示例#1
0
/* ************************************************************
   PROCEDURE elqxq - Compute (I+c*c'/beta) * [X1, X2 * (I+c*c'/beta)];
     only tril is computed, and only tril(X2) is used.
   INPUT
     beta - Householder scalar coefficient
     c    - length m-n1 elementary Householder vector
     m    - length of columns in X. m >= n1.
     n1   - number of X1-columns; the order of Householder reflection will
         be m-n1.
   UPDATED
     x -  (m x m)-n1. On output, Xnew = (I+c*c'/beta)* [X1, X2*(I+c*c'/beta)]
       only tril is computed. We treat x as a (m-n1)*m matrix, but we need to add
       m (instead of m-n1) to get to the next column.
   WORK
     y - length m working vector, for storing c'*[X1, X2].
   ************************************************************ */
void elqxq(double *x, const double beta, const double *c,
           const int n1, const int m, double *y)
{
  int j,n2;
  double *xj, *y2, *x2;
  double alpha;
  n2 = m - n1;          /* order of x2 */
  y2 = y + n1;
/* ------------------------------------------------------------
   Compute y1 = c'*X1
   ------------------------------------------------------------ */
  for(j = 0, xj = x; j < n1; j++, xj += m)
    y[j] = realdot(c, xj, n2);
  x2 = xj;
/* ------------------------------------------------------------
   Compute y2 = c'*tril(X2); y2 += tril(X2,-1)*c, SO THAT y2 = c'*X2SYM.
   ------------------------------------------------------------ */
  for(j = 0; j < n2; j++, xj += m+1)
    y2[j] = realdot(c+j, xj, n2-j);
  for(j = 1, xj = x2+1; j < n2; j++, xj += m+1)
    addscalarmul(y2+j, c[j-1], xj, n2-j);
/* ------------------------------------------------------------
   Below-diag block: let X1 += c*y1' / beta
   ------------------------------------------------------------ */
  for(j = 0, xj = x; j < n1; j++, xj += m)
    addscalarmul(xj, y[j] / beta, c, n2);
/* ------------------------------------------------------------
   Lower-Right block: X2 += c*((y2'*c/beta) * c' + y2')/beta + y2*c'/beta
   ------------------------------------------------------------ */
  alpha = realdot(y2, c, n2) / beta;
  for(j = 0, xj = x2; j < n2; j++, xj += m+1){
    addscalarmul(xj, (alpha * c[j] + y2[j])/beta, c+j, n2-j);
    addscalarmul(xj, c[j] / beta, y2+j, n2-j);
  }
}
示例#2
0
文件: qscaleK.c 项目: nickchy/Papers
/* ************************************************************
   PROCEDURE qlmul : LORENTZ SCALE z = D(x)y (full version)
     z=D(x)y = [x'*y / sqrt(2);  mu * x(2:n) + rdetx * y(2:n)],
     where mu = (z(1)+rdetx*y1) / (x(1)+ sqrt(2) * rdetx)
   INPUT
     x,y - full n x 1
     rdetx - sqrt(det(x))
     n - order of x,y,z.
   OUTPUT
     z - full n x 1. Let z := D(x)y.
   ************************************************************ */
void qlmul(double *z,const double *x,const double *y,
	   const double rdetx,const int n)
{
  double mu;
  mu = qscale(z, x,y,rdetx,n);
  addscalarmul(z,mu,x,n);
}
/* ************************************************************
   PROCEDURE fwsolve -- Solve ynew from L*y = yold, where
     L is lower-triangular.
   INPUT
     L - sparse lower triangular matrix
     xsuper - starting column in L for each (dense) supernode.
     nsuper - number of super nodes
   UPDATED
     y - full vector, on input y = rhs, on output y = L\rhs.
   WORK
     fwork - length max(collen[i] - superlen[i]) <= m-1, where
       collen[i] := L.jc[xsuper[i]+1]-L.jc[xsuper[i]] and
       superlen[i] := xsuper[i+1]-xsuper[i].
   ************************************************************ */
void fwsolve(double *y, const int *Ljc, const int *Lir, const double *Lpr,
             const int *xsuper, const int nsuper, double *fwork)
{
  int jsup,i,j,inz,jnnz;
  double yi,yj;

