/**
 * \brief Configure ADC channel with specified value.
 *
 * \param dev_inst    Device structure pointer.
 * \param cfg         Pointer to ADC Channel configuration.
 *
 */
void adc_ch_set_config(struct adc_dev_inst *const dev_inst,
		struct adc_ch_config *cfg)
{
	dev_inst->hw_dev->ADCIFE_SEQCFG =
		(*(uint32_t *)(cfg->seq_cfg));

	adc_configure_wm_mode(dev_inst, cfg->window_mode);
	adc_configure_wm_threshold(dev_inst, cfg->low_threshold,
			cfg->high_threshold);
}
示例#2
0
/**
 * \brief Example entry point.
 *
 * \return Unused (ANSI-C compatibility).
 */
int main(void)
{
	uint8_t c_choice;
	int16_t s_adc_value;
	int16_t s_dac_value;
	int16_t s_threshold = 0;
	float f_dac_data;
	uint32_t ul_dac_data;

	/* Initialize the SAM system. */
	sysclk_init();
	board_init();

	configure_console();

	/* Output example information. */
	puts(STRING_HEADER);

	/* Initialize threshold. */
	gs_us_low_threshold = 500;
	gs_us_high_threshold = 2000;

	struct adc_config adc_cfg = {
		/* System clock division factor is 16 */
		.prescal = ADC_PRESCAL_DIV16,
		/* The APB clock is used */
		.clksel = ADC_CLKSEL_APBCLK,
		/* Max speed is 150K */
		.speed = ADC_SPEED_150K,
		/* ADC Reference voltage is 0.625*VCC */
		.refsel = ADC_REFSEL_1,
		/* Enables the Startup time */
		.start_up = CONFIG_ADC_STARTUP
	};
	struct adc_seq_config adc_seq_cfg = {
		/* Select Vref for shift cycle */
		.zoomrange = ADC_ZOOMRANGE_0,
		/* Pad Ground */
		.muxneg = ADC_MUXNEG_1,
		/* DAC Internal */
		.muxpos = ADC_MUXPOS_3,
		/* Enables the internal voltage sources */
		.internal = ADC_INTERNAL_3,
		/* Disables the ADC gain error reduction */
		.gcomp = ADC_GCOMP_DIS,
		/* Disables the HWLA mode */
		.hwla = ADC_HWLA_DIS,
		/* 12-bits resolution */
		.res = ADC_RES_12_BIT,
		/* Enables the single-ended mode */
		.bipolar = ADC_BIPOLAR_SINGLEENDED
	};
	struct adc_ch_config adc_ch_cfg = {
		.seq_cfg = &adc_seq_cfg,
		/* Internal Timer Max Counter */
		.internal_timer_max_count = 60,
		/* Window monitor mode is off */
		.window_mode = ADC_WM_MODE_3,
		/* The equivalent voltage value is 500 * VOLT_REF / 4095 = 251mv. */
		.low_threshold = gs_us_low_threshold,
		/* The equivalent voltage value is 2000 * VOLT_REF / 4095 = 1002mv. */
		.high_threshold = gs_us_high_threshold,
	};

	start_dac();

	if(adc_init(&g_adc_inst, ADCIFE, &adc_cfg) != STATUS_OK) {
		puts("-F- ADC Init Fail!\n\r");
		while(1);
	}
	if(adc_enable(&g_adc_inst) != STATUS_OK) {
		puts("-F- ADC Enable Fail!\n\r");
		while(1);
	}
	adc_ch_set_config(&g_adc_inst, &adc_ch_cfg);
	adc_configure_trigger(&g_adc_inst, ADC_TRIG_CON);
	adc_configure_gain(&g_adc_inst, ADC_GAIN_1X);
	adc_set_callback(&g_adc_inst, ADC_WINDOW_MONITOR, adcife_wm_handler,
			ADCIFE_IRQn, 1);

	/* Display main menu. */
	display_menu();

	while (1) {

		scanf("%c", (char *)&c_choice);
		printf("%c\r\n", c_choice);
		switch (c_choice) {
		case '0':
			adc_disable_interrupt(&g_adc_inst, ADC_WINDOW_MONITOR);
			printf("DAC output is set to(mv) from 0mv to %dmv: ",
					(int32_t)VOLT_REF);
			s_dac_value = get_voltage();
			puts("\r");
			f_dac_data = (float)s_dac_value * DACC_MAX_DATA / VDDANA;
			ul_dac_data = f_to_int(f_dac_data);
			if (s_dac_value >= 0) {
				dacc_write_conversion_data(DACC, ul_dac_data);
			}
			delay_ms(100);
			adc_clear_status(&g_adc_inst, ADCIFE_SCR_WM);
			adc_enable_interrupt(&g_adc_inst, ADC_WINDOW_MONITOR);
			break;

		case '1':
			adc_disable_interrupt(&g_adc_inst, ADC_WINDOW_MONITOR);
			printf("Low threshold is set to(mv) from 0mv to %dmv: ",
					(int32_t)VOLT_REF);
			s_threshold = get_voltage();
			puts("\r");
			if (s_threshold >= 0) {
				s_adc_value = s_threshold * MAX_DIGITAL /
						VOLT_REF;
				adc_configure_wm_threshold(&g_adc_inst,
						s_adc_value,
						gs_us_high_threshold);
				/* Renew low threshold. */
				gs_us_low_threshold = s_adc_value;
				float f_low_threshold =
						(float)gs_us_low_threshold *
						VOLT_REF / MAX_DIGITAL;
				uint32_t ul_low_threshold =
						f_to_int(f_low_threshold);
				printf("Setting low threshold to %u mv (reg value to 0x%x ~%d%%)\n\r",
						ul_low_threshold, gs_us_low_threshold,
						gs_us_low_threshold * 100 / MAX_DIGITAL);
			}
			adc_clear_status(&g_adc_inst, ADCIFE_SCR_WM);
			adc_enable_interrupt(&g_adc_inst, ADC_WINDOW_MONITOR);
			break;

		case '2':
			adc_disable_interrupt(&g_adc_inst, ADC_WINDOW_MONITOR);
			printf("High threshold is set to(mv)from 0mv to %dmv:",
					(int32_t)VOLT_REF);
			s_threshold = get_voltage();
			puts("\r");
			if (s_threshold >= 0) {
				s_adc_value = s_threshold * MAX_DIGITAL /
						VOLT_REF;
				adc_configure_wm_threshold(&g_adc_inst,
						gs_us_low_threshold,
						s_adc_value);
				/* Renew high threshold. */
				gs_us_high_threshold = s_adc_value;
				float f_high_threshold =
						(float)gs_us_high_threshold *
						VOLT_REF / MAX_DIGITAL;
				uint32_t ul_high_threshold =
						f_to_int(f_high_threshold);
				printf("Setting high threshold to %u mv (reg value to 0x%x ~%d%%)\n\r",
						ul_high_threshold, gs_us_high_threshold,
						gs_us_high_threshold * 100 / MAX_DIGITAL);
			}
			adc_clear_status(&g_adc_inst, ADCIFE_SCR_WM);
			adc_enable_interrupt(&g_adc_inst, ADC_WINDOW_MONITOR);
			break;

		case '3':
			adc_disable_interrupt(&g_adc_inst, ADC_WINDOW_MONITOR);
			puts("-a. Above low threshold.\n\r"
					"-b. Below high threshold.\n\r"
					"-c. In the comparison window.\n\r"
					"-d. Out of the comparison window.\n\r"
					"-q. Quit the setting.\r");
			c_choice = get_wm_mode();
			adc_configure_wm_mode(&g_adc_inst, c_choice);
			printf("Comparison mode is %c.\n\r", 'a' + c_choice - 1);
			adc_clear_status(&g_adc_inst, ADCIFE_SCR_WM);
			adc_enable_interrupt(&g_adc_inst, ADC_WINDOW_MONITOR);
			break;

		case 'm':
			display_menu();
			break;

		case 'i':
			display_info();
			adc_clear_status(&g_adc_inst, ADCIFE_SCR_WM);
			adc_enable_interrupt(&g_adc_inst, ADC_WINDOW_MONITOR);
			break;
		}
		puts("Press \'m\' or \'M\' to display the main menu again!\r");
	}
}