示例#1
0
zmq::socket_base_t *zmq::socket_base_t::create (int type_, class ctx_t *parent_,
    uint32_t tid_, int sid_)
{
    socket_base_t *s = NULL;
    switch (type_) {
        case ZMQ_PAIR:
            s = new (std::nothrow) pair_t (parent_, tid_, sid_);
            break;
        case ZMQ_PUB:
            s = new (std::nothrow) pub_t (parent_, tid_, sid_);
            break;
        case ZMQ_SUB:
            s = new (std::nothrow) sub_t (parent_, tid_, sid_);
            break;
        case ZMQ_REQ:
            s = new (std::nothrow) req_t (parent_, tid_, sid_);
            break;
        case ZMQ_REP:
            s = new (std::nothrow) rep_t (parent_, tid_, sid_);
            break;
        case ZMQ_DEALER:
            s = new (std::nothrow) dealer_t (parent_, tid_, sid_);
            break;
        case ZMQ_ROUTER:
            s = new (std::nothrow) router_t (parent_, tid_, sid_);
            break;
        case ZMQ_PULL:
            s = new (std::nothrow) pull_t (parent_, tid_, sid_);
            break;
        case ZMQ_PUSH:
            s = new (std::nothrow) push_t (parent_, tid_, sid_);
            break;
        case ZMQ_XPUB:
            s = new (std::nothrow) xpub_t (parent_, tid_, sid_);
            break;
        case ZMQ_XSUB:
            s = new (std::nothrow) xsub_t (parent_, tid_, sid_);
            break;
        case ZMQ_STREAM:
            s = new (std::nothrow) stream_t (parent_, tid_, sid_);
            break;
        case ZMQ_SERVER:
            s = new (std::nothrow) server_t (parent_, tid_, sid_);
            break;
        case ZMQ_CLIENT:
            s = new (std::nothrow) client_t (parent_, tid_, sid_);
            break;
        case ZMQ_RADIO:
            s = new (std::nothrow) radio_t (parent_, tid_, sid_);
            break;
        case ZMQ_DISH:
            s = new (std::nothrow) dish_t (parent_, tid_, sid_);
            break;
        case ZMQ_GATHER:
            s = new (std::nothrow) gather_t (parent_, tid_, sid_);
            break;
        case ZMQ_SCATTER:
            s = new (std::nothrow) scatter_t (parent_, tid_, sid_);
            break;
        case ZMQ_DGRAM:
            s = new (std::nothrow) dgram_t (parent_, tid_, sid_);
            break;
        default:
            errno = EINVAL;
            return NULL;
    }

    alloc_assert (s);

    if (s->mailbox == NULL) {
        s->destroyed = true;
        LIBZMQ_DELETE(s);
        return NULL;
    }

    return s;
}
示例#2
0
void zmq::session_base_t::start_connecting (bool wait_)
{
    zmq_assert (connect);

    //  Choose I/O thread to run connecter in. Given that we are already
    //  running in an I/O thread, there must be at least one available.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    zmq_assert (io_thread);

    //  Create the connecter object.

    if (addr->protocol == "tcp") {
        tcp_connecter_t *connecter = new (std::nothrow) tcp_connecter_t (
            io_thread, this, options, addr, wait_);
        alloc_assert (connecter);
        launch_child (connecter);
        return;
    }

#if !defined ZMQ_HAVE_WINDOWS && !defined ZMQ_HAVE_OPENVMS
    if (addr->protocol == "ipc") {
        ipc_connecter_t *connecter = new (std::nothrow) ipc_connecter_t (
            io_thread, this, options, addr, wait_);
        alloc_assert (connecter);
        launch_child (connecter);
        return;
    }
#endif

#ifdef ZMQ_HAVE_OPENPGM

    //  Both PGM and EPGM transports are using the same infrastructure.
    if (addr->protocol == "pgm" || addr->protocol == "epgm") {

        zmq_assert (options.type == ZMQ_PUB || options.type == ZMQ_XPUB
                 || options.type == ZMQ_SUB || options.type == ZMQ_XSUB);

        //  For EPGM transport with UDP encapsulation of PGM is used.
        bool const udp_encapsulation = addr->protocol == "epgm";

        //  At this point we'll create message pipes to the session straight
        //  away. There's no point in delaying it as no concept of 'connect'
        //  exists with PGM anyway.
        if (options.type == ZMQ_PUB || options.type == ZMQ_XPUB) {

            //  PGM sender.
            pgm_sender_t *pgm_sender = new (std::nothrow) pgm_sender_t (
                io_thread, options);
            alloc_assert (pgm_sender);

            int rc = pgm_sender->init (udp_encapsulation, addr->address.c_str ());
            errno_assert (rc == 0);

            send_attach (this, pgm_sender);
        }
        else {

            //  PGM receiver.
            pgm_receiver_t *pgm_receiver = new (std::nothrow) pgm_receiver_t (
                io_thread, options);
            alloc_assert (pgm_receiver);

            int rc = pgm_receiver->init (udp_encapsulation, addr->address.c_str ());
            errno_assert (rc == 0);

            send_attach (this, pgm_receiver);
        }

        return;
    }
#endif

    zmq_assert (false);
}
示例#3
0
文件: usock.c 项目: GrayTShirt/gridmq
static int grid_usock_recv_raw (struct grid_usock *self, void *buf, size_t *len)
{
    size_t sz;
    size_t length;
    ssize_t nbytes;
    struct iovec iov;
    struct msghdr hdr;
    unsigned char ctrl [256];
#if defined GRID_HAVE_MSG_CONTROL
    struct cmsghdr *cmsg;
#endif

    /*  If batch buffer doesn't exist, allocate it. The point of delayed
        deallocation to allow non-receiving sockets, such as TCP listening
        sockets, to do without the batch buffer. */
    if (grid_slow (!self->in.batch)) {
        self->in.batch = grid_alloc (GRID_USOCK_BATCH_SIZE, "AIO batch buffer");
        alloc_assert (self->in.batch);
    }

    /*  Try to satisfy the recv request by data from the batch buffer. */
    length = *len;
    sz = self->in.batch_len - self->in.batch_pos;
    if (sz) {
        if (sz > length)
            sz = length;
        memcpy (buf, self->in.batch + self->in.batch_pos, sz);
        self->in.batch_pos += sz;
        buf = ((char*) buf) + sz;
        length -= sz;
        if (!length)
            return 0;
    }

    /*  If recv request is greater than the batch buffer, get the data directly
        into the place. Otherwise, read data to the batch buffer. */
    if (length > GRID_USOCK_BATCH_SIZE) {
        iov.iov_base = buf;
        iov.iov_len = length;
    }
    else {
        iov.iov_base = self->in.batch;
        iov.iov_len = GRID_USOCK_BATCH_SIZE;
    }
    memset (&hdr, 0, sizeof (hdr));
    hdr.msg_iov = &iov;
    hdr.msg_iovlen = 1;
#if defined GRID_HAVE_MSG_CONTROL
    hdr.msg_control = ctrl;
    hdr.msg_controllen = sizeof (ctrl);
#else
    *((int*) ctrl) = -1;
    hdr.msg_accrights = ctrl;
    hdr.msg_accrightslen = sizeof (int);
#endif
    nbytes = recvmsg (self->s, &hdr, 0);

    /*  Handle any possible errors. */
    if (grid_slow (nbytes <= 0)) {

        if (grid_slow (nbytes == 0))
            return -ECONNRESET;

        /*  Zero bytes received. */
        if (grid_fast (errno == EAGAIN || errno == EWOULDBLOCK))
            nbytes = 0;
        else {

            /*  If the peer closes the connection, return ECONNRESET. */
            return -ECONNRESET;
        }
    }

    /*  Extract the associated file descriptor, if any. */
    if (nbytes > 0) {
#if defined GRID_HAVE_MSG_CONTROL
        cmsg = CMSG_FIRSTHDR (&hdr);
        while (cmsg) {
            if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
                if (self->in.pfd) {
                    *self->in.pfd = *((int*) CMSG_DATA (cmsg));
                    self->in.pfd = NULL;
                }
                else {
                    grid_closefd (*((int*) CMSG_DATA (cmsg)));
                }
                break;
            }
            cmsg = CMSG_NXTHDR (&hdr, cmsg);
        }
#else
        if (hdr.msg_accrightslen > 0) {
            grid_assert (hdr.msg_accrightslen == sizeof (int));
            if (self->in.pfd) {
                *self->in.pfd = *((int*) hdr.msg_accrights);
                self->in.pfd = NULL;
            }
            else {
                grid_closefd (*((int*) hdr.msg_accrights));
            }
        }
#endif
    }

    /*  If the data were received directly into the place we can return
        straight away. */
    if (length > GRID_USOCK_BATCH_SIZE) {
        length -= nbytes;
        *len -= length;
        return 0;
    }

    /*  New data were read to the batch buffer. Copy the requested amount of it
        to the user-supplied buffer. */
    self->in.batch_len = nbytes;
    self->in.batch_pos = 0;
    if (nbytes) {
        sz = nbytes > (ssize_t)length ? length : (size_t)nbytes;
        memcpy (buf, self->in.batch, sz);
        length -= sz;
        self->in.batch_pos += sz;
    }

    *len -= length;
    return 0;
}
示例#4
0
文件: mtrie.cpp 项目: Jichao/libzmq
void zmq::mtrie_t::rm_helper (pipe_t *pipe_, unsigned char **buff_,
    size_t buffsize_, size_t maxbuffsize_,
    void (*func_) (unsigned char *data_, size_t size_, void *arg_),
    void *arg_, bool call_on_uniq_)
{
    //  Remove the subscription from this node.
    if (pipes && pipes->erase (pipe_)) {
        if (!call_on_uniq_ || pipes->empty ()) {
            func_ (*buff_, buffsize_, arg_);
        }

        if (pipes->empty ()) {
            LIBZMQ_DELETE(pipes);
        }
    }

    //  Adjust the buffer.
    if (buffsize_ >= maxbuffsize_) {
        maxbuffsize_ = buffsize_ + 256;
        *buff_ = (unsigned char*) realloc (*buff_, maxbuffsize_);
        alloc_assert (*buff_);
    }

    //  If there are no subnodes in the trie, return.
    if (count == 0)
        return;

    //  If there's one subnode (optimisation).
    if (count == 1) {
        (*buff_) [buffsize_] = min;
        buffsize_++;
        next.node->rm_helper (pipe_, buff_, buffsize_, maxbuffsize_,
            func_, arg_, call_on_uniq_);

        //  Prune the node if it was made redundant by the removal
        if (next.node->is_redundant ()) {
            LIBZMQ_DELETE(next.node);
            count = 0;
            --live_nodes;
            zmq_assert (live_nodes == 0);
        }
        return;
    }

    //  If there are multiple subnodes.
    //
    //  New min non-null character in the node table after the removal
    unsigned char new_min = min + count - 1;
    //  New max non-null character in the node table after the removal
    unsigned char new_max = min;
    for (unsigned short c = 0; c != count; c++) {
        (*buff_) [buffsize_] = min + c;
        if (next.table [c]) {
            next.table [c]->rm_helper (pipe_, buff_, buffsize_ + 1,
                maxbuffsize_, func_, arg_, call_on_uniq_);

            //  Prune redundant nodes from the mtrie
            if (next.table [c]->is_redundant ()) {
                LIBZMQ_DELETE(next.table[c]);

                zmq_assert (live_nodes > 0);
                --live_nodes;
            }
            else {
                //  The node is not redundant, so it's a candidate for being
                //  the new min/max node.
                //
                //  We loop through the node array from left to right, so the
                //  first non-null, non-redundant node encountered is the new
                //  minimum index. Conversely, the last non-redundant, non-null
                //  node encountered is the new maximum index.
                if (c + min < new_min)
                    new_min = c + min;
                if (c + min > new_max)
                    new_max = c + min;
            }
        }
    }

    zmq_assert (count > 1);