  /* ------------------------------------------------------------
     For each supernode jsup:
     ------------------------------------------------------------ */
  j = xsuper[0];           /* 1st col of current snode (j=0)*/
  inz = Ljc[0];           /* 1st nonzero in L (inz = 0) */
  for(jsup = 1; jsup <= nsuper; jsup++){
/* ------------------------------------------------------------
   The first equation, 1*y=b(j), yields y(j) = b(j).
   ------------------------------------------------------------ */
    mxAssert(inz == Ljc[j],"");
    yj = y[j++];
    ++inz;             /* jump over diagonal entry */
    if(j >= xsuper[jsup])
/* ------------------------------------------------------------
   If supernode is singleton, then simply set y(j+1:m)-=yj*L(j+1:m,j)
   ------------------------------------------------------------ */
      for(; inz < Ljc[j]; inz++)
	y[Lir[inz]] -= yj * Lpr[inz];
    else{
/* ------------------------------------------------------------
   Supernode contains multiple subnodes:
   Remember (i,yi) = 1st subnode, then
   perform dense forward solve within current supernode.
   ------------------------------------------------------------ */
      i = j;
      yi = yj;
      do{
        subscalarmul(y+j, yj, Lpr+inz, xsuper[jsup] - j);
        inz = Ljc[j];
        yj = y[j++];
        ++inz;             /* jump over diagonal entry */
      } while(j < xsuper[jsup]);
      jnnz = Ljc[j] - inz;
/* ------------------------------------------------------------
   jnnz = number of later entries that are influenced by this supernode.
   Compute the update in the array fwork(jnnz)
   ------------------------------------------------------------ */
      if(jnnz > 0){
        scalarmul(fwork, yj, Lpr+inz,jnnz);
        while(i < j){
          addscalarmul(fwork,yi,Lpr+Ljc[i]-jnnz,jnnz);
          yi = y[i++];
        }
/* ------------------------------------------------------------
   Update y with fwork at the specified sparse locations
   ------------------------------------------------------------ */
        for(i = 0; i < jnnz; i++)
          y[Lir[inz++]] -= fwork[i];
      }
    }
  }
}
示例#4
0
文件: qrK.c 项目: edenton/wordvectors
/* ************************************************************
   PROCEDURE qrfac - QR factorization for nxn matrix.
   INPUT
     n - order of matrix to be factored
   UPDATED
     u - Full nxn. On input, u is matrix to be factored. On output,
       triu(u) = uppertriangular factor;
       tril(u,-1) = undefined.
   OUTPUT
     beta - length n vector. kth Householder reflection is
        Qk = I-qk*qk' / beta[k],   where qk = q(k:n-1,k).
     q - n x (n-1) matrix; each column is a Householder reflection.
   ************************************************************ */
void qrfac(double *beta, double *q, double *u, const mwIndex n)
{
  mwIndex i,k, kcol, nmink, icol;
  double dk, betak, qkui, qkk;
  
  for(k = 0, kcol = 0; k < n-1; k++, kcol += n+1){

/* ------------------------------------------------------------
   kth Householder reflection:
   dk = sign(xkk) * ||xk(k:n)||,
   qk(k+1:n) = x(k+1:n); qkk = xkk+dk, betak = dk*qkk, ukk = -dk.
   ------------------------------------------------------------ */
       
    qkk = u[kcol];
    dk = SIGN(qkk) * sqrt(realssqr(u+kcol,n-k));
    memcpy(q + kcol+1, u+kcol+1, (n-k-1) * sizeof(double));
    qkk += dk;
    betak = dk * qkk;
    q[kcol] = qkk;
    if(betak == 0.0)              /* If xk is all-0 then set beta = 1. */
      betak = 1.0;
    beta[k] = betak;
    u[kcol] = -dk;
/* ------------------------------------------------------------
   Reflect columns k+1:n-1, i.e.
   xi -= (qk'*xi / betak) * qk, where xi = x(k:n-1, i).
   ------------------------------------------------------------ */
    nmink = n-k;
    betak = -betak;
  
    for(i = k + 1, icol = kcol + n; i < n; i++, icol += n){
      qkui = realdot(q+kcol, u+icol, nmink);
      addscalarmul(u+icol, qkui/betak, q+kcol, nmink);

    }
  }
}
示例#5
0
/* ************************************************************
   PROCEDURE prpielqxq - Compute (I+c*c'/beta) * [X1, X2 * (I+c*c'/beta)];
     only tril is computed, and only tril(X2) is used.
   INPUT
     beta - Householder scalar coefficient (real length m)
     c,cpi - length m-n1 elementary Householder vector
     m    - length of columns in X. m >= n1.
     n1   - number of X1-columns; the order of Householder reflection will
         be m-n1.
   UPDATED
     x,xpi - 2*((m x m)-n1). On output,
       Xnew = (I+c*c'/beta)* [X1, X2*(I+c*c'/beta)]
       only tril is computed.  We treat x as a (m-n1)*m matrix, but we need to add
       m (instead of m-n1) to get to the next column.
   WORK
     y - length 2*m working vector, for storing c'*[X1, X2].
   ************************************************************ */
void prpielqxq(double *x, double *xpi, const double beta, const double *c,
               const double *cpi, const int n1, const int m, double *y)
{
  int j,n2;
  double *xj,*xjpi, *y2, *x2, *x2pi, *ypi, *y2pi;
  double alpha;
  n2 = m - n1;          /* order of x2 */
/* ------------------------------------------------------------
   Partition y into y(n1), y2(n2); ypi(n1), ypi(n2).
   ------------------------------------------------------------ */
  ypi = y + m;
  y2 = y + n1;
  y2pi = ypi + n1;
/* ------------------------------------------------------------
   Compute y1 = c'*X1.   NOTE: y1 is 1 x n1 row-vector.
   ------------------------------------------------------------ */
  for(j = 0, xj = x, xjpi = xpi; j < n1; j++, xj += m, xjpi += m){
    y[j] = realdot(c, xj, n2) + realdot(cpi, xjpi, n2);
    ypi[j] = realdot(c, xjpi, n2) - realdot(cpi, xj, n2);
  }
  x2 = xj; x2pi = xjpi;
/* ------------------------------------------------------------
   Compute y2 = c'*tril(X2)
   ------------------------------------------------------------ */
  for(j = 0; j < n2; j++, xj += m+1, xjpi += m+1){
/* y2(j) = c(j:n2)'*x(j:n2,j) */
    y2[j] = realdot(c+j, xj, n2-j) + realdot(cpi+j, xjpi, n2-j);
    y2pi[j] = realdot(c+j, xjpi, n2-j) - realdot(cpi+j, xj, n2-j);
  }
/* ------------------------------------------------------------
   Let y2 += (tril(X2,-1)*c)' = c'*triu(X2,1),
   SO THAT y2 = c'*X2, with X2 symmetric. NOTE: y2 = 1 x n2 row-vector.
   ------------------------------------------------------------ */
  for(j = 1, xj = x2+1, xjpi = x2pi+1; j < n2; j++, xj += m+1, xjpi += m+1){
/* y2(j+1:n2) += conj(x(j+1:n2,j) * c(j)) */
    addscalarmul(y2+j, c[j-1], xj, n2-j);        /* RE */
    addscalarmul(y2+j, -cpi[j-1], xjpi, n2-j);
    addscalarmul(y2pi+j, -cpi[j-1], xj, n2-j);   /* -IM, i.e. conj */
    addscalarmul(y2pi+j, -c[j-1], xjpi, n2-j);
  }
/* ------------------------------------------------------------
   Below-diag block: let X1 += c*y1 / beta, where y1 = c'*X1.
   NOTE: y1 is 1 x n1 row-vector.
   This completes X1_new = (I+c*c'/beta) * X1_old.
   ------------------------------------------------------------ */
  for(j = 0, xj = x, xjpi = xpi; j < n1; j++, xj += m, xjpi += m){
/* x(:,j) += c * y1(j) / beta */
    addscalarmul(xj, y[j] / beta, c, n2);          /* RE */
    addscalarmul(xj, -ypi[j] / beta, cpi, n2);
    addscalarmul(xjpi, y[j] / beta, cpi, n2);          /* IM */
    addscalarmul(xjpi, ypi[j] / beta, c, n2);
  }
/* ------------------------------------------------------------
   Lower-Right block: X2 += c*((y2*c/beta) * c' + y2)/beta + y2'*c'/beta
   where y2 = c'*X2.
   This completes X2new = (I+c*c'/beta) * X2 * (I+c*c'/beta)
   NOTE: since X2 = X2', we have y2*c = c'*X2*c is real.
   ------------------------------------------------------------ */
/* alpha = y2 * c / beta, which is real.*/
  alpha = (realdot(y2, c, n2) - realdot(y2pi, cpi, n2)) / beta;
  for(j = 0, xj = x2, xjpi = x2pi; j < n2; j++, xj += m+1, xjpi += m+1){
/* x2(j:n2,j) += c(j:n2) * (alpha*conj(c(j)) + y2(j))/beta */
    addscalarmul(xj, (alpha * c[j] + y2[j])/beta, c+j, n2-j);
    addscalarmul(xj, (alpha * cpi[j] - y2pi[j])/beta, cpi+j, n2-j);
    addscalarmul(xjpi, (alpha * c[j] + y2[j])/beta, cpi+j, n2-j);
    addscalarmul(xjpi, (y2pi[j] - alpha * cpi[j])/beta, c+j, n2-j);
/* x2(j:n2,j) += conj(c(j)*y2(j:n2)) / beta */
    addscalarmul(xj, c[j] / beta, y2+j, n2-j);            /* RE */
    addscalarmul(xj, -cpi[j] / beta, y2pi+j, n2-j);
    addscalarmul(xjpi, -c[j] / beta, y2pi+j, n2-j);       /* -IM, i.e. conj */
    addscalarmul(xjpi, -cpi[j] / beta, y2+j, n2-j);
  }
}