); acb_exp(b, b, prec); acb_mul_ui(b, b, N + 1, prec); arb_add_error(acb_realref(s), acb_realref(b)); break; case 21: acb_zero(s); N = 10; acb_set_d_d(a, 0.5, -0.5); acb_set_d_d(b, 0.5, 0.5); acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, 0.5, 0.5); acb_set_d_d(b, -0.5, 0.5); acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, -0.5, 0.5); acb_set_d_d(b, -0.5, -0.5); acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, -0.5, -0.5); acb_set_d_d(b, 0.5, -0.5); acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_const_pi(t, prec); acb_div(s, s, t, prec); acb_mul_2exp_si(s, s, -1); acb_div_onei(s, s); break; case 22: acb_zero(s); N = 1000; acb_set_d_d(a, 100.0, 0.0); acb_set_d_d(b, 100.0, N); acb_calc_integrate(t, f_zeta_frac, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, 100, N); acb_set_d_d(b, 0.5, N); acb_calc_integrate(t, f_zeta_frac, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_div_onei(s, s); arb_zero(acb_imagref(s)); acb_set_ui(t, N); acb_dirichlet_hardy_theta(t, t, NULL, NULL, 1, prec); acb_add(s, s, t, prec); acb_const_pi(t, prec); acb_div(s, s, t, prec); acb_add_ui(s, s, 1, prec); break; case 23: acb_set_d(a, 0.0); acb_set_d(b, 1000.0); acb_calc_integrate(s, f_lambertw, NULL, a, b, goal, tol, options, prec); break; case 24: acb_set_d(a, 0.0); acb_const_pi(b, prec); acb_calc_integrate(s, f_max_sin_cos, NULL, a, b, goal, tol, options, prec); break; case 25: acb_set_si(a, -1); acb_set_si(b, 1); acb_calc_integrate(s, f_erf_bent, NULL, a, b, goal, tol, options, prec); break; case 26: acb_set_si(a, -10); acb_set_si(b, 10); acb_calc_integrate(s, f_airy_ai, NULL, a, b, goal, tol, options, prec); break; case 27: acb_set_si(a, 0); acb_set_si(b, 10); acb_calc_integrate(s, f_horror, NULL, a, b, goal, tol, options, prec); break; case 28: acb_set_d_d(a, -1, -1); acb_set_d_d(b, -1, 1); acb_calc_integrate(s, f_sqrt, NULL, a, b, goal, tol, options, prec); break; case 29: acb_set_d(a, 0); acb_set_d(b, ceil(sqrt(goal * 0.693147181) + 1.0)); acb_calc_integrate(s, f_gaussian_twist, NULL, a, b, goal, tol, options, prec); acb_mul(b, b, b, prec); acb_neg(b, b); acb_exp(b, b, prec); arb_add_error(acb_realref(s), acb_realref(b)); arb_add_error(acb_imagref(s), acb_realref(b)); break; case 30: acb_set_d(a, 0); acb_set_d(b, ceil(goal * 0.693147181 + 1.0)); acb_calc_integrate(s, f_exp_airy, NULL, a, b, goal, tol, options, prec); acb_neg(b, b); acb_exp(b, b, prec); acb_mul_2exp_si(b, b, 1); arb_add_error(acb_realref(s), acb_realref(b)); break; case 31: acb_zero(a); acb_const_pi(b, prec); acb_calc_integrate(s, f_sin_cos_frac, NULL, a, b, goal, tol, options, prec); break; case 32: acb_zero(a); acb_set_ui(b, 3); acb_calc_integrate(s, f_sin_near_essing, NULL, a, b, goal, tol, options, prec); break; case 33: acb_zero(a); acb_zero(b); k = 3; scaled_bessel_select_N(acb_realref(b), k, prec); acb_calc_integrate(s, f_scaled_bessel, &k, a, b, goal, tol, options, prec); scaled_bessel_tail_bound(acb_realref(a), k, acb_realref(b), prec); arb_add_error(acb_realref(s), acb_realref(a)); break; case 