    //  Free the node table if it's no longer used.
    if (live_nodes == 0) {
        free (next.table);
        next.table = NULL;
        count = 0;
    }
    //  Compact the node table if possible
    else
    if (live_nodes == 1) {
        //  If there's only one live node in the table we can
        //  switch to using the more compact single-node
        //  representation
        zmq_assert (new_min == new_max);
        zmq_assert (new_min >= min && new_min < min + count);
        mtrie_t *node = next.table [new_min - min];
        zmq_assert (node);
        free (next.table);
        next.node = node;
        count = 1;
        min = new_min;
    }
    else
    if (new_min > min || new_max < min + count - 1) {
        zmq_assert (new_max - new_min + 1 > 1);

        mtrie_t **old_table = next.table;
        zmq_assert (new_min > min || new_max < min + count - 1);
        zmq_assert (new_min >= min);
        zmq_assert (new_max <= min + count - 1);
        zmq_assert (new_max - new_min + 1 < count);

        count = new_max - new_min + 1;
        next.table = (mtrie_t**) malloc (sizeof (mtrie_t*) * count);
        alloc_assert (next.table);

        memmove (next.table, old_table + (new_min - min),
                 sizeof (mtrie_t*) * count);
        free (old_table);

        min = new_min;
    }
}
示例#5
0
文件: mtrie.cpp 项目: Jichao/libzmq
bool zmq::mtrie_t::add_helper (unsigned char *prefix_, size_t size_,
    pipe_t *pipe_)
{
    //  We are at the node corresponding to the prefix. We are done.
    if (!size_) {
        bool result = !pipes;
        if (!pipes) {
            pipes = new (std::nothrow) pipes_t;
            alloc_assert (pipes);
        }
        pipes->insert (pipe_);
        return result;
    }

    unsigned char c = *prefix_;
    if (c < min || c >= min + count) {

        //  The character is out of range of currently handled
        //  charcters. We have to extend the table.
        if (!count) {
            min = c;
            count = 1;
            next.node = NULL;
        }
        else
        if (count == 1) {
            unsigned char oldc = min;
            mtrie_t *oldp = next.node;
            count = (min < c ? c - min : min - c) + 1;
            next.table = (mtrie_t**)
                malloc (sizeof (mtrie_t*) * count);
            alloc_assert (next.table);
            for (unsigned short i = 0; i != count; ++i)
                next.table [i] = 0;
            min = std::min (min, c);
            next.table [oldc - min] = oldp;
        }
        else
        if (min < c) {
            //  The new character is above the current character range.
            unsigned short old_count = count;
            count = c - min + 1;
            next.table = (mtrie_t**) realloc (next.table,
                sizeof (mtrie_t*) * count);
            alloc_assert (next.table);
            for (unsigned short i = old_count; i != count; i++)
                next.table [i] = NULL;
        }
        else {
            //  The new character is below the current character range.
            unsigned short old_count = count;
            count = (min + old_count) - c;
            next.table = (mtrie_t**) realloc (next.table,
                sizeof (mtrie_t*) * count);
            alloc_assert (next.table);
            memmove (next.table + min - c, next.table,
                old_count * sizeof (mtrie_t*));
            for (unsigned short i = 0; i != min - c; i++)
                next.table [i] = NULL;
            min = c;
        }
    }

    //  If next node does not exist, create one.
    if (count == 1) {
        if (!next.node) {
            next.node = new (std::nothrow) mtrie_t;
            alloc_assert (next.node);
            ++live_nodes;
        }
        return next.node->add_helper (prefix_ + 1, size_ - 1, pipe_);
    }
    else {
        if (!next.table [c - min]) {
            next.table [c - min] = new (std::nothrow) mtrie_t;
            alloc_assert (next.table [c - min]);
            ++live_nodes;
        }
        return next.table [c - min]->add_helper (prefix_ + 1, size_ - 1, pipe_);
    }
}
示例#6
0
static bool pfx_rm (pfx_node_t *node_, const unsigned char *prefix_,
    size_t size_, void *subscriber_)
{
    if (!size_) {

        //  Remove the subscription from this node.
        if (node_->subscribers) {
            pfx_node_t::subscribers_t::iterator it =
                node_->subscribers->find (subscriber_);
            if (it != node_->subscribers->end ()) {
                xs_assert (it->second);
                --it->second;
                if (!it->second) {
                    node_->subscribers->erase (it);
                    if (node_->subscribers->empty ()) {
                        delete node_->subscribers;
                        node_->subscribers = 0;
                    }
                }
            }
        }
        return !node_->subscribers;
    }

    unsigned char c = *prefix_;
    if (!node_->count || c < node_->min || c >= node_->min + node_->count)
        return false;

    pfx_node_t *next_node = node_->count == 1 ? node_->next.node :
        node_->next.table [c - node_->min];

    if (!next_node)
        return false;

    bool ret = pfx_rm (next_node, prefix_ + 1, size_ - 1, subscriber_);

    if (pfx_is_redundant (next_node)) {
        pfx_close (next_node);
        free (next_node);
        xs_assert (node_->count > 0);

        if (node_->count == 1) {
            node_->next.node = 0;
            node_->count = 0;
            --node_->live_nodes;
            xs_assert (node_->live_nodes == 0);
        }
        else {
            node_->next.table [c - node_->min] = 0;
            xs_assert (node_->live_nodes > 1);
            --node_->live_nodes;

            //  Compact the table if possible.
            if (node_->live_nodes == 0) {

                //  Free the node table if it's no longer used.
                free (node_->next.table);
                node_->next.table = NULL;
                node_->count = 0;
            }
            else if (node_->live_nodes == 1) {

                //  If there's only one live node in the table we can
                //  switch to using the more compact single-node
                //  representation
                pfx_node_t *node = 0;
                for (unsigned short i = 0; i < node_->count; ++i) {
                    if (node_->next.table [i]) {
                        node = node_->next.table [i];
                        node_->min += i;
                        break;
                    }
                }

                xs_assert (node);
                free (node_->next.table);
                node_->next.node = node;
                node_->count = 1;
            }
            else if (c == node_->min) {

                //  We can compact the table "from the left".
                unsigned char new_min = node_->min;
                for (unsigned short i = 1; i < node_->count; ++i) {
                    if (node_->next.table [i]) {
                        new_min = i + node_->min;
                        break;
                    }
                }
                xs_assert (new_min != node_->min);

                pfx_node_t **old_table = node_->next.table;
                xs_assert (new_min > node_->min);
                xs_assert (node_->count > new_min - node_->min);

                node_->count = node_->count - (new_min - node_->min);
                node_->next.table = (pfx_node_t**)
                    malloc (sizeof (pfx_node_t*) * node_->count);
                alloc_assert (node_->next.table);

                memmove (node_->next.table, old_table + (new_min - node_->min),
                         sizeof (pfx_node_t*) * node_->count);
                free (old_table);

                node_->min = new_min;
            }
            else if (c == node_->min + node_->count - 1) {

                //  We can compact the table "from the right".
                unsigned short new_count = node_->count;
                for (unsigned short i = 1; i < node_->count; ++i) {
                    if (node_->next.table [node_->count - 1 - i]) {
                        new_count = node_->count - i;
                        break;
                    }
                }
                xs_assert (new_count != node_->count);
                node_->count = new_count;

                pfx_node_t **old_table = node_->next.table;
                node_->next.table = (pfx_node_t**)
                    malloc (sizeof (pfx_node_t*) * node_->count);
                alloc_assert (node_->next.table);

                memmove (node_->next.table, old_table,
                    sizeof (pfx_node_t*) * node_->count);
                free (old_table);
            }
        }
    }

    return ret;
}
示例#7
0
bool zmq::trie_t::rm (unsigned char *prefix_, size_t size_)
{
    //  TODO: Shouldn't an error be reported if the key does not exist?
    if (!size_) {
        if (!refcnt)
            return false;
        refcnt--;
        return refcnt == 0;
    }
    unsigned char c = *prefix_;
    if (!count || c < min || c >= min + count)
        return false;

    trie_t *next_node =
        count == 1 ? next.node : next.table [c - min];

    if (!next_node)
        return false;

    bool ret = next_node->rm (prefix_ + 1, size_ - 1);

    //  Prune redundant nodes
    if (next_node->is_redundant ()) {
        LIBZMQ_DELETE(next_node);
        zmq_assert (count > 0);

        if (count == 1) {
            //  The just pruned node is was the only live node
            next.node = 0;
            count = 0;
            --live_nodes;
            zmq_assert (live_nodes == 0);
        }
        else {
            next.table [c - min] = 0;
            zmq_assert (live_nodes > 1);
            --live_nodes;

            //  Compact the table if possible
            if (live_nodes == 1) {
                //  We can switch to using the more compact single-node
                //  representation since the table only contains one live node
                trie_t *node = 0;
                //  Since we always compact the table the pruned node must
                //  either be the left-most or right-most ptr in the node
                //  table
                if (c == min) {
                    //  The pruned node is the left-most node ptr in the
                    //  node table => keep the right-most node
                    node = next.table [count - 1];
                    min += count - 1;
                }
                else
                if (c == min + count - 1) {
                    //  The pruned node is the right-most node ptr in the
                    //  node table => keep the left-most node
                    node = next.table [0];
                }
                zmq_assert (node);
                free (next.table);
                next.node = node;
                count = 1;
            }
            else
            if (c == min) {
                //  We can compact the table "from the left".
                //  Find the left-most non-null node ptr, which we'll use as
                //  our new min
                unsigned char new_min = min;
                for (unsigned short i = 1; i < count; ++i) {
                    if (next.table [i]) {
                        new_min = i + min;
                        break;
                    }
                }
                zmq_assert (new_min != min);

                trie_t **old_table = next.table;
                zmq_assert (new_min > min);
                zmq_assert (count > new_min - min);

                count = count - (new_min - min);
                next.table = (trie_t**) malloc (sizeof (trie_t*) * count);
                alloc_assert (next.table);

                memmove (next.table, old_table + (new_min - min),
                        sizeof (trie_t*) * count);
                free (old_table);

                min = new_min;
            }
            else
            if (c == min + count - 1) {
                //  We can compact the table "from the right".
                //  Find the right-most non-null node ptr, which we'll use to
                //  determine the new table size
                unsigned short new_count = count;
                for (unsigned short i = 1; i < count; ++i) {
                    if (next.table [count - 1 - i]) {
                        new_count = count - i;
                        break;
                    }
                }
                zmq_assert (new_count != count);
                count = new_count;

                trie_t **old_table = next.table;
                next.table = (trie_t**) malloc (sizeof (trie_t*) * count);
                alloc_assert (next.table);

                memmove (next.table, old_table, sizeof (trie_t*) * count);
                free (old_table);
            }
        }
    }
    return ret;
}
示例#8
0
void zmq::pgm_receiver_t::in_event ()
{
    // Read data from the underlying pgm_socket.
    const pgm_tsi_t *tsi = NULL;

    if (has_rx_timer) {
        cancel_timer (rx_timer_id);
        has_rx_timer = false;
    }

    //  TODO: This loop can effectively block other engines in the same I/O
    //  thread in the case of high load.
    while (true) {

        //  Get new batch of data.
        //  Note the workaround made not to break strict-aliasing rules.
        void *tmp = NULL;
        ssize_t received = pgm_socket.receive (&tmp, &tsi);
        inpos = (unsigned char*) tmp;

        //  No data to process. This may happen if the packet received is
        //  neither ODATA nor ODATA.
        if (received == 0) {
            if (errno == ENOMEM || errno == EBUSY) {
                const long timeout = pgm_socket.get_rx_timeout ();
                add_timer (timeout, rx_timer_id);
                has_rx_timer = true;
            }
            break;
        }

        //  Find the peer based on its TSI.
        peers_t::iterator it = peers.find (*tsi);

        //  Data loss. Delete decoder and mark the peer as disjoint.
        if (received == -1) {
            if (it != peers.end ()) {
                it->second.joined = false;
                if (it->second.decoder != NULL) {
                    LIBZMQ_DELETE(it->second.decoder);
                }
            }
            break;
        }

        //  New peer. Add it to the list of know but unjoint peers.
        if (it == peers.end ()) {
            peer_info_t peer_info = {false, NULL};
            it = peers.insert (peers_t::value_type (*tsi, peer_info)).first;
        }

        insize = static_cast <size_t> (received);

        //  Read the offset of the fist message in the current packet.
        zmq_assert (insize >= sizeof (uint16_t));
        uint16_t offset = get_uint16 (inpos);
        inpos += sizeof (uint16_t);
        insize -= sizeof (uint16_t);

        //  Join the stream if needed.
        if (!it->second.joined) {

            //  There is no beginning of the message in current packet.
            //  Ignore the data.
            if (offset == 0xffff)
                continue;

            zmq_assert (offset <= insize);
            zmq_assert (it->second.decoder == NULL);

            //  We have to move data to the beginning of the first message.
            inpos += offset;
            insize -= offset;

            //  Mark the stream as joined.
            it->second.joined = true;

            //  Create and connect decoder for the peer.
            it->second.decoder = new (std::nothrow)
                v1_decoder_t (0, options.maxmsgsize);
            alloc_assert (it->second.decoder);
        }

        int rc = process_input (it->second.decoder);
        if (rc == -1) {
            if (errno == EAGAIN) {
                active_tsi = tsi;

                //  Stop polling.
                reset_pollin (pipe_handle);
                reset_pollin (socket_handle);

                break;
            }

            it->second.joined = false;
            LIBZMQ_DELETE(it->second.decoder);
            insize = 0;
        }
    }

    //  Flush any messages decoder may have produced.
    session->flush ();
}
示例#9
0
void *zmq_poller_new (void)
{
    zmq::socket_poller_t *poller = new (std::nothrow) zmq::socket_poller_t;
    alloc_assert (poller);
    return poller;
}
示例#10
0
void zmq::socket_base_t::copy_monitor_address (char *dest_, std::string &src_)
{
    alloc_assert (dest_);
    dest_[src_.size ()] = 0;
    memcpy (dest_, src_.c_str (), src_.size ());
}
示例#11
0
int zmq::socket_base_t::connect (const char *addr_)
{
    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        return -1;
    }

    //  Process pending commands, if any.
    int rc = process_commands (0, false);
    if (unlikely (rc != 0))
        return -1;

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    rc = parse_uri (addr_, protocol, address);
    if (rc != 0)
        return -1;

    rc = check_protocol (protocol);
    if (rc != 0)
        return -1;

    if (protocol == "inproc") {

        //  TODO: inproc connect is specific with respect to creating pipes
        //  as there's no 'reconnect' functionality implemented. Once that
        //  is in place we should follow generic pipe creation algorithm.

        //  Find the peer endpoint.
        endpoint_t peer = find_endpoint (addr_);
        if (!peer.socket)
            return -1;

        // The total HWM for an inproc connection should be the sum of
        // the binder's HWM and the connector's HWM.
        int sndhwm = 0;
        if (options.sndhwm != 0 && peer.options.rcvhwm != 0)
            sndhwm = options.sndhwm + peer.options.rcvhwm;
        int rcvhwm = 0;
        if (options.rcvhwm != 0 && peer.options.sndhwm != 0)
            rcvhwm = options.rcvhwm + peer.options.sndhwm;

        //  Create a bi-directional pipe to connect the peers.
        object_t *parents [2] = {this, peer.socket};
        pipe_t *pipes [2] = {NULL, NULL};
        int hwms [2] = {sndhwm, rcvhwm};
        bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
        int rc = pipepair (parents, pipes, hwms, delays);
        errno_assert (rc == 0);

        //  Attach local end of the pipe to this socket object.
        attach_pipe (pipes [0]);

        //  If required, send the identity of the local socket to the peer.
        if (peer.options.recv_identity) {
            msg_t id;
            rc = id.init_size (options.identity_size);
            errno_assert (rc == 0);
            memcpy (id.data (), options.identity, options.identity_size);
            id.set_flags (msg_t::identity);
            bool written = pipes [0]->write (&id);
            zmq_assert (written);
            pipes [0]->flush ();
        }

        //  If required, send the identity of the peer to the local socket.
        if (options.recv_identity) {
            msg_t id;
            rc = id.init_size (peer.options.identity_size);
            errno_assert (rc == 0);
            memcpy (id.data (), peer.options.identity, peer.options.identity_size);
            id.set_flags (msg_t::identity);
            bool written = pipes [1]->write (&id);
            zmq_assert (written);
            pipes [1]->flush ();
        }

        //  Attach remote end of the pipe to the peer socket. Note that peer's
        //  seqnum was incremented in find_endpoint function. We don't need it
        //  increased here.
        send_bind (peer.socket, pipes [1], false);

        // Save last endpoint URI
        options.last_endpoint.assign (addr_);

        // remember inproc connections for disconnect
        inprocs.insert (inprocs_t::value_type (std::string (addr_), pipes[0]));

        return 0;
    }

    //  Choose the I/O thread to run the session in.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    if (!io_thread) {
        errno = EMTHREAD;
        return -1;
    }

    address_t *paddr = new (std::nothrow) address_t (protocol, address);
    alloc_assert (paddr);

    //  Resolve address (if needed by the protocol)
    if (protocol == "tcp") {
        paddr->resolved.tcp_addr = new (std::nothrow) tcp_address_t ();
        alloc_assert (paddr->resolved.tcp_addr);
        int rc = paddr->resolved.tcp_addr->resolve (
            address.c_str (), false, options.ipv4only ? true : false);
        if (rc != 0) {
            delete paddr;
            return -1;
        }
    }
#if !defined ZMQ_HAVE_WINDOWS && !defined ZMQ_HAVE_OPENVMS
    else
    if (protocol == "ipc") {
        paddr->resolved.ipc_addr = new (std::nothrow) ipc_address_t ();
        alloc_assert (paddr->resolved.ipc_addr);
        int rc = paddr->resolved.ipc_addr->resolve (address.c_str ());
        if (rc != 0) {
            delete paddr;
            return -1;
        }
    }
#endif
#ifdef ZMQ_HAVE_OPENPGM
    if (protocol == "pgm" || protocol == "epgm") {
        struct pgm_addrinfo_t *res = NULL;
        uint16_t port_number = 0;
        int rc = pgm_socket_t::init_address(address.c_str(), &res, &port_number);
        if (res != NULL)
            pgm_freeaddrinfo (res);
        if (rc != 0 || port_number == 0)
            return -1;
    }
#endif
    //  Create session.
    session_base_t *session = session_base_t::create (io_thread, true, this,
        options, paddr);
    errno_assert (session);

    //  PGM does not support subscription forwarding; ask for all data to be
    //  sent to this pipe.
    bool icanhasall = protocol == "pgm" || protocol == "epgm";

    if (options.delay_attach_on_connect != 1 || icanhasall) {
        //  Create a bi-directional pipe.
        object_t *parents [2] = {this, session};
        pipe_t *pipes [2] = {NULL, NULL};
        int hwms [2] = {options.sndhwm, options.rcvhwm};
        bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
        rc = pipepair (parents, pipes, hwms, delays);
        errno_assert (rc == 0);

        //  Attach local end of the pipe to the socket object.
        attach_pipe (pipes [0], icanhasall);

        //  Attach remote end of the pipe to the session object later on.
        session->attach_pipe (pipes [1]);
    }

    //  Save last endpoint URI
    paddr->to_string (options.last_endpoint);

    add_endpoint (addr_, (own_t *) session);
    return 0;
}
示例#12
0
int zmq::curve_server_t::decode (msg_t *msg_)
{
    zmq_assert (state == connected);

    if (msg_->size () < 33) {
        //  Temporary support for security debugging
        puts ("CURVE I: invalid CURVE client, sent malformed command");
        errno = EPROTO;
        return -1;
    }

    const uint8_t *message = static_cast <uint8_t *> (msg_->data ());
    if (memcmp (message, "\x07MESSAGE", 8)) {
        //  Temporary support for security debugging
        puts ("CURVE I: invalid CURVE client, did not send MESSAGE");
        errno = EPROTO;
        return -1;
    }

    uint8_t message_nonce [crypto_box_NONCEBYTES];
    memcpy (message_nonce, "CurveZMQMESSAGEC", 16);
    memcpy (message_nonce + 16, message + 8, 8);
    uint64_t nonce = get_uint64(message + 8);
    if (nonce <= cn_peer_nonce) {
        errno = EPROTO;
        return -1;
    }
    cn_peer_nonce = nonce;

    const size_t clen = crypto_box_BOXZEROBYTES + msg_->size () - 16;

    uint8_t *message_plaintext = static_cast <uint8_t *> (malloc (clen));
    alloc_assert (message_plaintext);

    uint8_t *message_box = static_cast <uint8_t *> (malloc (clen));
    alloc_assert (message_box);

    memset (message_box, 0, crypto_box_BOXZEROBYTES);
    memcpy (message_box + crypto_box_BOXZEROBYTES,
            message + 16, msg_->size () - 16);

    int rc = crypto_box_open_afternm (message_plaintext, message_box,
                                      clen, message_nonce, cn_precom);
    if (rc == 0) {
        rc = msg_->close ();
        zmq_assert (rc == 0);

        rc = msg_->init_size (clen - 1 - crypto_box_ZEROBYTES);
        zmq_assert (rc == 0);

        const uint8_t flags = message_plaintext [crypto_box_ZEROBYTES];
        if (flags & 0x01)
            msg_->set_flags (msg_t::more);
        if (flags & 0x02)
            msg_->set_flags (msg_t::command);

        memcpy (msg_->data (),
                message_plaintext + crypto_box_ZEROBYTES + 1,
                msg_->size ());
    }
    else {
        //  Temporary support for security debugging
        puts ("CURVE I: connection key used for MESSAGE is wrong");
        errno = EPROTO;
    }
    free (message_plaintext);
    free (message_box);

    return rc;
}
示例#13
0
int zmq::socket_base_t::term_endpoint (const char *addr_)
{
    scoped_optional_lock_t sync_lock(thread_safe ? &sync : NULL);

    //  Check whether the library haven't been shut down yet.
    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        return -1;
    }

    //  Check whether endpoint address passed to the function is valid.
    if (unlikely (!addr_)) {
        errno = EINVAL;
        return -1;
    }

    //  Process pending commands, if any, since there could be pending unprocessed process_own()'s
    //  (from launch_child() for example) we're asked to terminate now.
    int rc = process_commands (0, false);
    if (unlikely(rc != 0)) {
        return -1;
    }

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    if (parse_uri(addr_, protocol, address) || check_protocol(protocol)) {
        return -1;
    }

    // Disconnect an inproc socket
    if (protocol == "inproc") {
        if (unregister_endpoint (std::string(addr_), this) == 0) {
            return 0;
        }
        std::pair <inprocs_t::iterator, inprocs_t::iterator> range = inprocs.equal_range (std::string (addr_));
        if (range.first == range.second) {
            errno = ENOENT;
            return -1;
        }

        for (inprocs_t::iterator it = range.first; it != range.second; ++it)
            it->second->terminate (true);
        inprocs.erase (range.first, range.second);
        return 0;
    }

    std::string resolved_addr = std::string (addr_);
    std::pair <endpoints_t::iterator, endpoints_t::iterator> range;

    // The resolved last_endpoint is used as a key in the endpoints map.
    // The address passed by the user might not match in the TCP case due to
    // IPv4-in-IPv6 mapping (EG: tcp://[::ffff:127.0.0.1]:9999), so try to
    // resolve before giving up. Given at this stage we don't know whether a
    // socket is connected or bound, try with both.
    if (protocol == "tcp") {
        range = endpoints.equal_range (resolved_addr);
        if (range.first == range.second) {
            tcp_address_t *tcp_addr = new (std::nothrow) tcp_address_t ();
            alloc_assert (tcp_addr);
            rc = tcp_addr->resolve (address.c_str (), false, options.ipv6);

            if (rc == 0) {
                tcp_addr->to_string (resolved_addr);
                range = endpoints.equal_range (resolved_addr);

                if (range.first == range.second) {
                    rc = tcp_addr->resolve (address.c_str (), true, options.ipv6);
                    if (rc == 0) {
                        tcp_addr->to_string (resolved_addr);
                    }
                }
            }
            LIBZMQ_DELETE(tcp_addr);
        }
    }

    //  Find the endpoints range (if any) corresponding to the addr_ string.
    range = endpoints.equal_range (resolved_addr);
    if (range.first == range.second) {
        errno = ENOENT;
        return -1;
    }

    for (endpoints_t::iterator it = range.first; it != range.second; ++it) {
        //  If we have an associated pipe, terminate it.
        if (it->second.second != NULL)
            it->second.second->terminate (false);
        term_child (it->second.first);
    }
    endpoints.erase (range.first, range.second);
    return 0;
}
示例#14
0
int zmq::socket_base_t::bind (const char *addr_)
{
    scoped_optional_lock_t sync_lock(thread_safe ? &sync : NULL);

    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        return -1;
    }

    //  Process pending commands, if any.
    int rc = process_commands (0, false);
    if (unlikely (rc != 0)) {
        return -1;
    }

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    if (parse_uri (addr_, protocol, address) || check_protocol (protocol)) {
        return -1;
    }

    if (protocol == "inproc") {
        const endpoint_t endpoint = { this, options };
        rc = register_endpoint (addr_, endpoint);
        if (rc == 0) {
            connect_pending (addr_, this);
            last_endpoint.assign (addr_);
            options.connected = true;
        }
        return rc;
    }

    if (protocol == "pgm" || protocol == "epgm" || protocol == "norm") {
        //  For convenience's sake, bind can be used interchangeable with
        //  connect for PGM, EPGM, NORM transports.
        rc = connect (addr_);
        if (rc != -1)
            options.connected = true;
        return rc;
    }

    if (protocol == "udp") {
        if (!(options.type == ZMQ_DGRAM || options.type == ZMQ_DISH)) {
            errno = ENOCOMPATPROTO;
            return -1;
        }

        //  Choose the I/O thread to run the session in.
        io_thread_t *io_thread = choose_io_thread (options.affinity);
        if (!io_thread) {
            errno = EMTHREAD;
            return -1;
        }

        address_t *paddr = new (std::nothrow) address_t (protocol, address, this->get_ctx ());
        alloc_assert (paddr);

        paddr->resolved.udp_addr = new (std::nothrow) udp_address_t ();
        alloc_assert (paddr->resolved.udp_addr);
        rc = paddr->resolved.udp_addr->resolve (address.c_str(), true);
        if (rc != 0) {
            LIBZMQ_DELETE(paddr);
            return -1;
        }

        session_base_t *session = session_base_t::create (io_thread, true, this,
            options, paddr);
        errno_assert (session);

        pipe_t *newpipe = NULL;

        //  Create a bi-directional pipe.
        object_t *parents [2] = {this, session};
        pipe_t *new_pipes [2] = {NULL, NULL};

        int hwms [2] = {options.sndhwm, options.rcvhwm};
        bool conflates [2] = {false, false};
        rc = pipepair (parents, new_pipes, hwms, conflates);
        errno_assert (rc == 0);

        //  Attach local end of the pipe to the socket object.
        attach_pipe (new_pipes [0], true);
        newpipe = new_pipes [0];

        //  Attach remote end of the pipe to the session object later on.
        session->attach_pipe (new_pipes [1]);

        //  Save last endpoint URI
        paddr->to_string (last_endpoint);

        add_endpoint (addr_, (own_t *) session, newpipe);

        return 0;
    }

    //  Remaining transports require to be run in an I/O thread, so at this
    //  point we'll choose one.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    if (!io_thread) {
        errno = EMTHREAD;
        return -1;
    }

    if (protocol == "tcp") {
        tcp_listener_t *listener = new (std::nothrow) tcp_listener_t (
            io_thread, this, options);
        alloc_assert (listener);
        rc = listener->set_address (address.c_str ());
        if (rc != 0) {
            LIBZMQ_DELETE(listener);
            event_bind_failed (address, zmq_errno());
            return -1;
        }

        // Save last endpoint URI
        listener->get_address (last_endpoint);

        add_endpoint (last_endpoint.c_str (), (own_t *) listener, NULL);
        options.connected = true;
        return 0;
    }

#if !defined ZMQ_HAVE_WINDOWS && !defined ZMQ_HAVE_OPENVMS
    if (protocol == "ipc") {
        ipc_listener_t *listener = new (std::nothrow) ipc_listener_t (
            io_thread, this, options);
        alloc_assert (listener);
        int rc = listener->set_address (address.c_str ());
        if (rc != 0) {
            LIBZMQ_DELETE(listener);
            event_bind_failed (address, zmq_errno());
            return -1;
        }

        // Save last endpoint URI
        listener->get_address (last_endpoint);

        add_endpoint (last_endpoint.c_str (), (own_t *) listener, NULL);
        options.connected = true;
        return 0;
    }
#endif
#if defined ZMQ_HAVE_TIPC
    if (protocol == "tipc") {
         tipc_listener_t *listener = new (std::nothrow) tipc_listener_t (
              io_thread, this, options);
         alloc_assert (listener);
         int rc = listener->set_address (address.c_str ());
         if (rc != 0) {
             LIBZMQ_DELETE(listener);
             event_bind_failed (address, zmq_errno());
             return -1;
         }

        // Save last endpoint URI
        listener->get_address (last_endpoint);

        add_endpoint (addr_, (own_t *) listener, NULL);
        options.connected = true;
        return 0;
    }
#endif
#if defined ZMQ_HAVE_VMCI
    if (protocol == "vmci") {
        vmci_listener_t *listener = new (std::nothrow) vmci_listener_t (
            io_thread, this, options);
        alloc_assert (listener);
        int rc = listener->set_address (address.c_str ());
        if (rc != 0) {
            LIBZMQ_DELETE(listener);
            event_bind_failed (address, zmq_errno ());
            return -1;
        }

        listener->get_address (last_endpoint);

        add_endpoint (last_endpoint.c_str(), (own_t *) listener, NULL);
        options.connected = true;
        return 0;
    }
#endif

    zmq_assert (false);
    return -1;
}
示例#15
0
文件: ctx.c 项目: jjrdn/nanomsg
static void nn_ctx_init (void)
{
    int i;
#if defined NN_HAVE_WINDOWS
    WSADATA data;
    int rc;
#endif

    /*  Check whether the library was already initialised. If so, do nothing. */
    if (self.socks)
        return;

    /*  On Windows, initialise the socket library. */
#if defined NN_HAVE_WINDOWS
    rc = WSAStartup (MAKEWORD (2, 2), &data);
    nn_assert (rc == 0);
    nn_assert (LOBYTE (data.wVersion) == 2 &&
        HIBYTE (data.wVersion) == 2);
#endif

    /*  Initialise the memory allocation subsystem. */
    nn_alloc_init ();

    /*  Seed the pseudo-random number generator. */
    nn_random_seed ();

    /*  Allocate the global table of SP sockets. */
    self.socks = nn_alloc ((sizeof (struct nn_sock*) * NN_MAX_SOCKETS) +
        (sizeof (uint16_t) * NN_MAX_SOCKETS), "socket table");
    alloc_assert (self.socks);
    for (i = 0; i != NN_MAX_SOCKETS; ++i)
        self.socks [i] = NULL;
    self.nsocks = 0;
    self.flags = 0;

    /*  Allocate the stack of unused file descriptors. */
    self.unused = (uint16_t*) (self.socks + NN_MAX_SOCKETS);
    alloc_assert (self.unused);
    for (i = 0; i != NN_MAX_SOCKETS; ++i)
        self.unused [i] = NN_MAX_SOCKETS - i - 1;

    /*  Initialise other parts of the global state. */
    nn_list_init (&self.transports);
    nn_list_init (&self.socktypes);

    /*  Plug in individual transports. */
    nn_ctx_add_transport (nn_inproc);
#if !defined NN_HAVE_WINDOWS
    nn_ctx_add_transport (nn_ipc);
#endif
    nn_ctx_add_transport (nn_tcp);

    /*  Plug in individual socktypes. */
    nn_ctx_add_socktype (nn_pair_socktype);
    nn_ctx_add_socktype (nn_xpair_socktype);
    nn_ctx_add_socktype (nn_pub_socktype);
    nn_ctx_add_socktype (nn_sub_socktype);
    nn_ctx_add_socktype (nn_rep_socktype);
    nn_ctx_add_socktype (nn_req_socktype);
    nn_ctx_add_socktype (nn_xrep_socktype);
    nn_ctx_add_socktype (nn_xreq_socktype);
    nn_ctx_add_socktype (nn_sink_socktype);
    nn_ctx_add_socktype (nn_source_socktype);
    nn_ctx_add_socktype (nn_xsink_socktype);
    nn_ctx_add_socktype (nn_xsource_socktype);
    nn_ctx_add_socktype (nn_push_socktype);
    nn_ctx_add_socktype (nn_xpush_socktype);
    nn_ctx_add_socktype (nn_pull_socktype);
    nn_ctx_add_socktype (nn_xpull_socktype);
    nn_ctx_add_socktype (nn_respondent_socktype);
    nn_ctx_add_socktype (nn_surveyor_socktype);
    nn_ctx_add_socktype (nn_xrespondent_socktype);
    nn_ctx_add_socktype (nn_xsurveyor_socktype);
    nn_ctx_add_socktype (nn_bus_socktype);
    nn_ctx_add_socktype (nn_xbus_socktype);

#if defined NN_LATENCY_MONITOR
    nn_latmon_init ();
#endif
}
示例#16
0
void *zmq_timers_new (void)
{
    zmq::timers_t *timers = new (std::nothrow) zmq::timers_t;
    alloc_assert (timers);
    return timers;
}
示例#17
0
static void pfx_rm_all (pfx_node_t *node_, void *subscribers_,
    unsigned char **buff_, size_t buffsize_, size_t maxbuffsize_, void *arg_)
{
    //  Remove the subscription from this node.
    if (node_->subscribers) {
        pfx_node_t::subscribers_t::iterator it =
            node_->subscribers->find (subscribers_);
        if (it != node_->subscribers->end ()) {
            xs_assert (it->second);
            --it->second;
            if (!it->second) {
                node_->subscribers->erase (it);
                if (node_->subscribers->empty ()) {
                    int rc = xs_filter_unsubscribed (arg_, *buff_, buffsize_);
                    errno_assert (rc == 0);
                    delete node_->subscribers;
                    node_->subscribers = 0;
                }
            }
        }
    }

    //  Adjust the buffer.
    if (buffsize_ >= maxbuffsize_) {
        maxbuffsize_ = buffsize_ + 256;
        *buff_ = (unsigned char*) realloc (*buff_, maxbuffsize_);
        alloc_assert (*buff_);
    }

    //  If there are no subnodes in the trie, return.
    if (node_->count == 0)
        return;

    //  If there's one subnode (optimisation).
    if (node_->count == 1) {
        (*buff_) [buffsize_] = node_->min;
        buffsize_++;
        pfx_rm_all (node_->next.node, subscribers_, buff_, buffsize_,
            maxbuffsize_, arg_);

        //  Prune the node if it was made redundant by the removal
        if (pfx_is_redundant (node_->next.node)) {
            pfx_close (node_->next.node);
            free (node_->next.node);
            node_->next.node = 0;
            node_->count = 0;
            --node_->live_nodes;
            xs_assert (node_->live_nodes == 0);
        }
        return;
    }

    //  If there are multiple subnodes.

    //  New min non-null character in the node table after the removal.
    unsigned char new_min = node_->min + node_->count - 1;

    //  New max non-null character in the node table after the removal.
    unsigned char new_max = node_->min;
    for (unsigned short c = 0; c != node_->count; c++) {
        (*buff_) [buffsize_] = node_->min + c;
        if (node_->next.table [c]) {
            pfx_rm_all (node_->next.table [c], subscribers_, buff_,
                buffsize_ + 1, maxbuffsize_, arg_);

            //  Prune redundant nodes from the the trie.
            if (pfx_is_redundant (node_->next.table [c])) {
                pfx_close (node_->next.table [c]);
                free (node_->next.table [c]);
                node_->next.table [c] = 0;

                xs_assert (node_->live_nodes > 0);
                --node_->live_nodes;
            }
            else {
                //  The node is not redundant, so it's a candidate for being
                //  the new min/max node.
                //
                //  We loop through the node array from left to right, so the
                //  first non-null, non-redundant node encountered is the new
                //  minimum index. Conversely, the last non-redundant, non-null
                //  node encountered is the new maximum index.
                if (c + node_->min < new_min)
                    new_min = c + node_->min;
                if (c + node_->min > new_max)
                    new_max = c + node_->min;
            }
        }
    }

    xs_assert (node_->count > 1);

    //  Compact the node table if possible.
    if (node_->live_nodes == 0) {

        //  Free the node table if it's no longer used.
        free (node_->next.table);
        node_->next.table = NULL;
        node_->count = 0;
    }
    else if (node_->live_nodes == 1) {

        //  If there's only one live node in the table we can
        //  switch to using the more compact single-node
        //  representation.
        xs_assert (new_min == new_max);
        xs_assert (new_min >= node_->min &&
            new_min < node_->min + node_->count);
        pfx_node_t *node = node_->next.table [new_min - node_->min];
        xs_assert (node);
        free (node_->next.table);
        node_->next.node = node;
        node_->count = 1;
        node_->min = new_min;
    }
    else if (new_min > node_->min ||
          new_max < node_->min + node_->count - 1) {
        xs_assert (new_max - new_min + 1 > 1);

        pfx_node_t **old_table = node_->next.table;
        xs_assert (new_min > node_->min ||
            new_max < node_->min + node_->count - 1);
        xs_assert (new_min >= node_->min);
        xs_assert (new_max <= node_->min + node_->count - 1);
        xs_assert (new_max - new_min + 1 < node_->count);

        node_->count = new_max - new_min + 1;
        node_->next.table =
            (pfx_node_t**) malloc (sizeof (pfx_node_t*) * node_->count);
        alloc_assert (node_->next.table);

        memmove (node_->next.table, old_table + (new_min - node_->min),
                 sizeof (pfx_node_t*) * node_->count);
        free (old_table);

        node_->min = new_min;
    }
}
示例#18
0
int zmq_poll (zmq_pollitem_t *items_, int nitems_, long timeout_)
{
    //  TODO: the function implementation can just call zmq_pollfd_poll with
    //  pollfd as NULL, however pollfd is not yet stable.
#if defined ZMQ_POLL_BASED_ON_POLL
    if (unlikely (nitems_ < 0)) {
        errno = EINVAL;
        return -1;
    }
    if (unlikely (nitems_ == 0)) {
        if (timeout_ == 0)
            return 0;
#if defined ZMQ_HAVE_WINDOWS
        Sleep (timeout_ > 0 ? timeout_ : INFINITE);
        return 0;
#elif defined ZMQ_HAVE_ANDROID
        usleep (timeout_ * 1000);
        return 0;
#else
        return usleep (timeout_ * 1000);
#endif
    }

    if (!items_) {
        errno = EFAULT;
        return -1;
    }

    zmq::clock_t clock;
    uint64_t now = 0;
    uint64_t end = 0;
    pollfd spollfds[ZMQ_POLLITEMS_DFLT];
    pollfd *pollfds = spollfds;

    if (nitems_ > ZMQ_POLLITEMS_DFLT) {
        pollfds = (pollfd*) malloc (nitems_ * sizeof (pollfd));
        alloc_assert (pollfds);
    }

    //  Build pollset for poll () system call.
    for (int i = 0; i != nitems_; i++) {

        //  If the poll item is a 0MQ socket, we poll on the file descriptor
        //  retrieved by the ZMQ_FD socket option.
        if (items_ [i].socket) {
            size_t zmq_fd_size = sizeof (zmq::fd_t);
            if (zmq_getsockopt (items_ [i].socket, ZMQ_FD, &pollfds [i].fd,
                &zmq_fd_size) == -1) {
                if (pollfds != spollfds)
                    free (pollfds);
                return -1;
            }
            pollfds [i].events = items_ [i].events ? POLLIN : 0;
        }
        //  Else, the poll item is a raw file descriptor. Just convert the
        //  events to normal POLLIN/POLLOUT for poll ().
        else {
            pollfds [i].fd = items_ [i].fd;
            pollfds [i].events =
                (items_ [i].events & ZMQ_POLLIN ? POLLIN : 0) |
                (items_ [i].events & ZMQ_POLLOUT ? POLLOUT : 0) |
                (items_ [i].events & ZMQ_POLLPRI ? POLLPRI : 0);
        }
    }

    bool first_pass = true;
    int nevents = 0;

    while (true) {
        //  Compute the timeout for the subsequent poll.
        int timeout;
        if (first_pass)
            timeout = 0;
        else
        if (timeout_ < 0)
            timeout = -1;
        else
            timeout = end - now;

        //  Wait for events.
        while (true) {
            int rc = poll (pollfds, nitems_, timeout);
            if (rc == -1 && errno == EINTR) {
                if (pollfds != spollfds)
                    free (pollfds);
                return -1;
            }
            errno_assert (rc >= 0);
            break;
        }
        //  Check for the events.
        for (int i = 0; i != nitems_; i++) {

            items_ [i].revents = 0;

            //  The poll item is a 0MQ socket. Retrieve pending events
            //  using the ZMQ_EVENTS socket option.
            if (items_ [i].socket) {
                size_t zmq_events_size = sizeof (uint32_t);
                uint32_t zmq_events;
                if (zmq_getsockopt (items_ [i].socket, ZMQ_EVENTS, &zmq_events,
                    &zmq_events_size) == -1) {
                    if (pollfds != spollfds)
                        free (pollfds);
                    return -1;
                }
                if ((items_ [i].events & ZMQ_POLLOUT) &&
                      (zmq_events & ZMQ_POLLOUT))
                    items_ [i].revents |= ZMQ_POLLOUT;
                if ((items_ [i].events & ZMQ_POLLIN) &&
                      (zmq_events & ZMQ_POLLIN))
                    items_ [i].revents |= ZMQ_POLLIN;
            }
            //  Else, the poll item is a raw file descriptor, simply convert
            //  the events to zmq_pollitem_t-style format.
            else {
                if (pollfds [i].revents & POLLIN)
                    items_ [i].revents |= ZMQ_POLLIN;
                if (pollfds [i].revents & POLLOUT)
                    items_ [i].revents |= ZMQ_POLLOUT;
                if (pollfds [i].revents & POLLPRI)
                   items_ [i].revents |= ZMQ_POLLPRI;
                if (pollfds [i].revents & ~(POLLIN | POLLOUT | POLLPRI))
                    items_ [i].revents |= ZMQ_POLLERR;
            }

            if (items_ [i].revents)
                nevents++;
        }

        //  If timeout is zero, exit immediately whether there are events or not.
        if (timeout_ == 0)
            break;

        //  If there are events to return, we can exit immediately.
        if (nevents)
            break;

        //  At this point we are meant to wait for events but there are none.
        //  If timeout is infinite we can just loop until we get some events.
        if (timeout_ < 0) {
            if (first_pass)
                first_pass = false;
            continue;
        }

        //  The timeout is finite and there are no events. In the first pass
        //  we get a timestamp of when the polling have begun. (We assume that
        //  first pass have taken negligible time). We also compute the time
        //  when the polling should time out.
        if (first_pass) {
            now = clock.now_ms ();
            end = now + timeout_;
            if (now == end)
                break;
            first_pass = false;
            continue;
        }

        //  Find out whether timeout have expired.
        now = clock.now_ms ();
        if (now >= end)
            break;
    }

    if (pollfds != spollfds)
        free (pollfds);
    return nevents;

#elif defined ZMQ_POLL_BASED_ON_SELECT

    if (unlikely (nitems_ < 0)) {
        errno = EINVAL;
        return -1;
    }
    if (unlikely (nitems_ == 0)) {
        if (timeout_ == 0)
            return 0;
#if defined ZMQ_HAVE_WINDOWS
        Sleep (timeout_ > 0 ? timeout_ : INFINITE);
        return 0;
#else
        return usleep (timeout_ * 1000);
#endif
    }
    zmq::clock_t clock;
    uint64_t now = 0;
    uint64_t end = 0;

    //  Ensure we do not attempt to select () on more than FD_SETSIZE
    //  file descriptors.
    zmq_assert (nitems_ <= FD_SETSIZE);

    fd_set pollset_in  = { 0 };
    fd_set pollset_out = { 0 };
    fd_set pollset_err = { 0 };

    zmq::fd_t maxfd = 0;

    //  Build the fd_sets for passing to select ().
    for (int i = 0; i != nitems_; i++) {

        //  If the poll item is a 0MQ socket we are interested in input on the
        //  notification file descriptor retrieved by the ZMQ_FD socket option.
        if (items_ [i].socket) {
            size_t zmq_fd_size = sizeof (zmq::fd_t);
            zmq::fd_t notify_fd;
            if (zmq_getsockopt (items_ [i].socket, ZMQ_FD, &notify_fd,
                &zmq_fd_size) == -1)
                return -1;
            if (items_ [i].events) {
                FD_SET (notify_fd, &pollset_in);
                if (maxfd < notify_fd)
                    maxfd = notify_fd;
            }
        }
        //  Else, the poll item is a raw file descriptor. Convert the poll item
        //  events to the appropriate fd_sets.
        else {
            if (items_ [i].events & ZMQ_POLLIN)
                FD_SET (items_ [i].fd, &pollset_in);
            if (items_ [i].events & ZMQ_POLLOUT)
                FD_SET (items_ [i].fd, &pollset_out);
            if (items_ [i].events & ZMQ_POLLERR)
                FD_SET (items_ [i].fd, &pollset_err);
            if (maxfd < items_ [i].fd)
                maxfd = items_ [i].fd;
        }
    }

    bool first_pass = true;
    int nevents = 0;
    fd_set inset, outset, errset;

    while (true) {

        //  Compute the timeout for the subsequent poll.
        timeval timeout;
        timeval *ptimeout;
        if (first_pass) {
            timeout.tv_sec = 0;
            timeout.tv_usec = 0;
            ptimeout = &timeout;
        }
        else
        if (timeout_ < 0)
            ptimeout = NULL;
        else {
            timeout.tv_sec = (long) ((end - now) / 1000);
            timeout.tv_usec = (long) ((end - now) % 1000 * 1000);
            ptimeout = &timeout;
        }

        //  Wait for events. Ignore interrupts if there's infinite timeout.
        while (true) {
            memcpy (&inset, &pollset_in, sizeof (fd_set));
            memcpy (&outset, &pollset_out, sizeof (fd_set));
            memcpy (&errset, &pollset_err, sizeof (fd_set));
#if defined ZMQ_HAVE_WINDOWS
            int rc = select (0, &inset, &outset, &errset, ptimeout);
            if (unlikely (rc == SOCKET_ERROR)) {
                errno = zmq::wsa_error_to_errno (WSAGetLastError ());
                wsa_assert (errno == ENOTSOCK);
                return -1;
            }
#else
            int rc = select (maxfd + 1, &inset, &outset, &errset, ptimeout);
            if (unlikely (rc == -1)) {
                errno_assert (errno == EINTR || errno == EBADF);
                return -1;
            }
#endif
            break;
        }

        //  Check for the events.
        for (int i = 0; i != nitems_; i++) {

            items_ [i].revents = 0;

            //  The poll item is a 0MQ socket. Retrieve pending events
            //  using the ZMQ_EVENTS socket option.
            if (items_ [i].socket) {
                size_t zmq_events_size = sizeof (uint32_t);
                uint32_t zmq_events;
                if (zmq_getsockopt (items_ [i].socket, ZMQ_EVENTS, &zmq_events,
                      &zmq_events_size) == -1)
                    return -1;
                if ((items_ [i].events & ZMQ_POLLOUT) &&
                      (zmq_events & ZMQ_POLLOUT))
                    items_ [i].revents |= ZMQ_POLLOUT;
                if ((items_ [i].events & ZMQ_POLLIN) &&
                      (zmq_events & ZMQ_POLLIN))
                    items_ [i].revents |= ZMQ_POLLIN;
            }
            //  Else, the poll item is a raw file descriptor, simply convert
            //  the events to zmq_pollitem_t-style format.
            else {
                if (FD_ISSET (items_ [i].fd, &inset))
                    items_ [i].revents |= ZMQ_POLLIN;
                if (FD_ISSET (items_ [i].fd, &outset))
                    items_ [i].revents |= ZMQ_POLLOUT;
                if (FD_ISSET (items_ [i].fd, &errset))
                    items_ [i].revents |= ZMQ_POLLERR;
            }

            if (items_ [i].revents)
                nevents++;
        }

        //  If timeout is zero, exit immediately whether there are events or not.
        if (timeout_ == 0)
            break;

        //  If there are events to return, we can exit immediately.
        if (nevents)
            break;

        //  At this point we are meant to wait for events but there are none.
        //  If timeout is infinite we can just loop until we get some events.
        if (timeout_ < 0) {
            if (first_pass)
                first_pass = false;
            continue;
        }

        //  The timeout is finite and there are no events. In the first pass
        //  we get a timestamp of when the polling have begun. (We assume that
        //  first pass have taken negligible time). We also compute the time
        //  when the polling should time out.
        if (first_pass) {
            now = clock.now_ms ();
            end = now + timeout_;
            if (now == end)
                break;
            first_pass = false;
            continue;
        }

        //  Find out whether timeout have expired.
        now = clock.now_ms ();
        if (now >= end)
          break;
    }

    return nevents;

#else
    //  Exotic platforms that support neither poll() nor select().
    errno = ENOTSUP;
    return -1;
#endif
}
示例#19
0
static bool pfx_add (pfx_node_t *node_,
    const unsigned char *prefix_, size_t size_, void *subscriber_)
{
    //  We are at the node corresponding to the prefix. We are done.
    if (!size_) {
        bool result = !node_->subscribers;
        if (!node_->subscribers)
            node_->subscribers = new (std::nothrow) pfx_node_t::subscribers_t;
        pfx_node_t::subscribers_t::iterator it = node_->subscribers->insert (
            pfx_node_t::subscribers_t::value_type (subscriber_, 0)).first;
        ++it->second;
        return result;
    }

    unsigned char c = *prefix_;
    if (c < node_->min || c >= node_->min + node_->count) {

        //  The character is out of range of currently handled
        //  charcters. We have to extend the table.
        if (!node_->count) {
            node_->min = c;
            node_->count = 1;
            node_->next.node = NULL;
        }
        else if (node_->count == 1) {
            unsigned char oldc = node_->min;
            pfx_node_t *oldp = node_->next.node;
            node_->count =
                (node_->min < c ? c - node_->min : node_->min - c) + 1;
            node_->next.table = (pfx_node_t**)
                malloc (sizeof (pfx_node_t*) * node_->count);
            alloc_assert (node_->next.table);
            for (unsigned short i = 0; i != node_->count; ++i)
                node_->next.table [i] = 0;
            node_->min = std::min (node_->min, c);
            node_->next.table [oldc - node_->min] = oldp;
        }
        else if (node_->min < c) {

            //  The new character is above the current character range.
            unsigned short old_count = node_->count;
            node_->count = c - node_->min + 1;
            node_->next.table =
                (pfx_node_t**) realloc ((void*) node_->next.table,
                sizeof (pfx_node_t*) * node_->count);
            xs_assert (node_->next.table);
            for (unsigned short i = old_count; i != node_->count; i++)
                node_->next.table [i] = NULL;
        }
        else {

            //  The new character is below the current character range.
            unsigned short old_count = node_->count;
            node_->count = (node_->min + old_count) - c;
            node_->next.table =
                (pfx_node_t**) realloc ((void*) node_->next.table,
                sizeof (pfx_node_t*) * node_->count);
            xs_assert (node_->next.table);
            memmove (node_->next.table + node_->min - c, node_->next.table,
                old_count * sizeof (pfx_node_t*));
            for (unsigned short i = 0; i != node_->min - c; i++)
                node_->next.table [i] = NULL;
            node_->min = c;
        }
    }

    //  If next node does not exist, create one.
    if (node_->count == 1) {
        if (!node_->next.node) {
            node_->next.node = (pfx_node_t*) malloc (sizeof (pfx_node_t));
            alloc_assert (node_->next.node);
            pfx_init (node_->next.node);
            ++node_->live_nodes;
            xs_assert (node_->next.node);
        }
        return pfx_add (node_->next.node, prefix_ + 1, size_ - 1, subscriber_);
    }
    else {
        if (!node_->next.table [c - node_->min]) {
            node_->next.table [c - node_->min] =
                (pfx_node_t*) malloc (sizeof (pfx_node_t));
            alloc_assert (node_->next.table [c - node_->min]);
            pfx_init (node_->next.table [c - node_->min]);
            ++node_->live_nodes;
            xs_assert (node_->next.table [c - node_->min]);
        }
        return pfx_add (node_->next.table [c - node_->min],
            prefix_ + 1, size_ - 1, subscriber_);
    }
}
示例#20
0
int zmq::socket_base_t::bind (const char *addr_)
{
    ENTER_MUTEX();

    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        EXIT_MUTEX();
        return -1;
    }

    //  Process pending commands, if any.
    int rc = process_commands (0, false);
    if (unlikely (rc != 0)) {
        EXIT_MUTEX();
        return -1;
    }

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    if (parse_uri (addr_, protocol, address) || check_protocol (protocol)) {
        EXIT_MUTEX();
        return -1;
    }

    if (protocol == "inproc") {
        const endpoint_t endpoint = { this, options };
        const int rc = register_endpoint (addr_, endpoint);
        if (rc == 0) {
            connect_pending (addr_, this);
            last_endpoint.assign (addr_);
        }
        EXIT_MUTEX();
        return rc;
    }

    if (protocol == "pgm" || protocol == "epgm" || protocol == "norm") {
        //  For convenience's sake, bind can be used interchageable with
        //  connect for PGM, EPGM and NORM transports.
        EXIT_MUTEX();
        return connect (addr_);
    }

    //  Remaining trasnports require to be run in an I/O thread, so at this
    //  point we'll choose one.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    if (!io_thread) {
        errno = EMTHREAD;
        EXIT_MUTEX();
        return -1;
    }

    if (protocol == "tcp") {
        tcp_listener_t *listener = new (std::nothrow) tcp_listener_t (
            io_thread, this, options);
        alloc_assert (listener);
        int rc = listener->set_address (address.c_str ());
        if (rc != 0) {
            delete listener;
            event_bind_failed (address, zmq_errno());
            EXIT_MUTEX();
            return -1;
        }

        // Save last endpoint URI
        listener->get_address (last_endpoint);

        add_endpoint (last_endpoint.c_str (), (own_t *) listener, NULL);
        EXIT_MUTEX();
        return 0;
    }

#if !defined ZMQ_HAVE_WINDOWS && !defined ZMQ_HAVE_OPENVMS
    if (protocol == "ipc") {
        ipc_listener_t *listener = new (std::nothrow) ipc_listener_t (
            io_thread, this, options);
        alloc_assert (listener);
        int rc = listener->set_address (address.c_str ());
        if (rc != 0) {
            delete listener;
            event_bind_failed (address, zmq_errno());
            EXIT_MUTEX();
            return -1;
        }

        // Save last endpoint URI
        listener->get_address (last_endpoint);

        add_endpoint (last_endpoint.c_str (), (own_t *) listener, NULL);
        EXIT_MUTEX();
        return 0;
    }
#endif
#if defined ZMQ_HAVE_TIPC
    if (protocol == "tipc") {
         tipc_listener_t *listener = new (std::nothrow) tipc_listener_t (
              io_thread, this, options);
         alloc_assert (listener);
         int rc = listener->set_address (address.c_str ());
         if (rc != 0) {
             delete listener;
             event_bind_failed (address, zmq_errno());
             EXIT_MUTEX();
             return -1;
         }

        // Save last endpoint URI
        listener->get_address (last_endpoint);

        add_endpoint (addr_, (own_t *) listener, NULL);
        EXIT_MUTEX();
        return 0;
    }
#endif

    EXIT_MUTEX();
    zmq_assert (false);
    return -1;
}
示例#21
0
bool zmq::stream_engine_t::handshake ()
{
    zmq_assert (handshaking);
    zmq_assert (greeting_bytes_read < greeting_size);
    //  Receive the greeting.
    while (greeting_bytes_read < greeting_size) {
        const int n = read (greeting_recv + greeting_bytes_read,
                            greeting_size - greeting_bytes_read);
        if (n == 0) {
            error ();
            return false;
        }
        if (n == -1) {
            if (errno != EAGAIN)
                error ();
            return false;
        }

        greeting_bytes_read += n;

        //  We have received at least one byte from the peer.
        //  If the first byte is not 0xff, we know that the
        //  peer is using unversioned protocol.
        if (greeting_recv [0] != 0xff)
            break;

        if (greeting_bytes_read < signature_size)
            continue;

        //  Inspect the right-most bit of the 10th byte (which coincides
        //  with the 'flags' field if a regular message was sent).
        //  Zero indicates this is a header of identity message
        //  (i.e. the peer is using the unversioned protocol).
        if (!(greeting_recv [9] & 0x01))
            break;

        //  The peer is using versioned protocol.
        //  Send the major version number.
        if (outpos + outsize == greeting_send + signature_size) {
            if (outsize == 0)
                set_pollout (handle);
            outpos [outsize++] = 3;     //  Major version number
        }

        if (greeting_bytes_read > signature_size) {
            if (outpos + outsize == greeting_send + signature_size + 1) {
                if (outsize == 0)
                    set_pollout (handle);

                //  Use ZMTP/2.0 to talk to older peers.
                if (greeting_recv [10] == ZMTP_1_0
                ||  greeting_recv [10] == ZMTP_2_0)
                    outpos [outsize++] = options.type;
                else {
                    outpos [outsize++] = 0; //  Minor version number
                    memset (outpos + outsize, 0, 20);

                    zmq_assert (options.mechanism == ZMQ_NULL
                            ||  options.mechanism == ZMQ_PLAIN
                            ||  options.mechanism == ZMQ_CURVE);

                    if (options.mechanism == ZMQ_NULL)
                        memcpy (outpos + outsize, "NULL", 4);
                    else
                    if (options.mechanism == ZMQ_PLAIN)
                        memcpy (outpos + outsize, "PLAIN", 5);
                    else
                        memcpy (outpos + outsize, "CURVE", 5);
                    outsize += 20;
                    memset (outpos + outsize, 0, 32);
                    outsize += 32;
                    greeting_size = v3_greeting_size;
                }
            }
        }
    }

    //  Position of the revision field in the greeting.
    const size_t revision_pos = 10;

    //  Is the peer using ZMTP/1.0 with no revision number?
    //  If so, we send and receive rest of identity message
    if (greeting_recv [0] != 0xff || !(greeting_recv [9] & 0x01)) {
        encoder = new (std::nothrow) v1_encoder_t (out_batch_size);
        alloc_assert (encoder);

        decoder = new (std::nothrow) v1_decoder_t (in_batch_size, options.maxmsgsize);
        alloc_assert (decoder);

        //  We have already sent the message header.
        //  Since there is no way to tell the encoder to
        //  skip the message header, we simply throw that
        //  header data away.
        const size_t header_size = options.identity_size + 1 >= 255 ? 10 : 2;
        unsigned char tmp [10], *bufferp = tmp;

        //  Prepare the identity message and load it into encoder.
        //  Then consume bytes we have already sent to the peer.
        const int rc = tx_msg.init_size (options.identity_size);
        zmq_assert (rc == 0);
        memcpy (tx_msg.data (), options.identity, options.identity_size);
        encoder->load_msg (&tx_msg);
        size_t buffer_size = encoder->encode (&bufferp, header_size);
        zmq_assert (buffer_size == header_size);

        //  Make sure the decoder sees the data we have already received.
        inpos = greeting_recv;
        insize = greeting_bytes_read;

        //  To allow for interoperability with peers that do not forward
        //  their subscriptions, we inject a phantom subscription message
        //  message into the incoming message stream.
        if (options.type == ZMQ_PUB || options.type == ZMQ_XPUB)
            subscription_required = true;

        //  We are sending our identity now and the next message
        //  will come from the socket.
        read_msg = &stream_engine_t::pull_msg_from_session;

        //  We are expecting identity message.
        write_msg = &stream_engine_t::write_identity;
    }
    else
    if (greeting_recv [revision_pos] == ZMTP_1_0) {
        encoder = new (std::nothrow) v1_encoder_t (
            out_batch_size);
        alloc_assert (encoder);

        decoder = new (std::nothrow) v1_decoder_t (
            in_batch_size, options.maxmsgsize);
        alloc_assert (decoder);
    }
    else
    if (greeting_recv [revision_pos] == ZMTP_2_0) {
        encoder = new (std::nothrow) v2_encoder_t (out_batch_size);
        alloc_assert (encoder);

        decoder = new (std::nothrow) v2_decoder_t (
            in_batch_size, options.maxmsgsize);
        alloc_assert (decoder);
    }
    else {
        encoder = new (std::nothrow) v2_encoder_t (out_batch_size);
        alloc_assert (encoder);

        decoder = new (std::nothrow) v2_decoder_t (
            in_batch_size, options.maxmsgsize);
        alloc_assert (decoder);

        if (memcmp (greeting_recv + 12, "NULL\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 20) == 0) {
            mechanism = new (std::nothrow)
                null_mechanism_t (session, peer_address, options);
            alloc_assert (mechanism);
        }
        else
        if (memcmp (greeting_recv + 12, "PLAIN\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 20) == 0) {
            mechanism = new (std::nothrow)
                plain_mechanism_t (session, peer_address, options);
            alloc_assert (mechanism);
        }
#ifdef HAVE_LIBSODIUM
        else
        if (memcmp (greeting_recv + 12, "CURVE\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 20) == 0) {
            if (options.as_server)
                mechanism = new (std::nothrow)
                    curve_server_t (session, peer_address, options);
            else
                mechanism = new (std::nothrow) curve_client_t (options);
            alloc_assert (mechanism);
        }
#endif
        else {
            error ();
            return false;
        }
        read_msg = &stream_engine_t::next_handshake_command;
        write_msg = &stream_engine_t::process_handshake_command;
    }

    // Start polling for output if necessary.
    if (outsize == 0)
        set_pollout (handle);

    //  Handshaking was successful.
    //  Switch into the normal message flow.
    handshaking = false;

    return true;
}
示例#22
0
int zmq::socket_base_t::connect (const char *addr_)
{
    ENTER_MUTEX();

    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        EXIT_MUTEX();
        return -1;
    }

    //  Process pending commands, if any.
    int rc = process_commands (0, false);
    if (unlikely (rc != 0)) {
        EXIT_MUTEX();
        return -1;
    }

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    if (parse_uri (addr_, protocol, address) || check_protocol (protocol)) {
        EXIT_MUTEX();
        return -1;
    }

    if (protocol == "inproc") {

        //  TODO: inproc connect is specific with respect to creating pipes
        //  as there's no 'reconnect' functionality implemented. Once that
        //  is in place we should follow generic pipe creation algorithm.

        //  Find the peer endpoint.
        endpoint_t peer = find_endpoint (addr_);

        // The total HWM for an inproc connection should be the sum of
        // the binder's HWM and the connector's HWM.
        int sndhwm = 0;
        if (peer.socket == NULL)
            sndhwm = options.sndhwm;
        else if (options.sndhwm != 0 && peer.options.rcvhwm != 0)
            sndhwm = options.sndhwm + peer.options.rcvhwm;
        int rcvhwm = 0;
        if (peer.socket == NULL)
            rcvhwm = options.rcvhwm;
        else
        if (options.rcvhwm != 0 && peer.options.sndhwm != 0)
            rcvhwm = options.rcvhwm + peer.options.sndhwm;

        //  Create a bi-directional pipe to connect the peers.
        object_t *parents [2] = {this, peer.socket == NULL ? this : peer.socket};
        pipe_t *new_pipes [2] = {NULL, NULL};

        bool conflate = options.conflate &&
            (options.type == ZMQ_DEALER ||
             options.type == ZMQ_PULL ||
             options.type == ZMQ_PUSH ||
             options.type == ZMQ_PUB ||
             options.type == ZMQ_SUB);

        int hwms [2] = {conflate? -1 : sndhwm, conflate? -1 : rcvhwm};
        bool conflates [2] = {conflate, conflate};
        int rc = pipepair (parents, new_pipes, hwms, conflates);
        errno_assert (rc == 0);

        if (!peer.socket) {
            //  The peer doesn't exist yet so we don't know whether
            //  to send the identity message or not. To resolve this,
            //  we always send our identity and drop it later if
            //  the peer doesn't expect it.
            msg_t id;
            rc = id.init_size (options.identity_size);
            errno_assert (rc == 0);
            memcpy (id.data (), options.identity, options.identity_size);
            id.set_flags (msg_t::identity);
            bool written = new_pipes [0]->write (&id);
            zmq_assert (written);
            new_pipes [0]->flush ();

            const endpoint_t endpoint = {this, options};
            pend_connection (std::string (addr_), endpoint, new_pipes);
        }
        else {
            //  If required, send the identity of the local socket to the peer.
            if (peer.options.recv_identity) {
                msg_t id;
                rc = id.init_size (options.identity_size);
                errno_assert (rc == 0);
                memcpy (id.data (), options.identity, options.identity_size);
                id.set_flags (msg_t::identity);
                bool written = new_pipes [0]->write (&id);
                zmq_assert (written);
                new_pipes [0]->flush ();
            }

            //  If required, send the identity of the peer to the local socket.
            if (options.recv_identity) {
                msg_t id;
                rc = id.init_size (peer.options.identity_size);
                errno_assert (rc == 0);
                memcpy (id.data (), peer.options.identity, peer.options.identity_size);
                id.set_flags (msg_t::identity);
                bool written = new_pipes [1]->write (&id);
                zmq_assert (written);
                new_pipes [1]->flush ();
            }

            //  Attach remote end of the pipe to the peer socket. Note that peer's
            //  seqnum was incremented in find_endpoint function. We don't need it
            //  increased here.
            send_bind (peer.socket, new_pipes [1], false);
        }

        //  Attach local end of the pipe to this socket object.
        attach_pipe (new_pipes [0]);

        // Save last endpoint URI
        last_endpoint.assign (addr_);

        // remember inproc connections for disconnect
        inprocs.insert (inprocs_t::value_type (std::string (addr_), new_pipes [0]));

        EXIT_MUTEX();
        return 0;
    }
    bool is_single_connect = (options.type == ZMQ_DEALER ||
                              options.type == ZMQ_SUB ||
                              options.type == ZMQ_REQ);
    if (unlikely (is_single_connect)) {
        const endpoints_t::iterator it = endpoints.find (addr_);
        if (it != endpoints.end ()) {
            // There is no valid use for multiple connects for SUB-PUB nor
            // DEALER-ROUTER nor REQ-REP. Multiple connects produces
            // nonsensical results.
            EXIT_MUTEX();
            return 0;
        }
    }

    //  Choose the I/O thread to run the session in.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    if (!io_thread) {
        errno = EMTHREAD;
        EXIT_MUTEX();
        return -1;
    }

    address_t *paddr = new (std::nothrow) address_t (protocol, address);
    alloc_assert (paddr);

    //  Resolve address (if needed by the protocol)
    if (protocol == "tcp") {
        //  Do some basic sanity checks on tcp:// address syntax
        //  - hostname starts with digit or letter, with embedded '-' or '.'
        //  - IPv6 address may contain hex chars and colons.
        //  - IPv4 address may contain decimal digits and dots.
        //  - Address must end in ":port" where port is *, or numeric
        //  - Address may contain two parts separated by ':'
        //  Following code is quick and dirty check to catch obvious errors,
        //  without trying to be fully accurate.
        const char *check = address.c_str ();
        if (isalnum (*check) || isxdigit (*check)) {
            check++;
            while (isalnum  (*check)
                || isxdigit (*check)
                || *check == '.' || *check == '-' || *check == ':'|| *check == ';')
                check++;
        }
        //  Assume the worst, now look for success
        rc = -1;
        //  Did we reach the end of the address safely?
        if (*check == 0) {
            //  Do we have a valid port string? (cannot be '*' in connect
            check = strrchr (address.c_str (), ':');
            if (check) {
                check++;
                if (*check && (isdigit (*check)))
                    rc = 0;     //  Valid
            }
        }
        if (rc == -1) {
            errno = EINVAL;
            delete paddr;
            EXIT_MUTEX();
            return -1;
        }
        //  Defer resolution until a socket is opened
        paddr->resolved.tcp_addr = NULL;
    }
#if !defined ZMQ_HAVE_WINDOWS && !defined ZMQ_HAVE_OPENVMS
    else
    if (protocol == "ipc") {
        paddr->resolved.ipc_addr = new (std::nothrow) ipc_address_t ();
        alloc_assert (paddr->resolved.ipc_addr);
        int rc = paddr->resolved.ipc_addr->resolve (address.c_str ());
        if (rc != 0) {
            delete paddr;
            EXIT_MUTEX();
            return -1;
        }
    }
#endif
    
// TBD - Should we check address for ZMQ_HAVE_NORM???
    
#ifdef ZMQ_HAVE_OPENPGM
    if (protocol == "pgm" || protocol == "epgm") {
        struct pgm_addrinfo_t *res = NULL;
        uint16_t port_number = 0;
        int rc = pgm_socket_t::init_address(address.c_str(), &res, &port_number);
        if (res != NULL)
            pgm_freeaddrinfo (res);
        if (rc != 0 || port_number == 0)
            EXIT_MUTEX();
            return -1;
    }
#endif
#if defined ZMQ_HAVE_TIPC
    else
    if (protocol == "tipc") {
        paddr->resolved.tipc_addr = new (std::nothrow) tipc_address_t ();
        alloc_assert (paddr->resolved.tipc_addr);
        int rc = paddr->resolved.tipc_addr->resolve (address.c_str());
        if (rc != 0) {
            delete paddr;
            EXIT_MUTEX();
            return -1;
        }
    }
#endif

    //  Create session.
    session_base_t *session = session_base_t::create (io_thread, true, this,
        options, paddr);
    errno_assert (session);

    //  PGM does not support subscription forwarding; ask for all data to be
    //  sent to this pipe. (same for NORM, currently?)
    bool subscribe_to_all = protocol == "pgm" || protocol == "epgm" || protocol == "norm";
    pipe_t *newpipe = NULL;

    if (options.immediate != 1 || subscribe_to_all) {
        //  Create a bi-directional pipe.
        object_t *parents [2] = {this, session};
        pipe_t *new_pipes [2] = {NULL, NULL};

        bool conflate = options.conflate &&
            (options.type == ZMQ_DEALER ||
             options.type == ZMQ_PULL ||
             options.type == ZMQ_PUSH ||
             options.type == ZMQ_PUB ||
             options.type == ZMQ_SUB);

        int hwms [2] = {conflate? -1 : options.sndhwm,
            conflate? -1 : options.rcvhwm};
        bool conflates [2] = {conflate, conflate};
        rc = pipepair (parents, new_pipes, hwms, conflates);
        errno_assert (rc == 0);

        //  Attach local end of the pipe to the socket object.
        attach_pipe (new_pipes [0], subscribe_to_all);
        newpipe = new_pipes [0];

        //  Attach remote end of the pipe to the session object later on.
        session->attach_pipe (new_pipes [1]);
    }

    //  Save last endpoint URI
    paddr->to_string (last_endpoint);

    add_endpoint (addr_, (own_t *) session, newpipe);
    EXIT_MUTEX();
    return 0;
}
示例#23
0
文件: mtrie.cpp 项目: Jichao/libzmq
bool zmq::mtrie_t::rm_helper (unsigned char *prefix_, size_t size_,
    pipe_t *pipe_)
{
    if (!size_) {
        if (pipes) {
            pipes_t::size_type erased = pipes->erase (pipe_);
            zmq_assert (erased == 1);
            if (pipes->empty ()) {
                LIBZMQ_DELETE(pipes);
            }
        }
        return !pipes;
    }

    unsigned char c = *prefix_;
    if (!count || c < min || c >= min + count)
        return false;

    mtrie_t *next_node =
        count == 1 ? next.node : next.table [c - min];

    if (!next_node)
        return false;

    bool ret = next_node->rm_helper (prefix_ + 1, size_ - 1, pipe_);

    if (next_node->is_redundant ()) {
        LIBZMQ_DELETE(next_node);
        zmq_assert (count > 0);

        if (count == 1) {
            next.node = 0;
            count = 0;
            --live_nodes;
            zmq_assert (live_nodes == 0);
        }
        else {
            next.table [c - min] = 0;
            zmq_assert (live_nodes > 1);
            --live_nodes;

            //  Compact the table if possible
            if (live_nodes == 1) {
                //  If there's only one live node in the table we can
                //  switch to using the more compact single-node
                //  representation
                unsigned short i;
                for (i = 0; i < count; ++i)
                    if (next.table [i])
                        break;

                zmq_assert (i < count);
                min += i;
                count = 1;
                mtrie_t *oldp = next.table [i];
                free (next.table);
                next.node = oldp;
            }
            else
            if (c == min) {
                //  We can compact the table "from the left"
                unsigned short i;
                for (i = 1; i < count; ++i)
                    if (next.table [i])
                        break;

                zmq_assert (i < count);
                min += i;
                count -= i;
                mtrie_t **old_table = next.table;
                next.table = (mtrie_t**) malloc (sizeof (mtrie_t*) * count);
                alloc_assert (next.table);
                memmove (next.table, old_table + i, sizeof (mtrie_t*) * count);
                free (old_table);
            }
            else
            if (c == min + count - 1) {
                //  We can compact the table "from the right"
                unsigned short i;
                for (i = 1; i < count; ++i)
                    if (next.table [count - 1 - i])
                        break;

                zmq_assert (i < count);
                count -= i;
                mtrie_t **old_table = next.table;
                next.table = (mtrie_t**) malloc (sizeof (mtrie_t*) * count);
                alloc_assert (next.table);
                memmove (next.table, old_table, sizeof (mtrie_t*) * count);
                free (old_table);
            }
        }
    }

    return ret;
}
示例#24
0
zmq::socket_base_t *zmq::socket_base_t::create (int type_, class ctx_t *parent_,
    uint32_t tid_, int sid_)
{
    socket_base_t *s = NULL;
    switch (type_) {
        case ZMQ_PAIR:
            s = new (std::nothrow) pair_t (parent_, tid_, sid_);
            break;
        case ZMQ_PUB:
            s = new (std::nothrow) pub_t (parent_, tid_, sid_);
            break;
        case ZMQ_SUB:
            s = new (std::nothrow) sub_t (parent_, tid_, sid_);
            break;
        case ZMQ_REQ:
            s = new (std::nothrow) req_t (parent_, tid_, sid_);
            break;
        case ZMQ_REP:
            s = new (std::nothrow) rep_t (parent_, tid_, sid_);
            break;
        case ZMQ_DEALER:
            s = new (std::nothrow) dealer_t (parent_, tid_, sid_);
            break;
        case ZMQ_ROUTER:
            s = new (std::nothrow) router_t (parent_, tid_, sid_);
            break;
        case ZMQ_PULL:
            s = new (std::nothrow) pull_t (parent_, tid_, sid_);
            break;
        case ZMQ_PUSH:
            s = new (std::nothrow) push_t (parent_, tid_, sid_);
            break;
        case ZMQ_XPUB:
            s = new (std::nothrow) xpub_t (parent_, tid_, sid_);
            break;
        case ZMQ_XSUB:
            s = new (std::nothrow) xsub_t (parent_, tid_, sid_);
            break;
        case ZMQ_STREAM:
            s = new (std::nothrow) stream_t (parent_, tid_, sid_);
            break;
        case ZMQ_SERVER:
            s = new (std::nothrow) server_t (parent_, tid_, sid_);
            break;
        case ZMQ_CLIENT:
            s = new (std::nothrow) client_t (parent_, tid_, sid_);
            break;
        default:
            errno = EINVAL;
            return NULL;
    }

    alloc_assert (s);

    mailbox_t *mailbox = dynamic_cast<mailbox_t*> (s->mailbox);

    if (mailbox != NULL && mailbox->get_fd () == retired_fd)
        return NULL;

    return s;
}
示例#25
0
int zmq::tcp_connecter_t::open ()
{
    zmq_assert (s == retired_fd);

    //  Resolve the address
    if (addr->resolved.tcp_addr != NULL) {
        LIBZMQ_DELETE(addr->resolved.tcp_addr);
    }

    addr->resolved.tcp_addr = new (std::nothrow) tcp_address_t ();
    alloc_assert (addr->resolved.tcp_addr);
    int rc = addr->resolved.tcp_addr->resolve (
        addr->address.c_str (), false, options.ipv6);
    if (rc != 0) {
        LIBZMQ_DELETE(addr->resolved.tcp_addr);
        return -1;
    }
    zmq_assert (addr->resolved.tcp_addr != NULL);
    tcp_address_t * const tcp_addr = addr->resolved.tcp_addr;

    //  Create the socket.
    s = open_socket (tcp_addr->family (), SOCK_STREAM, IPPROTO_TCP);
#ifdef ZMQ_HAVE_WINDOWS
    if (s == INVALID_SOCKET) {
        errno = wsa_error_to_errno (WSAGetLastError ());
        return -1;
    }
#else
    if (s == -1)
        return -1;
#endif

    //  On some systems, IPv4 mapping in IPv6 sockets is disabled by default.
    //  Switch it on in such cases.
    if (tcp_addr->family () == AF_INET6)
        enable_ipv4_mapping (s);

    // Set the IP Type-Of-Service priority for this socket
    if (options.tos != 0)
        set_ip_type_of_service (s, options.tos);

    // Set the socket to non-blocking mode so that we get async connect().
    unblock_socket (s);

    //  Set the socket buffer limits for the underlying socket.
    if (options.sndbuf >= 0)
        set_tcp_send_buffer (s, options.sndbuf);
    if (options.rcvbuf >= 0)
        set_tcp_receive_buffer (s, options.rcvbuf);

    // Set the IP Type-Of-Service for the underlying socket
    if (options.tos != 0)
        set_ip_type_of_service (s, options.tos);

    // Set a source address for conversations
    if (tcp_addr->has_src_addr ()) {
        rc = ::bind (s, tcp_addr->src_addr (), tcp_addr->src_addrlen ());
        if (rc == -1)
            return -1;
    }

    //  Connect to the remote peer.
    rc = ::connect (s, tcp_addr->addr (), tcp_addr->addrlen ());

    //  Connect was successful immediately.
    if (rc == 0)
        return 0;

    //  Translate error codes indicating asynchronous connect has been
    //  launched to a uniform EINPROGRESS.
#ifdef ZMQ_HAVE_WINDOWS
    const int last_error = WSAGetLastError();
    if (last_error == WSAEINPROGRESS || last_error == WSAEWOULDBLOCK)
        errno = EINPROGRESS;
    else
        errno = wsa_error_to_errno (last_error);
#else
    if (errno == EINTR)
        errno = EINPROGRESS;
#endif
    return -1;
}
void *zmq_atomic_counter_new (void)
{
    zmq::atomic_counter_t *counter = new (std::nothrow) zmq::atomic_counter_t;
    alloc_assert (counter);
    return counter;
}
示例#27
0
void zmq::session_base_t::start_connecting (bool wait_)
{
    zmq_assert (active);

    //  Choose I/O thread to run connecter in. Given that we are already
    //  running in an I/O thread, there must be at least one available.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    zmq_assert (io_thread);

    //  Create the connecter object.

    if (addr->protocol == "tcp") {
        if (!options.socks_proxy_address.empty()) {
            address_t *proxy_address = new (std::nothrow)
                address_t ("tcp", options.socks_proxy_address, this->get_ctx ());
            alloc_assert (proxy_address);
            socks_connecter_t *connecter =
                new (std::nothrow) socks_connecter_t (
                    io_thread, this, options, addr, proxy_address, wait_);
            alloc_assert (connecter);
            launch_child (connecter);
        }
        else {
            tcp_connecter_t *connecter = new (std::nothrow)
                tcp_connecter_t (io_thread, this, options, addr, wait_);
            alloc_assert (connecter);
            launch_child (connecter);
        }
        return;
    }

#if !defined ZMQ_HAVE_WINDOWS && !defined ZMQ_HAVE_OPENVMS
    if (addr->protocol == "ipc") {
        ipc_connecter_t *connecter = new (std::nothrow) ipc_connecter_t (
            io_thread, this, options, addr, wait_);
        alloc_assert (connecter);
        launch_child (connecter);
        return;
    }
#endif
#if defined ZMQ_HAVE_TIPC
    if (addr->protocol == "tipc") {
        tipc_connecter_t *connecter = new (std::nothrow) tipc_connecter_t (
            io_thread, this, options, addr, wait_);
        alloc_assert (connecter);
        launch_child (connecter);
        return;
    }
#endif

if (addr->protocol == "udp") {
    zmq_assert (options.type == ZMQ_DISH || options.type == ZMQ_RADIO);

    udp_engine_t* engine = new (std::nothrow) udp_engine_t ();
    alloc_assert (engine);

    bool recv = false;
    bool send = false;

    if (options.type == ZMQ_RADIO) {
        send = true;
        recv = false;
    }
    else if (options.type == ZMQ_DISH) {
        send = false;
        recv = true;
    }

    int rc = engine->init (addr, send, recv);
    errno_assert (rc == 0);

    send_attach (this, engine);

    return;
}

#ifdef ZMQ_HAVE_OPENPGM

    //  Both PGM and EPGM transports are using the same infrastructure.
    if (addr->protocol == "pgm" || addr->protocol == "epgm") {

        zmq_assert (options.type == ZMQ_PUB || options.type == ZMQ_XPUB
                 || options.type == ZMQ_SUB || options.type == ZMQ_XSUB);

        //  For EPGM transport with UDP encapsulation of PGM is used.
        bool const udp_encapsulation = addr->protocol == "epgm";

        //  At this point we'll create message pipes to the session straight
        //  away. There's no point in delaying it as no concept of 'connect'
        //  exists with PGM anyway.
        if (options.type == ZMQ_PUB || options.type == ZMQ_XPUB) {

            //  PGM sender.
            pgm_sender_t *pgm_sender = new (std::nothrow) pgm_sender_t (
                io_thread, options);
            alloc_assert (pgm_sender);

            int rc = pgm_sender->init (udp_encapsulation, addr->address.c_str ());
            errno_assert (rc == 0);

            send_attach (this, pgm_sender);
        }
        else {

            //  PGM receiver.
            pgm_receiver_t *pgm_receiver = new (std::nothrow) pgm_receiver_t (
                io_thread, options);
            alloc_assert (pgm_receiver);

            int rc = pgm_receiver->init (udp_encapsulation, addr->address.c_str ());
            errno_assert (rc == 0);

            send_attach (this, pgm_receiver);
        }

        return;
    }
#endif

#ifdef ZMQ_HAVE_NORM
    if (addr->protocol == "norm") {
        //  At this point we'll create message pipes to the session straight
        //  away. There's no point in delaying it as no concept of 'connect'
        //  exists with NORM anyway.
        if (options.type == ZMQ_PUB || options.type == ZMQ_XPUB) {

            //  NORM sender.
            norm_engine_t* norm_sender = new (std::nothrow) norm_engine_t(io_thread, options);
            alloc_assert (norm_sender);

            int rc = norm_sender->init (addr->address.c_str (), true, false);
            errno_assert (rc == 0);

            send_attach (this, norm_sender);
        }
        else {  // ZMQ_SUB or ZMQ_XSUB

            //  NORM receiver.
            norm_engine_t* norm_receiver = new (std::nothrow) norm_engine_t (io_thread, options);
            alloc_assert (norm_receiver);

            int rc = norm_receiver->init (addr->address.c_str (), false, true);
            errno_assert (rc == 0);

            send_attach (this, norm_receiver);
        }
        return;
    }
#endif // ZMQ_HAVE_NORM

#if defined ZMQ_HAVE_VMCI
    if (addr->protocol == "vmci") {
        vmci_connecter_t *connecter = new (std::nothrow) vmci_connecter_t (
                io_thread, this, options, addr, wait_);
        alloc_assert (connecter);
        launch_child (connecter);
        return;
    }
#endif

    zmq_assert (false);
}
示例#28
0
文件: msg.c 项目: Miyurz/SuperNET
int testmsg()
{
    int rc;
    int sb;
    int sc;
    unsigned char *buf1, *buf2;
    int i;
    struct nn_iovec iov;
    struct nn_msghdr hdr;
    printf("test msg\n");
    if ( 1 )
    {
        sb = test_socket (AF_SP, NN_PAIR);
        test_bind (sb, SOCKET_ADDRESS);
        sc = test_socket (AF_SP, NN_PAIR);
        test_connect (sc, SOCKET_ADDRESS);
        
        buf1 = nn_allocmsg (256, 0);
        alloc_assert (buf1);
        for (i = 0; i != 256; ++i)
            buf1 [i] = (unsigned char) i;
        printf("send 256\n");
        rc = nn_send (sc, &buf1, NN_MSG, 0);
        printf("rc.%d\n",rc);
        errno_assert (rc >= 0);
        nn_assert (rc == 256);
        
        buf2 = NULL;
        rc = nn_recv (sb, &buf2, NN_MSG, 0);
        errno_assert (rc >= 0);
        nn_assert (rc == 256);
        nn_assert (buf2);
        for (i = 0; i != 256; ++i)
            nn_assert (buf2 [i] == (unsigned char) i);
        rc = nn_freemsg (buf2);
        errno_assert (rc == 0);
        
        buf1 = nn_allocmsg (256, 0);
        alloc_assert (buf1);
        for (i = 0; i != 256; ++i)
            buf1 [i] = (unsigned char) i;
        iov.iov_base = &buf1;
        iov.iov_len = NN_MSG;
        memset (&hdr, 0, sizeof (hdr));
        hdr.msg_iov = &iov;
        hdr.msg_iovlen = 1;
        rc = nn_sendmsg (sc, &hdr, 0);
        errno_assert (rc >= 0);
        nn_assert (rc == 256);
        
        buf2 = NULL;
        iov.iov_base = &buf2;
        iov.iov_len = NN_MSG;
        memset (&hdr, 0, sizeof (hdr));
        hdr.msg_iov = &iov;
        hdr.msg_iovlen = 1;
        rc = nn_recvmsg (sb, &hdr, 0);
        errno_assert (rc >= 0);
        nn_assert (rc == 256);
        nn_assert (buf2);
        for (i = 0; i != 256; ++i)
            nn_assert (buf2 [i] == (unsigned char) i);
        rc = nn_freemsg (buf2);
        errno_assert (rc == 0);
        
        test_close (sc);
        test_close (sb);
    }
    /*  Test receiving of large message  */
    sb = test_socket(AF_SP, NN_PAIR);
    //printf("test_bind.(%s)\n",SOCKET_ADDRESS_TCP);
    test_bind(sb,SOCKET_ADDRESS_TCP);
    sc = test_socket(AF_SP,NN_PAIR);
    //printf("test_connect.(%s)\n",SOCKET_ADDRESS_TCP);
    test_connect(sc,SOCKET_ADDRESS_TCP);

    for (i = 0; i < (int) sizeof (longdata); ++i)
        longdata[i] = '0' + (i % 10);
    longdata [sizeof(longdata) - 1] = 0;
    printf("send longdata.%d\n",(int32_t)sizeof(longdata));
    test_send(sb,longdata);
    printf("recv longdata.%d\n",(int32_t)sizeof(longdata));
    rc = nn_recv (sc, &buf2, NN_MSG, 0);
    errno_assert (rc >= 0);
    nn_assert (rc == sizeof (longdata) - 1);
    nn_assert (buf2);
    for (i = 0; i < (int) sizeof (longdata) - 1; ++i)
        nn_assert (buf2 [i] == longdata [i]);
    rc = nn_freemsg (buf2);
    errno_assert (rc == 0);

    test_close (sc);
    test_close (sb);
    //printf("testmsg completed\n");
    return 0;
}
示例#29
0
文件: ctx.cpp 项目: ctemple/libzmq
zmq::socket_base_t *zmq::ctx_t::create_socket (int type_)
{
    scoped_lock_t locker(slot_sync);

    if (unlikely (starting)) {

        starting = false;
        //  Initialise the array of mailboxes. Additional three slots are for
        //  zmq_ctx_term thread and reaper thread.
        opt_sync.lock ();
        int mazmq = max_sockets;
        int ios = io_thread_count;
        opt_sync.unlock ();
        slot_count = mazmq + ios + 2;
        slots = (i_mailbox **) malloc (sizeof (i_mailbox*) * slot_count);
        alloc_assert (slots);

        //  Initialise the infrastructure for zmq_ctx_term thread.
        slots [term_tid] = &term_mailbox;

        //  Create the reaper thread.
        reaper = new (std::nothrow) reaper_t (this, reaper_tid);
        alloc_assert (reaper);
        slots [reaper_tid] = reaper->get_mailbox ();
        reaper->start ();

        //  Create I/O thread objects and launch them.
        for (int i = 2; i != ios + 2; i++) {
            io_thread_t *io_thread = new (std::nothrow) io_thread_t (this, i);
            alloc_assert (io_thread);
            io_threads.push_back (io_thread);
            slots [i] = io_thread->get_mailbox ();
            io_thread->start ();
        }

        //  In the unused part of the slot array, create a list of empty slots.
        for (int32_t i = (int32_t) slot_count - 1;
              i >= (int32_t) ios + 2; i--) {
            empty_slots.push_back (i);
            slots [i] = NULL;
        }
    }

    //  Once zmq_ctx_term() was called, we can't create new sockets.
    if (terminating) {
        errno = ETERM;
        return NULL;
    }

    //  If max_sockets limit was reached, return error.
    if (empty_slots.empty ()) {
        errno = EMFILE;
        return NULL;
    }

    //  Choose a slot for the socket.
    uint32_t slot = empty_slots.back ();
    empty_slots.pop_back ();

    //  Generate new unique socket ID.
    int sid = ((int) max_socket_id.add (1)) + 1;

    //  Create the socket and register its mailbox.
    socket_base_t *s = socket_base_t::create (type_, this, slot, sid);
    if (!s) {
        empty_slots.push_back (slot);
        return NULL;
    }
    sockets.push_back (s);
    slots [slot] = s->get_mailbox ();

    return s;
}
示例#30
0
文件: zmq.cpp 项目: saki4510t/libzmq
inline int zmq_poller_poll (zmq_pollitem_t *items_, int nitems_, long timeout_)
{
    // implement zmq_poll on top of zmq_poller
    int rc;
    zmq_poller_event_t *events;
    events = new zmq_poller_event_t[nitems_];
    alloc_assert(events);
    void *poller = zmq_poller_new ();
    alloc_assert(poller);

    bool repeat_items = false;
    //  Register sockets with poller
    for (int i = 0; i < nitems_; i++) {
        items_[i].revents = 0;

        bool modify = false;
        short e = items_[i].events;
        if (items_[i].socket) {
            //  Poll item is a 0MQ socket.
            for (int j = 0; j < i; ++j) {
                // Check for repeat entries
                if (items_[j].socket == items_[i].socket) {
                    repeat_items = true;
                    modify = true;
                    e |= items_[j].events;
                }
            }
            if (modify) {
                rc = zmq_poller_modify (poller, items_[i].socket, e);
            } else {
                rc = zmq_poller_add (poller, items_[i].socket, NULL, e);
            }
            if (rc < 0) {
                zmq_poller_destroy (&poller);
                delete [] events;
                return rc;
            }
        } else {
            //  Poll item is a raw file descriptor.
            for (int j = 0; j < i; ++j) {
                // Check for repeat entries
                if (!items_[j].socket && items_[j].fd == items_[i].fd) {
                    repeat_items = true;
                    modify = true;
                    e |= items_[j].events;
                }
            }
            if (modify) {
                rc = zmq_poller_modify_fd (poller, items_[i].fd, e);
            } else {
                rc = zmq_poller_add_fd (poller, items_[i].fd, NULL, e);
            }
            if (rc < 0) {
                zmq_poller_destroy (&poller);
                delete [] events;
                return rc;
            }
        }
    }

    //  Wait for events
    rc = zmq_poller_wait_all (poller, events, nitems_, timeout_);
    if (rc < 0) {
        zmq_poller_destroy (&poller);
        delete [] events;
        if (zmq_errno() == ETIMEDOUT) {
            return 0;
        }
        return rc;
    }

    //  Transform poller events into zmq_pollitem events.
    //  items_ contains all items, while events only contains fired events.
    //  If no sockets are repeated (likely), the two are still co-ordered, so step through the items
    //  checking for matches only on the first event.
    //  If there are repeat items, they cannot be assumed to be co-ordered,
    //  so each pollitem must check fired events from the beginning.
    int j_start = 0, found_events = rc;
    for (int i = 0; i < nitems_; i++) {
        for (int j = j_start; j < found_events; ++j) {
            if (
                (items_[i].socket && items_[i].socket == events[j].socket) ||
                (!(items_[i].socket || items_[j].socket) && items_[i].fd == events[j].fd)
            ) {
                items_[i].revents = events[j].events & items_[i].events;
                if (!repeat_items) {
                    // no repeats, we can ignore events we've already seen
                    j_start++;
                }
                break;
            }
            if (!repeat_items) {
                // no repeats, never have to look at j > j_start
                break;
            }
        }
    }

    //  Cleanup
    zmq_poller_destroy (&poller);
    delete [] events;
    return rc;
}