34: acb_zero(a); acb_zero(b); k = 15; scaled_bessel_select_N(acb_realref(b), k, prec); acb_calc_integrate(s, f_scaled_bessel, &k, a, b, goal, tol, options, prec); scaled_bessel_tail_bound(acb_realref(a), k, acb_realref(b), prec); arb_add_error(acb_realref(s), acb_realref(a)); break; case 35: acb_set_d_d(a, -1, -1); acb_set_d_d(b, -1, 1); acb_calc_integrate(s, f_rsqrt, NULL, a, b, goal, tol, options, prec); break; default: abort(); } TIMEIT_ONCE_STOP } flint_printf("I%d = ", integral); acb_printn(s, 3.333 * prec, 0); flint_printf("\n\n"); } acb_clear(a); acb_clear(b); acb_clear(s); acb_clear(t); mag_clear(tol); flint_cleanup(); return 0; }
int main() { slong iter; flint_rand_t state; flint_printf("j...."); fflush(stdout); flint_randinit(state); /* Test SL2Z invariance */ for (iter = 0; iter < 10000; iter++) { acb_t tau1, tau2, z1, z2; slong e0, prec0, prec1, prec2; psl2z_t g; psl2z_init(g); acb_init(tau1); acb_init(tau2); acb_init(z1); acb_init(z2); e0 = 1 + n_randint(state, 100); prec0 = 2 + n_randint(state, 2000); prec1 = 2 + n_randint(state, 2000); prec2 = 2 + n_randint(state, 2000); acb_randtest(tau1, state, prec0, e0); acb_randtest(tau2, state, prec0, e0); acb_randtest(z1, state, prec0, e0); acb_randtest(z2, state, prec0, e0); psl2z_randtest(g, state, 1 + n_randint(state, 200)); acb_modular_transform(tau2, g, tau1, prec0); acb_modular_j(z1, tau1, prec1); acb_modular_j(z2, tau2, prec2); if (!acb_overlaps(z1, z2)) { flint_printf("FAIL (overlap)\n"); flint_printf("tau1 = "); acb_print(tau1); flint_printf("\n\n"); flint_printf("tau2 = "); acb_print(tau2); flint_printf("\n\n"); flint_printf("z1 = "); acb_print(z1); flint_printf("\n\n"); flint_printf("z2 = "); acb_print(z2); flint_printf("\n\n"); abort(); } acb_modular_j(tau1, tau1, prec2); if (!acb_overlaps(z1, tau1)) { flint_printf("FAIL (aliasing)\n"); flint_printf("tau1 = "); acb_print(tau1); flint_printf("\n\n"); flint_printf("tau2 = "); acb_print(tau2); flint_printf("\n\n"); flint_printf("z1 = "); acb_print(z1); flint_printf("\n\n"); flint_printf("z2 = "); acb_print(z2); flint_printf("\n\n"); abort(); } acb_clear(tau1); acb_clear(tau2); acb_clear(z1); acb_clear(z2); psl2z_clear(g); } /* Test special values */ for (iter = 0; iter < 100; iter++) { acb_t tau, z; slong prec; acb_init(tau); acb_init(z); prec = 2 + n_randint(state, 2000); acb_randtest(z, state, prec, 10); acb_onei(tau); acb_modular_j(z, tau, prec); acb_sub_ui(z, z, 1728, prec); if (!acb_contains_zero(z)) { flint_printf("FAIL (value 1)\n"); flint_printf("tau = "); acb_print(tau); flint_printf("\n\n"); flint_printf("z = "); acb_print(z); flint_printf("\n\n"); abort(); } acb_set_ui(tau, 2); acb_div_ui(tau, tau, 3, prec); acb_exp_pi_i(tau, tau, prec); acb_modular_j(z, tau, prec); if (!acb_contains_zero(z)) { flint_printf("FAIL (value 2)\n"); flint_printf("tau = "); acb_print(tau); flint_printf("\n\n"); flint_printf("z = "); acb_print(z); flint_printf("\n\n"); abort(); } acb_clear(tau); acb_clear(z); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }